用户名: 密码: 验证码:
机械结构固定结合部虚拟材料的动力学建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数控机床向高精化、高速化、智能化的方向发展,人们对数控机床的性能指标尤其是动态特性性能指标的要求越来越高。对高端数控机床而言,动态特性是整机性能的关键,因此机床动力学性能已成为当今新的研究热点。然而,有资料表明整机结构中60~80%的总动刚度、90%的总阻尼都来自结合部。显然,机床结合部的动力学特性显著影响整机结构的动力学行为。长期以来人们从理论和实验上对此进行了大量的研究。结合部动力学建模是研究结合部动力学特性的重要手段。由于数控机床的结合部类型以及描述结合部模型参数的多样性,目前结合部的模型不能满足高端要求以及尚没有参数化模型,因此急需一种高精度的参数化建模方法。本文工作如下
     第一,提出一种基于虚拟材料的机床固定结合部动力学参数化建模法,即将固定结合部看成一种等截面的虚拟材料,从而将固定结合部等效为虚拟材料与两结合表面零件的固定连接,以工程数据(结合面积、结合力、结合面粗糙度、结合零件的弹性模量和泊松比等)为参数建立固定结合部动力学解析模型,解决了动力学模型工程实用性问题。
     第二,建立了虚拟材料弹性模量、切变模量、泊松比、密度的解析解模型,应用赫兹接触理论和分形理论,分析了固定结合部法向和切向特性的相互影响,在此基础上利用商用有限元软件,开发了基于虚拟材料的参数化固定结合部动力学模式嵌入方法,从而为机床机械结构整机的高精度动力学建模工程化应用提供了一种新方法。
     第三,研究了基于表面粗糙度(Ra)估计分形维数和分形粗糙度参数的方法。推导表面轮廓的结构函数,给出确定分形维数和分形粗糙度参数的实验方法。给出分形维数、分形粗糙度参数与表面粗糙度之间的近似换算式。实验结果表明:分形维数和分形粗糙度参数与取样长度无关,分形维数随表面粗糙度减小而增加,分形粗糙度参数随表面粗糙度减小而减小。
     最后,对虚拟材料的理论解进行有效性验证。以4类零件结合部为研究对象,以测试试件的实验结果为基准,对一系列试验试件的理论模态与实验模态(考虑模态保证准则)进行比较,即相似振型定性比较、相应的固有频率定量比较。理论模型的振型与实验的振型基本一致,理论与实验固有频率的相对误差大多小于10%。在分析前4类零件结合部结果的基础上,以CKX5680七轴五联动车铣数控装备整机结合部为研究对象,对解析法进行有效性验证,理论振型与实验振型基本一致,理论与实验固有频率的相对误差小于9%。
With the development of high precision, high speed and intelligentization of NC machine tools, the need for characteristic indexes (especially dynamic ones) in NC machine tools is much higher. To high-grade NC machine tools, the dynamic property is a key of whole machine tools, therefore, the dynamic performance in machine tools becomes a novel research hot point. However, 60~80% of the total dynamic stiffness and 90% of the total damping in a whole machine tool structure come from joint interfaces. Apparently, the dynamic characteristics of joint interfaces in machine tools affect the dynamic behaviors of a whole machine tool structure considerably. The dynamic characteristics of joint interfaces had been widely studied from theory and experiment for so many years. Dynamic modeling on joint interface plays an important part in studying the dynamic characteristics of joint interface. Now, it is difficult for current models of joint interfaces to satisfy the high-grade need of a set of joint interface in NC machine tools and there lacks a parameterized model because of the diversity of joint interface’s type in NC machine tools and some parameters of describing joint interface model. Thus there urgently needs a parameterized establishing way with high precision. Some works in the manuscript are as follows.
     In the first, a dynamic parameterized modeling approach on fixed joint interface in machine tools was conducted using virtual material, i.e., (1) the fixed joint interface may be considered as a virtual material with the same cross area, (2) the fixed joint interface could be equaled that the virtual material is rigidly connected with two joint surface components and (3) the analytic model on fixed joint interface can be constructed if engineering data (joint area, joint force, joint surface roughness, joint components’elastic moduli and Poisson ratios, et al) are treated as parameters, thereby the model can solve the engineering practical problem about dynamic model.
     In the other, an analytic model of virtual material’s elastic modulus, shear modulus, Poisson ratio and density was proposed. Using Hertz contact theory and fractal theory, the interaction between normal and tangential characteristics of fixed interface was taken into account. In view of commercial finite element software, the dynamic-mode inserting method for parameterized fixed joint interface could be exploited adopting virtual material, therefore, a new approach is provided about the high-accuracy dynamic modeling engineering application for a whole machine tool with mechanical structure.
     Thirdly, a method to estimate the fractal dimension and fractal roughness parameter is studied employing surface roughness. Structure function of surface profile was derived. An experimental technique was given to determine fractal dimension and fractal roughness parameter. Two approximate expressions were proposed about fractal dimension-surface roughness, and fractal roughness parameter-surface roughness. The experimental results reveal that fractal dimension and fractal roughness parameter have nothing to do with the sampling length. Decreasing the surface roughness increases the fractal dimension and reduces the fractal roughness parameter.
     Finally, the analytic solutions for virtual material were effectively verified. Four component joint interfaces selected as some research examples, on the basis of experimental results about test specimen, the theoretical mode shapes were compared with the experimental ones (considering modal assurance criterion), i.e., qualitative comparison of similar mode shape and quantitative comparison of the corresponding natural frequency. The theoretical mode shapes basicly agree well with the experimental results. The relative errors betweenn the theoretical natural frequencies and experimental ones are mostly less than 10 %. Analyzing the results of aforementioned four component joint interfaces, the verification of the analytic method was assured when the whole machine tool’s joint interface from CKX5680 seven-five axis lathe-milling equipment was selected as a study example. The theoretical mode shapes basically agree with the experimental ones. The relative errors betweenn the theoretical natural frequencies and experimental results are mostly less than 9 %.
引文
[1] Zhang G P, Huang Y M, Shi W H, et al. Predicting Dynamic Behaviours of a Whole Machine Tool Structure Based on Computer-Aided Engineering[J]. International Journal of Machine Tools & Manufacture, 2003,43(7):699-706.
    [2]蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报,2010,46(1):92-99.
    [3]尤晋闽,陈天宁.基于分形接触理论的结合面法向接触参数预估[J].上海交通大学学报,2011,45(9):1275-1280.
    [4] Greenwood J A, Williamson J B P. Contact of Nominally Flat Surfaces[J]. Proceedings of the Royal Society of London, 1966, Series A Mathematical and Physical Sciences 295(1442):300-319.
    [5] Majumdar A, Bhushan B. Fractal Model of Elastic-Plastic Contact Between Rough Surfaces[J]. ASME Journal of Tribology, 1991,113(1):1-11.
    [6] Greenwood J A, Tripp J H. The Elastic Contact of Rough Spheres[J]. Journal of Applied Mechanics, 1967,34(1):153-159.
    [7] Whitehouse D J, Archard J F. The Properties of Random Surfaces of Significance in Their Contact[J]. Proceedings of the Royal Society of London, 1970, Series A Mathematical and Physical Sciences 316(1524):97-121.
    [8] Pullen J, Williamson J B P. On the Plastic Contact of Rough Surfaces[J]. Proceedings of the Royal Society of London, 1972, Series A Mathematical and Physical Sciences 327(1569):159-173.
    [9] Jiang X, Scott P J, Whitehouse D J, et al. Paradigm Shifts in Surface Metrology. PartⅠ. Historical Philosophy[J]. Proceedings of the Royal Society A, 2007, Mathematical, Physical & Engineering Sciences 463(2085):2049-2070.
    [10] Jiang X, Scott P J, Whitehouse D J, et al. Paradigm Shifts in Surface Metrology. PartⅡ. The Current Shift[J]. Proceedings of the Royal Society A, 2007, Mathematical, Physical & Engineering Sciences 463(2085):2071-2099.
    [11] Chang W R, Etsion I, Bogy D B. An Elastic-Plastic Model for the Contact of Rough Surfaces[J]. ASME Journal of Tribology, 1987,109(2):257-263.
    [12] Chang W R, Etsion I, Bogy D B. Adhesion Model for Metallic Rough Surfaces[J]. ASME Journal of Tribology, 1988,110(1):50-56.
    [13] Chang W R, Etsion I, Bogy D B. Static Friction Coefficient Model for Metallic Rough Surfaces[J]. ASME Journal of Tribology, 1988,110(1):57-63.
    [14] Cohen D, Kligerman Y, Etsion I. A Model for Contact and Static Friction of Nominally Flat RoughSurfaces Under Full Stick Contact Condition[J]. ASME Journal of Tribology, 2008,130(3):031401-1-031401-9.
    [15] Kadin Y, Kligerman Y, Etsion I. Cyclic Loading of an Elastic-Plastic Adhesive Spherical Microcontact[J]. Journal of Applied Physics, 2008,104(7):073522-1-073522-8.
    [16] Lee Si C, Ren Ning. Behavior of Elastic-Plastic Rough Surface Contacts as Affected by Surface Topography, Load, and Material Hardness[J]. Tribology Transactions, 1996,39(1):67-74.
    [17] Horng Jeng Haur. An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces[J]. ASME Journal of Tribology, 1998,120(1):82-88.
    [18] Gao Jianqun, Lee Si C, Ai Xiaolan, et al. An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts[J]. Journal of Tribology, 2000,122(3):519-523.
    [19] Zhao Yongwu, Maietta David M, Chang L. An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow[J]. ASME Journal of Tribology, 2000,122(1):86-93.
    [20] Chow T S. Nanoadhesion Between Rough Surfaces[J]. Physical Review Letters, 2001,86(20):4592-4595.
    [21] Liu G, Wang Q, Ao Y. Convenient Formulas for Modeling Three-Dimensional Thermo-Mechanical Asperity Contacts[J]. Tribology International, 2002,35(7):411-424.
    [22] Zhang Lixian, Zhao Ya-pu. Adhesion of Rough Surfaces With Plastic Deformation[J]. Journal of Adhesion Science & Technology, 2004,18(6):715-729.
    [23] Kogut Lior, Etsion Izhak. A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces[J]. ASME Journal of Tribology, 2004,126(1):34-40.
    [24] Johnson K L, Greenwood J A. An Approximate JKR Theory for Elliptical contacts[J]. Journal of Physics D: Applied Physics, 2005,38(7):1042-1046.
    [25] Jackson Robert L, Green Itzhak. A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat[J]. ASME Journal of Tribology, 2005,127(2):343-354.
    [26] Jackson Robert L, Green Itzhak. A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces[J]. Tribology International, 2006,39(9):906-914.
    [27] Gong Z -Q, Komvopoulos K. Effect of Surface Patterning on Contact Deformation of Elastic-Plastic Layered Media[J]. ASME Journal of Tribology, 2003,125(1):16-24.
    [28] Wu Jiunn-Jong. Numerical Analyses on Elliptical Adhesive Contact[J]. Journal of Physics D: Applied Physics, 2006,39(9):1899-1907.
    [29] Liu Zhiqiang, Sun Jian, Shen Weidian. Critical Load Analysis for a Layered Half-Space under Sliding Indentation[J]. Tribology Transactions, 2006,49(4):513-525.
    [30] Lee Chul-Hee, Polycarpou Andreas A. Static Friction Experiments and Verification of an Improved Elastic-Plastic Model Including Roughness Effects[J]. Journal of Tribology, 2007,129(4):754-760.
    [31] Carbone G, Mangialardi L. Analysis of the Adhesive Contact of Confined Layers by Using a Green’s Function Approach[J]. Journal of the Mechanics and Physics of Solids, 2008,56(2):684-706.
    [32]朱华,马晨波,历建全.内燃机缸套-活塞环磨合过程中微凸体承载研究[J].摩擦学学报,2009,29(6):559-563.
    [33]冯剑军,谭援强.基于Hertz理论圆柱和平面之间的滑动接触分析[J].摩擦学学报,2009,29(4):346-350.
    [34] Yan Cong, Chen Shaohua. On the Contact Width in Generalized Plain Strain JKR Model for Isotropic Solids[J]. Acta Mechanica Sinica, 2009,25(4):491-497.
    [35] Xu Zhongming, Huang Ping. Calculating Frictional Force With Considering Material Microstructure and Potential on Contact Surfaces[J]. Frontiers of Mechanical Engineering in China, 2007,2(4):474-477.
    [36] Majumdar A, Bhushan B. Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces[J]. ASME Journal of Tribology, 1990,112(2):205-216.
    [37] Mandelbrot Benoit. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension[J]. Science, 1967,156(3775):636-638.
    [38] Berry M V, Lewis Z V. On the Weierstrass-Mandelbrot Fractal Function[J]. Proceedings of the Royal Society of London, 1980, Series A Mathematical and Physical Sciences 370(1743):459-484.
    [39] Majumdar A, Tien C L. Fractal Characterization and Simulation of Rough Surfaces[J]. Wear, 1990,136(2):313-327.
    [40] Srinivasan R S, Wood K L. A Form Tolerancing Theory Using Fractals and Wavelets[J]. Journal of Mechanical Design, 1997,119(2):185-193.
    [41] Kalin Mitjan, Vizintin Joze. Comparison of Different Theoretical Models for Flash Temperature Calculation Under Fretting Conditions[J]. Tribology International, 2001,34(12):831-839.
    [42] Kalin Mitjan. Influence of Flash Temperatures on the Tribological Behaviour in Low-Speed Sliding: a Review[J]. Materials Science & Engineering A, 2004,374(1-2):390-397.
    [43] Yang J, Komvopoulos K. A Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces[J]. ASME Journal of Tribology, 2005,127(2):315-324.
    [44] Liou Jeng Luen, Lin Jen Fin. A New Method Developed for Fractal Dimension and Topothesy Varying With the Mean Separation of Two Contact Surfaces[J]. ASME Journal of Tribology, 2006,128(3):515-524.
    [45] Liou Jeng Luen, Lin Jen Fin. A New Microcontact Model Developed for Variable Fractal Dimension, Topothesy, Density of Asperity, and Probability Density Function of Asperity Heights[J]. Journal of Applied Mechanics, 2007,74(4):603-613.
    [46] Ray Sudipto, Roy Chowdhury S K. Prediction of Flash Temperature at the Contact Between Sliding Bodies With Nanoscale Surface Roughness[J]. ASME Journal of Tribology, 2007,129(3):467-480.
    [47] Wang S, Komvopoulos K. A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: PartⅠ——Elastic Contact and Heat Transfer Analysis[J]. ASME Journal of Tribology, 1994,116(4):812-823.
    [48] Wang S, Komvopoulos K. A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: PartⅡ——Multiple Domains, Elastoplastic Contacts and Applications[J]. ASME Journal of Tribology, 1994,116(4):824-832.
    [49] Wang S, Komvopoulos K. A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces[J]. ASME Journal of Tribology, 1995,117(2):203-215.
    [50] Wang Shao. Real Contact Area of Fractal-Regular Surfaces and Its Implications in the Law of Friction[J]. Journal of Tribology, 2004,126(1):1-8.
    [51] Iwan W D. A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response[J]. Journal of Applied Mechanics, 1966,33(4):893-900.
    [52] Iwan W D. On a Class of Models for the Yielding Behavior of Continuous and Composite Systems[J]. Journal of Applied Mechanics, 1967,34(3):612-617.
    [53]童忠钫,张杰.加工中心立柱床身结合面动态特性研究及参数识别[J].振动与冲击,1992,43(3):13-19,6.
    [54]张杰,童忠钫.机床固定结合面动力学建模问题[J].振动与冲击,1994,51(3):15-22.
    [55] Ren Y, Beards C F. Identification of Joint Properties of a Structure Using FRF Data[J]. Journal of Sound and Vibration, 1995,186(4):567-587.
    [56] Ren Y, Lim T M, Lim M K. Identification of Properties of Nonlinear Joints Using Dynamic Test Data[J]. Journal of Vibration and Acoustics, 1998,120(2):324-330.
    [57] Ren Y, Beards C F. Identification of‘Effective’Linear Joints Using Coupling and Joint Identification Techniques[J]. Journal of Vibration and Acoustics, 1998,120(2):331-338.
    [58]张宇,廖伯瑜.机床结合部参数的有效识别方法[J].昆明理工大学学报,1998,23(2):36-41.
    [59]杨家华,陈为福,黄旭东,等.机床床身立柱结合面参数识别的研究[J].北京工业大学学报,1999,25(1):44-49.
    [60]吴志坚,贾宝贤,刘永红.固定结合面参数的计算机模拟计算[J].石油大学学报,2000,24(2):82-85.
    [61]吴筱坚.机床固定结合面的一种建模方法[J].机械科学与技术,2002,21(3):439-441.
    [62]王世军,黄玉美,赵金娟,等.机床导轨结合部的有限元模型[J].中国机械工程,2004,15(18):1634-1636.
    [63]王世军,赵金娟,雷蕾,等.机械结合部刚度的罚函数表示方法[J].中国机械工程,2008,19(13):1536-1538.
    [64] Mayer M H, Gaul L. Segment-to-Segment Contact Elements for Modelling Joint Interfaces in Finite Element Analysis[J]. Mechanical Systems and Signal Processing, 2007,21(2):724-734.
    [65] Goodman Richard E, Taylor Robert L, Brekke Tor L. A Model for the Mechanics of Jointed Rock[J].Journal of the Soil Mechanics and Foundations Division: Processings of the American Society of Civil Engineers, 1968,94(3):637-659.
    [66] Vasilescu Mircea S. A Model for the Mechanics of Jointed Rock[J]. Journal of the Soil Mechanics and Foundations Division: Processings of the American Society of Civil Engineers, 1969,95(3):899-900.
    [67] Namazi Mehdi, Altintas Yusuf, Abe Taro, et al. Modeling and Identification of Tool Holder-Spindle Interface Dynamics[J]. International Journal of Machine Tools & Manufacture, 2007,47(9):1333-1341.
    [68] Mao Kuanmin, Li Bin, Wu Jun, et al. Stiffness Influential Factors-Based Dynamic Modeling and Its Parameter Identification Method of Fixed Joints in Machine Tools[J]. International Journal of Machine Tools & Manufacture, 2010,50(2):156-164.
    [69]毛宽民,叶俊,李斌.基于PATRAN的机床结构快速动力学建模系统的开发[J].中国机械工程,2008,19(10):1144-1148.
    [70]毛宽民,李斌.基于响应信号的结构模态参数提取方法[J].华中科技大学学报:自然科学版,2008,36(7):77-80.
    [71]毛宽民,李斌,谢波,等.滚动直线导轨副可动结合部动力学建模[J].华中科技大学学报:自然科学版,2008,36(8):85-88.
    [72] Yuan J X, Wu X M. Identification of the Joint Structural Parameters of Machine Tool by DDS and FEM[J]. Journal of Engineering for Industry, 1985,107(1):64-69.
    [73] Fritzen Claus-Peter. Identification of Mass, Damping, and Stiffness Matrices of Mechanical Systems[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986,108(1):9-16.
    [74] Mottershead J E, Stanway R. Identification of Structural Vibration Parameters by Using a Frequency Domain Filter[J]. Journal of Sound and Vibration, 1986,109(3):495-506.
    [75] Wang J -H. Mechanical Parameters Identification, With Special Consideration of Noise Effects[J]. Journal of Sound and Vibration, 1988,125(1):151-167.
    [76] Tsai J -S, Chou Y -F. The Identification of Dynamic Characteristics of a Single Bolt Joint[J]. Journal of Sound and Vibration, 1988,125(3):487-502.
    [77] Wang J H, Liou C M. Identification of Parameters of Structural Joints by Use of Noise-Contaminated FRFs[J]. Journal of Sound and Vibration, 1990,142(2):261-277.
    [78] Wang J H, Liou C M. Experimental Identification of Mechanical Joint Parameters[J]. Journal of Vibration and Acoustics, 1991,113(1):28-36.
    [79]黄玉美,付卫平,董立新,等.结合面法向动态特性参数研究[J].机械工程学报,1993,29(3):74-78.
    [80] Huang Yumei, Fu Weiping, Tong Junxian. A Method of Acquiring Applied Tangential Damping Parameters of Joint Surfaces[J]. Journal of Xi’an University of Technology, 1996,12(1):1-5.
    [81]向锦武,周传荣,袁向东.一种用实验模态数据识别结构系统支承刚度的新方法[J].振动工程学报,1993,6(3):238-245.
    [82]陈新,刘泽民,罗鸿,等.基于实验模态参数的结构多层结合部参数识别[J].实验力学,1995,10(2):172-180.
    [83]陈新,熊模华,黄玉盈,等.子结构间联结动力学参数的实验识别[J].机械强度,1994,16(3):33-37,68.
    [84] Fu W P, Huang Y M, Zhang X L. Experimental Investigation of Dynamic Normal Characteristics of Machined Joint Surfaces[J]. Journal of Vibration and Acoustics, 2000,122(4):393-398.
    [85]苏铁熊,杨世文,崔志琴,等.复杂结构结合部动力学仿真模型研究[J].华北工学院学报,2001,22(3):218-222.
    [86]张广鹏,史文浩,黄玉美.机床导轨结合部的动态特性解析方法及其应用[J].机械工程学报,2002,38(10):114-117.
    [87]张广鹏,史文浩,黄玉美,等.机床整机动态特性的预测解析建模方法[J].上海交通大学学报,2001,35(12):1834-1837.
    [88] Shi Xi, Polycarpou Andreas A. Measurement and Modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale[J]. Journal of Vibration and Acoustics, 2005,127(1):52-60.
    [89] Shi Xi, Polycarpou Andreas A. Investigation of Contact Stiffness and Contact Damping for Magnetic Storage Head-Disk Interfaces[J]. Journal of Tribology, 2008,130(2):021901-1-021901-9.
    [90] Padmanabhan K K. Prediction of Damping in Machined Joints[J]. International Journal of Machine Tools & Manufacture, 1992,32(3):305-314.
    [91] Becker Patricia J Wyatt, Wynn Robert H, Berger Jr Edward. Using Rigid-Body Dynamics to Measure Joint Stiffness[J]. Mechanical Systems and Signal Processing, 1999,13(5):789-801.
    [92]张学良,黄玉美,傅卫平,等.粗糙表面法向接触刚度的分形模型[J].应用力学学报,2000,17(2):31-35.
    [93]张学良,黄玉美,韩颖.基于接触分形理论的机械结合面法向接触刚度模型[J].中国机械工程,2000,11(7):727-729.
    [94]张学良,黄玉美,温淑华.结合面接触刚度分形模型研究[J].农业机械学报,2000,31(4):89-91.
    [95]张学良,温淑花.基于接触分形理论的结合面切向接触刚度分形模型[J].农业机械学报,2002,33(3):91-93,97.
    [96]张学良,温淑花,徐格宁,等.结合部切向接触刚度分形模型研究[J].应用力学学报,2003,20(1):70-72.
    [97]温淑花,张学良,武美先,等.结合面法向接触刚度分形模型建立与仿真[J].农业机械学报,2009,40(11):197-202.
    [98]温淑花,张学良,文晓光,等.结合面切向接触刚度分形模型建立与仿真[J].农业机械学报,2009,40(12):223-227.
    [99]张学良,温淑花,兰国生,等.平面结合面切向接触阻尼分形模型及其仿真[J].西安交通大学学报,2011,45(5):74-77,136.
    [100]张学良,黄玉美,傅卫平,等.机械结合面阻尼参数识别的一种方法[J].西安理工大学学报,1999,15(1):98-100.
    [101]温淑花,张学良,倪润堂.机械结合面切向接触阻尼的神经网络结构化建模[J].农业机械学报,2002,33(1):87-89.
    [102] Shamine David M, Shin Yung C. Analysis of No. 50 Taper Joint Stiffness Under Axial and Radial Loading[J]. Journal of Manufacturing Processes, 2000,2(3):167-173.
    [103] Dwyer-Joyce R S, Drinkwater B W, Quinn A M. The Use of Ultrasound in the Investigation of Rough Surface Interfaces[J]. ASME Journal of Tribology, 2001,123(1):8-16.
    [104] Fang B, DeVor R E, Kapoor S G. Influence of Friction Damping on Workpiece-Fixture System Dynamics and Machining Stability[J]. Journal of Manufacturing Science and Engineering, 2002,124(2):226-233.
    [105]张学玲,唐毅,徐燕申.用实验模态与有限元方法识别结合面接触刚度的方法[J].组合机床与自动化加工技术,2005,11:56-58,60.
    [106]王学林,徐岷,胡于进.机床模态特性的有限元分析[J].机床与液压,2005,(2):48-49,40.
    [107] Gao Y F, Lucas B N, Hay J C, et al. Nanoscale Incipient Asperity Sliding and Interface Micro-Slip Assessed by the Measurement of Tangential Contact Stiffness[J]. Scripta Materialia, 2006,55(7):653-656.
    [108] Gao Y F, Xu H T, Oliver W C, et al. Effective Elastic Modulus of Film-on-Substrate Systems Under Normal and Tangential Contact[J]. Journal of the Mechanics and Physics of Solids, 2008,56(2):402-416.
    [109] Herbert E G, Pharr G M, Oliver W C, et al. On the Measurement of Stress-Strain Curves by Spherical Indentation[J]. Thin Solid Films, 2001,398-399:331-335.
    [110]王宗勇,龚斌,闻邦椿.阻尼突变转子系统的动力学研究[J].中国机械工程,2008,19(18):2214-2218.
    [111]王宗勇,龚斌,闻邦椿.刚度与阻尼突变转子系统的动力学研究[J].振动与冲击,2008,27(4):73-77.
    [112] Xing Yufeng, Liu Bo. New Exact Solutions for Free Vibrations of Rectangular Thin Plates by Symplectic Dual Method[J]. Acta Mechanica Sinica, 2009,25(2):265-270.
    [113] Xing Yufeng, Liu Bo. Closed Form Solutions for Free Vibrations of Rectangular Mindlin Plates[J]. Acta Mechanica Sinica, 2009,25(5):689-698.
    [114]孟凤英,丁启朔,鹿飞,等.冲击作用下粘性土壤破碎体的分形维数与影响因素[J].农业机械学报,2009,40(3):108-111,124.
    [115]姚运萍,王智渊.螺栓连接受载能量损失与结合面参数识别[J].中国机械工程,2010,21(16):1941-1943,1951.
    [116] Song Yaxin. Modeling, Identification and Simulation of Dynamics of Structures With Joints and Interfaces[D]. Urbana Illinois: University of Illinois at Urbana-Champaign, 2004:25-28.
    [117] Song Y, Hartwigsen C J, McFarland D M, et al. Simulation of Dynamics of Beam Structures withBolted Joints Using Adjusted Iwan Beam Elements[J]. Journal of Sound and Vibration, 2004,273(1-2):249-276.
    [118] Liu W, Ewins D J. Substructure Synthesis Via Elastic Media PartⅠ: Joint Identification[J]. Proceedings of the 18th International Modal Analysis Conference, 2000,2:1153-1159.
    [119] Liu W, Ewins D J. Substructure Synthesis Via Elastic Media PartⅡ: Coupling Analysis[J]. Proceedings of the 18th International Modal Analysis Conference, 2000,2:1160-1166.
    [120] Ahmadian Hamid, Nourmohammadi Mostafa. Tool Point Dynamics Prediction by a Three-Component Model Utilizing Distributed Joint Interfaces[J]. International Journal of Machine Tools & Manufacture, 2010,50(11):998-1005.
    [121] Ahmadi Keivan, Ahmadian Hamid. Modelling Machine Tool Dynamics Using a Distributed Parameter Tool-Holder Joint Interface[J]. International Journal of Machine Tools & Manufacture, 2007,47(12-13):1916-1928.
    [122] Ahmadi K, Ismail F. Experimental Investigation of Process Damping Nonlinearity in Machining Chatter[J]. International Journal of Machine Tools & Manufacture, 2010,50(11):1006-1014.
    [123] Agarwal Sanjay, Rao P Venkateswara. Modeling and Prediction of Surface Roughness in Ceramic Grinding[J]. International Journal of Machine Tools & Manufacture, 2010,50(12):1065-1076.
    [124] Agarwal Sanjay, Rao P Venkateswara. Grinding Characteristics, Material Removal and Damage Formation Mechanisms in High Removal Rate Grinding of Silicon Carbide[J]. International Journal of Machine Tools & Manufacture, 2010,50(12):1077-1087.
    [125] Wu Dan, Chen Ken. Chatter Suppression in Fast Tool Servo-Assisted Turning by Spindle Speed Variation[J]. International Journal of Machine Tools & Manufacture, 2010,50(12):1038-1047.
    [126] Magalh?es Filipe, Cunhaálvaro, Caetano Elsa, et al. Damping Estimation Using Free Decays and Ambient Vibration Tests[J]. Mechanical Systems and Signal Processing, 2010,24(5):1274-1290.
    [127]郁大照,陈跃良,张勇,等.螺接搭接件的载荷传递特性试验及三维有限元分析[J].中国机械工程,2010,21(19):2273-2278.
    [128]林富华,徐颖强,靳少杰.热障涂层粗糙表面弹塑性接触应力分析[J].中国机械工程,2010,21(19):2375-2378.
    [129]魏巍,张连洪,徐彦伟,等.机床结构CAD/CAE集成分析与逐步回归建模方法[J].农业机械学报,2010,41(6):187-192.
    [130]周仲荣,雷源忠,张嗣伟.摩擦学发展前沿[M].北京:科学出版社,2006:114-117.
    [131]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004:254-255.
    [132]尤晋闽,陈天宁.结合面静摩擦系数的统计模型[J].振动与冲击,2010,29(12):26-29.
    [133] Chlebus Edward, Dybala Bogdan. Modelling and Calculation of Properties of Sliding Guideways[J]. International Journal of Machine Tools & Manufacture, 1999,39(12):1823-1839.
    [134]邓超,吴军,毛宽民,等.面向大型数控机床的工艺可靠性评估[J].计算机集成制造系统,2010,16(10):2250-2256.
    [135]李炳林,王学林,胡于进,等.基于区域划分的刀具方向控制方法[J].中国机械工程,2010,21(4):452-457.
    [136] Lantz M A, O’Shea S J, Welland M E, et al. Atomic-Force-Microscope Study of Contact Area and Friction on NbSe2[J]. Physical Review B, 1997,55(16):10776-10785.
    [137]王延忠,周元子,刘强,等.直线电机驱动的加工中心导轨副动力学特性分析[J].中国机械工程,2008,19(13):1574-1576,1595.
    [138] Johnson Kenneth Langstreth. Contact Mechanics[M]. Cambridge University Press, 1985:x-xi.
    [139]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005:1-5.
    [140]李水根.分形[M].北京:高等教育出版社,2006:1-11.
    [141]王向东,戎海武,文翰.数学实验[M].北京:高等教育出版社,2004:168-172.
    [142]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2003:270-281.
    [143]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2008:155-161.
    [144] Li Anan, Gong Hui, Zhang Bin, et al. Micro-Optical Sectioning Tomography to Obtain a High-Resolution Atlas of the Mouse Brain[J]. Science, 2010,330(6009):1404-1408.
    [145]崔志琴,杨瑞峰.复杂机械结构的参数化建模及模态分析[J].机械工程学报,2008,44(2):234-237.
    [146] Bhushan Bharat.摩擦学导论[M].葛世荣,译.北京:机械工业出版社,2007:56.
    [147]任晓,吴承伟,周平.粗糙表面的气体密封性能研究[J].机械工程学报,2010,46(16):176-181.
    [148] Jamari J, Rooij M B de, Schipper D J. Plastic Deterministic Contact of Rough Surfaces[J]. ASME Journal of Tribology, 2007,129(4):957-962.
    [149] Mindlin R D. Compliance of Elastic Bodies in Contact[J]. ASME Journal of Applied Mechanics, 1949,16(3):259-268.
    [150] Mindlin R D, Deresiewicz H. Elastic Spheres in Contact Under Varying Oblique Forces[J]. ASME Journal of Applied Mechanics, 1953,20(3):327-344.
    [151] Ray Sudipto, Roy Chowdhury S K. Prediction of Flash Temperature at the Contact Between Sliding Bodies With Nanoscale Surface Roughness[J]. ASME Journal of Tribology, 2007,129(3):467-480.
    [152]李辉光,刘恒,虞烈.粗糙机械结合面的接触刚度研究[J].西安交通大学学报,2011,45(6):69-74.
    [153]刘恒,刘意,王为民.接触界面法向刚度等效的新方法[J].机械工程学报,2011,47(17):37-43.
    [154]尤晋闽,陈天宁.结合面静态接触参数的统计模型研究[J].振动与冲击,2010,29(11):47-50.
    [155]温诗铸,黄平,等.界面科学与技术[M].北京:清华大学出版社,2011:11-12.
    [156] Fishkis M, Lin J C. Formation and Evolution of a Subsurface Layer in a Metalworking Process[J]. Wear, 1997,206(1-2):156-170.
    [157] Jiang Shuyun, Zheng Yunjian, Zhu Hua. A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory[J]. ASME Journal of Tribology, 2010,132(1):011401-1-011401-7.
    [158] Brehm Maik, Zabel Volkmar, Bucher Christian. An Automatic Mode Pairing Strategy Using anEnhanced Modal Assurance Criterion Based on Modal Strain Energies[J]. Journal of Sound and Vibration, 2010,329(25):5375-5392.
    [159] Morales C A. Comments on the MAC and the NCO, and a Linear Modal Correlation Coefficient [J]. Journal of Sound and Vibration, 2005,282(1-2):529-537.
    [160] Yoshimura M. Computer-Aided Design Improvement of Machine Tool Structure Incorporating Joint Dynamics Data[J]. Annals of the CIRP, 1979,28(1):241-246.
    [161]郧建平,杨旭东,谢铁邦,等.一种接触式大量程表面形貌测量仪[J].中国机械工程,2008,19(8):909-913.
    [162] Ahmadi K, Ismail F. Experimental Investigation of Process Damping Nonlinearity in Machining Chatter[J]. International Journal of Machine Tools and Manufacture, 2010,50(11):1006-1014.
    [163] Ahmadian Hamid, Jalali Hassan. Identification of Bolted Lap Joints Parameters in Assembled Structures[J]. Mechanical Systems and Signal Processing, 2007,21(2):1041-1050.
    [164] Long X-H, Balachandran B, Mann B P. Dynamics of Milling Processes with Variable Time Delays[J]. Nonlinear Dynamics, 2007,47(1-3):49-63.
    [165] Long X-H, Balachandran B. Stability Analysis of Milling Process[J]. Nonlinear Dynamics, 2007,49(3):349-359.
    [166] Zhao W, Liu J K, Ye J J. A New Method for Parameter Sensitivity Estimation in Structural Reliability Analysis[J]. Applied Mathematics and Computation, 2011,217(12):5298-5306.
    [167] Chen Baojia, Chen Xuefeng, Li Bing, et al. Reliability Estimation for Cutting Tools Based on Logistic Regression Model Using Vibration Signals[J]. Mechanical Systems and Signal Processing, 2011,25(7):2526-2537.
    [168] Ding Ye, Zhu Limin, Zhang Xiaojian, et al. A Full-Discretization Method for Prediction of Milling Stability[J]. International Journal of Machine Tools & Manufacture, 2010,50(5):502-509.
    [169] Ding Ye, Zhu Limin, Zhang Xiaojian, et al. Second-Order Full-Discretization Method for Milling Stability Prediction[J]. International Journal of Machine Tools & Manufacture, 2010,50(10):926-932.
    [170] Ding Ye, Zhu Limin, Zhang Xiaojian, et al. On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2011,133(2):024503-1-024503-8.
    [171] Ding Ye, Zhu Limin, Zhang Xiaojian, et al. Numerical Integration Method for Prediction of Milling Stability[J]. ASME Journal of Manufacturing Science and Engineering, 2011,133(3):031005-1-031005-9.
    [172] Zhang Xiao Jian, Xiong Cai Hua, Ding Ye, et al. Milling Stability Analysis with Simultaneously Considering the Structural Mode Coupling Effect and Regenerative Effect[J]. International Journal of Machine Tools & Manufacture, Accepted Manuscript, Available online 25 October 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700