用户名: 密码: 验证码:
地震作用下海底管线及周围海床动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着海洋石油和天然气的开发,海底管线在世界范围内得到了广泛的应用,成为海上油气田开发工程中的一个重要环节。海底管线铺设在恶劣的海洋环境中,将承受各类环境荷载,其中地震荷载是主要的荷载之一。我国处于世界两大地震带(环太平洋带和中亚—地中海带)之间,是一个多地震国家,尤其是有着丰富的石油资源的渤海湾地区属于地震高发区,所以铺设海底管线必须考虑地震的影响。为了合理地评价海底管线在地震荷载作用下的稳定性,必须对地震荷载作用下管线周围海床中的动力响应和管线自身内部动应力进行计算和分析,这也是管线工程设计人员的一个重要课题。
     本文对于多孔介质海床和海底管线,分别采用Biot动力固结理论与弹性动力学理论,同时采用摩擦接触理论考虑两者之间的相互作用效应,采用有限元方法建立了海床—管线动力相互作用的计算模型,通过有限元数值计算确定了地震作用下海床中超孔隙水压力和管线内应力等动力响应。在数值计算过程中引入粘弹性人工边界来模拟地震波的传播,真实地反映了在地震波作用下海底管线的动力响应问题。通过计算发现,本文所使用的粘弹性人工边界在求解瞬态动力问题上比固定边界具有很大的优越性,更接近于精确解。土的变形模量、渗透系数和管线半径、壁厚对管线外表面由地震所引起的孔隙水压力、径向正应力和剪应力及内表面的环向正应力均有一定的影响。均质海床与成层海床对水平地震荷载引起的管线外表面的超孔隙水压力响应差别较大,而对于管线的内应力响应的结果差别不大。管线周围土体的孔隙水压力随着矩形管沟覆盖层宽度的增加而减小,随着矩形管沟覆盖层厚度的增加而增大。但在不同长度和不同厚度下孔隙水压力的变化趋势是相同的。
     由于仪器设备的限制,目前还没有一个适用于地震循环荷载的较为准确的孔隙水压力增长表达式。本文利用先进的“土工静力—动力液压三轴—扭剪多功能剪切仪”,针对相对密实度Dr=60%的福建标准砂,在平均有效固结应力取p′m0=100,200,300kPa三种情况,对3种初始固结比Kc=1.0、1.5、2.0的情况分别进行了的9组循环扭剪试验。根据对试验结果的分析,建立了针对饱和砂土海床在地震荷载作用下的孔隙水压力应力模式,分析了初始固结比和初始平均有效固结应力对孔隙水压力发展特性的影响,较好的模拟了地震荷载作用下砂质海床中孔隙水压力的产生、发展和消散过程。
     针对海底管线周围海床液化边值问题,本文推导了考虑海床土微元控制体内有引起超孔隙水压力累积的源分布q的多孔介质渗流连续性方程,并联立孔隙流体的平衡方程和不排水条件下的超孔隙水压力增长模式建立了推广的带有累积超孔隙水压力源项f的二维固结有限元方程;进一步运用加权余量法对其进行了数值求解,计算预测了海床中累积超孔隙水压力的空间分布与时程变化规律,通过具体计算探讨了土性参数和管线几何特性对地震所引起的管线周围海床中累积超孔隙水压力分布的影响。
     通过计算分析可以发现:随着土的变形模量和泊松比的减小,由地震所引起的海床中的累积超孔隙水压力均增大。土的渗透系数对由地震所引起的管线周围海床中的累积超孔隙水压力具有显著的影响,渗透系数的微小减小就会导致海床中累积超孔隙水压力的显著增大。管线半径和管线埋深对管线附近海床中的累积超孔隙水压力及累积超孔隙水压力比有一定影响,并且影响规律较为复杂。管线的存在会对管线附近海床中的累积超孔隙水压力产生一定影响,在远离管线处的海床区域,管线的存在对累积超孔隙水压力的影响可以忽略。
     为了更具体地研究海底管线及其周围海床的动力响应,针对于三维饱和砂性海床和浅埋于其中的海底管线建立了海床-管线动力相互作用的计算模型,采用大型有限元计算程序DIANA-SWANDYNEⅢ,通过数值方法确定了三维条件下饱和海床中孔隙水压力和管线内应力等地震动力响应,讨论了地震荷载方向、海床土的渗透系数、海床厚度和表面水深以及管线半径和埋深对沿管线外表面由地震所引起的超孔隙水压力、管线外表面处径向正应力和剪应力及管线内表面处环向正应力的影响。通过对比分析表明,在单向地震波和双向地震波的情况下,由地震作用所引起管线外表面处的径向正应力和管线内表面处环向正应力结果有较大差别;管线周围的超孔隙水压力随着海床土渗透系数的减小、管线埋深的增加而明显增大;管线外表面处径向正应力和剪应力随着海床土渗透系数的减小而有所减小,随着管线半径和埋深的增大在不同的部位有不同程度的增加。
People intensify the exploitation of submarine petroleum and natural gas in recent years because of the needs of energy sources increasing, it makes submarine pipelines applied widely. But submarine pipelines buried in ocean environment usually carry all kinds of loadings, not only wave loading but also seismic loading. The seismic-induced pore water pressure of seabed and internal stress of pipeline are important for people to design submarine pipelines. China is located in the middle of two main earthquake zones of the world (the zone around Pacific Ocean and the zone of middle Asia-Mediterranean Sea) and earthquakes occur easily, particularly in the Bohai Sea which has rich petroleum resources, therefore we must consider the influence of earthquakes when we bury submarine pipelines. In order to evaluate the stability of submarine pipelines under seismic loading correctly, the computation of seismic-induced pore water pressure and effective stresses in saturated seabed is one of main projects for engineers to design submarine pipeline.
     In this paper, the governing equations of the seabed and pipeline are formulated based on the Biot's consolidation theory and elastic dynamic theory respectively. The model of the seabed-pipeline interaction is established by using the friction contact theory and the FEM analysis method. The distribution of the seismic-induced excess pore water pressure along the pipeline outer surface and the dynamic response of submarine pipeline under seismic loading are studied by virtue of the FEM numerical computations. Through numerical analysis, viscous-elastic artificial boundary is taken into account to simulate the transmission of seismic wave from finite region to infinite region effectively. It actually shows the validity and accuracy of dynamic response of submarine pipeline under seismic loading. Based on the numerical computations, it is found that the viscous-elastic artificial boundary has more superiority than fixed boundary in transient dynamics and the result under viscous-elastic artificial boundary is closer to precise result. The soil characteristic parameters such as deformation modulus and permeability coefficients, the pipeline radius and wall thickness all have some influence on the seismic-induced pore water pressure and radial normal stress as well as shear stress along the pipeline circumferential outer surface and circumferential normal stress along the pipeline circumferential inner surface. The effects of homogeneous seabed and two-layered seabed on the seismic-induced excess pore water pressure along the pipeline circumferential outer surface are remarkable but the effects on internal stresses of pipeline are small. The seismic-induced excess pore water pressure along the pipeline surface decreases with the width of cover layer increasing and increases with the thickness of cover layer increasing, but the tendency of excess pore water pressure with different length and thickness is almost the same.
     Due to the limitation of equipments, there have no exact expression to describe the building-up pore water pressure which is applicable to seismic cyclic loading so far. In this paper, the advanced soil static and dynamic universal triaxial and torsional shear apparatus is employed to perform cyclic torsional shear tests subjected to cyclic loading. In order to obtain the building-up expression of pore water pressure of seabed under cyclic torsional loading, a series of cyclic torsional tests of different initial effective consolidation pressure (p'm0=100, 200,300kPa) and different initial consolidation ratio (Kc=1.0、1.5、2.0) are performed for saturated Fujian standard sand with relative density of Dr=60%. By the analysis of test results, the stress mode of pore water pressure in saturated sandy seabed under seismic loading is established, the effects of initial effective consolidation pressure and initial consolidation ratio on the pore water pressure are investigated, the generation, increasing processes of pore water pressure in sandy seabed under seismic loading is simulated preferably.
     According to the boundary value problem of liquefaction around a buried pipeline, the continuity equation for porous medium including accumulative excess pore water pressure source term distribution q in unit control volume of seabed is deduced, two-dimensional dynamic consolidation equation with accumulative excess pore water pressure source term f is established by incorporating with the mode of dynamic increase of excess pore water pressure under undrained conditions gained from tests to equilibrium equation of pore fluid; and it is solved by employing weighted residual method. By numerical computations, the effects of soil characteristic parameters and pipeline geometry on seismic-induced accumulative excess pore water pressure around the pipeline and along the depth of seabed are studied, the accumulation process of pore water pressure and liquefaction potential of seabed soil under seismic loading are evaluated in details.
     By computations and analysis it is found that the seismic-induced accumulative pore water pressures of seabed increase with the values of soil deformation modulus and Passion's ratio decreasing. The effects of soil permeability coefficient on seismic-induced accumulative pore water pressure ratios of seabed around pipeline are remarkable. The seismic-induced accumulative pore water pressure ratios of seabed increase with the values of the permeability coefficient decreasing, the small reduction of permeability coefficient will lead to significant increment of accumulative pore water pressure ratios of seabed. Otherwise the radius and burial depth of pipeline have some influence on seismic-induced accumulative pore water pressure ratios of seabed around pipeline but they are more complicated. The existence of pipeline only influences the accumulative pore water pressure ratios of seabed nearby the pipeline. The effect of pipeline is very slight and can be neglected in the region of seabed far away from the pipeline.
     In order to further study dynamic response of submarine pipeline and the seabed around pipeline, a three-dimensional model of the seabed-pipeline interaction including buried pipeline is established based on the FEM analysis method. By using the extending DIANA-SWANDYNE III models, the effects of earthquake loading directions and soil characteristics, such as soil permeability, water depth, seabed depth and pipeline configuration, such as pipeline radius and pipeline buried depth on the seismic-induced excess pore water pressure along the pipeline outer surface and the dynamic response of the pipeline are examined. It can be concluded from numerical results:there is an obvious difference between the distribution of the seismic-induced excess pore water pressure and radial normal stress as well as shear stress along the pipeline circumferential outer surface and circumferential normal stress along the pipeline circumferential inner surface under different seismic loading, the seismic-induced excess pore water pressure around pipeline increases with soil permeability decreasing and pipeline buried depth increasing, radial normal stress as well as shear stress along the pipeline circumferential outer surface decrease with soil permeability decreasing, and increase in some extent at some points with pipeline radius and buried depth increasing.
引文
[1]周延东,刘日驻.我国海底管道的发展状况与前景.中国海上油气(工程),1998,10(4):1-5.
    [2]李宁.我国海洋石油油气储运回顾与展望.油气储运;2003,(9):30-32.
    [3]许文兵.平湖油气田海底输油管线临时修复方法.中国海洋平台,2003,18(2):36-40.
    [4]彭艳菊,吕悦军,唐荣余,等.探讨渤海及周边地区海洋平台抗震设防水准.地震学报,2005,27(6):646-655.
    [5]吕悦军,唐荣余,彭艳菊.渤海油田工程地震研究.北京:地震出版社,2003.
    [6]Andersen K H, Lauritzsen R. Bearing capacity for foundations with cyclic loads. Journal of Geotechnical Engineering, ASCE,1988,114(5):540-555.
    [7]钱寿易,楼志刚,杜金声.海洋波浪作用下土动力特性的研究现状和发展.岩土工程学报,1982,4(1):15-22.
    [8]赵子丹,别社安.砂质海床对波浪的响应及其稳定性研究的回顾.海洋通报,1995,14(4):85-104.
    [9]Zhuang Y Z, Jin W L. A seismic reliability analysis approach for offshore jachket platform structures. China Ocean Engineering,1998,12(4):375-382.
    [10]张德元,刘元生,李一兵.油田地震信息监测研究与应用..北京:地震出版社,1995.
    [11]胡聿贤.地震工程学.北京:地震出版社,1988.
    [12]魏光兴,习守中,周翠英.郯庐带地震活动性研究.北京:地震出版社,1993.
    [13]Matsubara K, Hoshiya M. Soil spring constants of buried pipelines for seismic design. Journal of Engineering Mechanics, ASCE,2000,126(1):75-83.
    [14]Kershenbaum N Y, Mebarkia S A, Choi H S. Behavior of marine pipelines under seismic faults. Ocean Engineering,2000,27(5):473-483.
    [15]Romagnoli R, Varvelli R. An integrated seismic response analysis of offshore pipeline-sea floor systems. The 7th International Conference on Offshore Mechanics and Arctic Engineering, Houston, Texas,1988:139-145.
    [16]Paulin M L, Phillips R et al. Establishment of a full-scale pipeline/soil interaction test facility and results from lateral and axial investigations in sand. Offshore Mechanics and Arctic Engineering, 1997, (5):139-146.
    [17]Bruschi R, Curti G, Marchesani F et al. The Maspus project:upgrades for deep water pipelines on very uneven seabeds. An integrated seismic response analysis of offshore pipeline-sea floor systems. Deep Offshore Technology Conference.1993:98-140.
    [18]Tura F, Dumitrescu A et al. Guidelines for free spanning pipelines:the Gudesp project. Offshore Mechanics and Arctic Engineering Conference.1994, (5):246-256.
    [19]DnV RPE305, On-bottom stability design of submarine pipelines. October 1988.
    [20]Collberg L. Introduction to the update of DnV 96 OS F101:submarine system. Proceedings of the International Offshore and Polar Engineering Conference.1999, (2):112-116.
    [21]中国海洋石油总公司.中国海洋石油总公司企业标准O/HS 701693-海底管道稳定性设计,1993.
    [22]赵冬岩.海底管道稳定性分析综述.中国海上油气工程,1998,10(5):1-3.
    [23]孙意卿.海洋工程环境条件及其荷载.上海交通大学出版社,1989.
    [24]Mollestad E, Bergan P G Nonlinear dynamic analysis of submerged pipelines. Computer Methods in Applied Mechanics and Engineering,1981,34(1-3):881-892.
    [25]Foda M, Chang Y H, Law A W K. Wave-induced breakout of half-buried marine pipes. Journal of Waterway, Port, Coastal and Ocean Engineering,1990,116(2):266-286.
    [26]张悉德,张玮.浸入水中输运流体管道振动微分方程的建立.青岛化工学院学报,1994,15(1):72-74.
    [27]申仲翰,赵强.内流对海底管线涡致振动与疲劳寿命的影响.海洋工程,1995,13(3):1-8.
    [28]李玉成,陈兵,Marchal J L J.波浪作用下海底管线的物理模型实验研究.海洋通报,1996,15(5):68-73.
    [29]Law A W K, Foda M A. Initiation of breakout of half-buried submarine pipe from sea bed due to wave action. Applied Ocean Research,1996,18(2-3):129-135.
    [30]Ose B A, Bai Y, Nystrom P R, Damsleth P A. Finite-element model for in-situ behavior of offshore pipelines on uneven seabed and its application to on-bottom stability. Proceedings of the International Offshore and Polar Engineering Conference,1999, (2):132-140.
    [31]Babu P R, Ahmad S. Non-linear dynamic response of ocean mining pipe. Proceedings of the ISOPE Ocean Mining Symposium,1999:21-29.
    [32]马良.海底管道在水流作用时诱发的振动效应.中国海洋平台,2000,15(2):30-34.
    [33]高福平,顾小芸,浦群.海底管道失稳过程的模型试验研究.岩土工程学报,2000,22(3):304-308.
    [34]Gorman D G, Reese J M, Zhang Y L. Vibration of a flexible pipe conveying viscous, pulsating fluid flow. Journal of Sound and Vibration,2000,230(2):379-392.
    [35]余建星,罗延生,方华灿.海底管线管跨段涡激振动反应的实验研究.地震工程与工程振动,2001,21(4):93-97.
    [36]Yazdchi M, Crisfield M A. Non-linear dynamic behaviour of flexible marine pipes and risers. International Journal for Numerical Methods in Engineering,2002,54(9):1265-1308.
    [37]Gao F P, Gu X Y, Jeng D S et al. An experimental study for wave-induced instability of pipelines: The breakout of pipelines. Applied Ocean Research,2002,24(2):83-90.
    [38]Gao F, Gu X, Jeng D. Physical modeling of untrenched submarine pipeline instability. Ocean Engineering,2003,30(10):1283-1304.
    [39]余建星,王磊,蒋啸天,等.基于非线性理论的海底管跨涡激共振可靠性研究.天津大学学报,2005,24(6):609-613.
    [40]Gao F P, Jeng D S, Wu Y. Improved analysis method for wave-induced pipeline stability on sandy seabed. Journal of Transportation Engineering,2006,132(7):590-596.
    [41]Nath B, Soh C H. Transverse seismic response analysis of offshore pipelines in proximity to the sea-bed. International Journal for Numerical Methods in Engineering,1978,6(6):569-583.
    [42]Haldar A K, Reddy D V, Arockiasamy M et al. Finite element nonlinear seismic response analysis of submarine pipe-soil interaction. Microstructural Science,1980, (2):866-877.
    [43]Romagnoli R, Varvelli R. Integrated seismic response analysis of offshore pipeline-sea floor systems. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, Houston, TX, USA,1988:139-145.
    [44]马良.海底管道抗震设计初探.中国海洋平台,1999,14(4):25-29.
    [45]Duan M L, Sun Z C, Gao Z J et al. Ultimate stress analysis for subsea pipeline design against earthquakes. Proceedings of the International Offshore and Polar Engineering Conference, Toulon, France,2004:76-81.
    [46]Griesser L, Wieland M, Walder R et al. Earthquake detection and safety system for oil pipelines. Pipeline and Gas Journal,2004,231(12):44-46.
    [47]岳志勇,余轩凌,孙政策,等.引入惯性力影响的海底埋设管线的抗震设计方法.应用力学学报,2004,21(2):110-114.
    [48]Nath B, Soh C H. Seismic response analysis of offshore pipelines in contact with the sea-bed. International Journal for Numerical Methods in Engineering,1978,13(1):181-196.
    [49]Bruschi R, Gudmestad O T, Blaker F et al. Seismic assessment for offshore pipelines. Journal of Infrastructure Systems,1996,2(3):145-151.
    [50]Figarov N G, Kamyshev A M. Seismic stability of offshore pipelines. Proceedings of the International Offshore and Polar Engineering Conference, Los Angeles, USA,1996:355-364.
    [51]Kalliontzis C. Numerical simulation of submarine pipelines in dynamic contact with a moving seabed. Earthquake Engineering and Structural Dynamics,1998,27(5):465-486.
    [52]Kershenbaum N Y, Mebarkia S A, Choi H S. Behavior of marine pipelines under seismic faults. Ocean Engineering,2000,27(5):473-487.
    [53]Datta T K, Mashaly E A. Seismic response of buried submarine pipelines. Journal of Energy Resources Technology, Transactions of the ASME,1988,110(4):208-18.
    [54]Datta T K, Mashaly E A. Transverse response of offshore pipelines to random ground motion. Earthquake Engineering and Structural Dynamics,1990,19(2):216-228.
    [55]Zhou J, Li X, Ma D X. Seismic response and vibration control for free spanning submarine pipelines. Proceedings of the International Offshore and Polar Engineering Conference, Stavanger,2001: 180-184.
    [56]周晶,李昕,马恒春,等.地震时海底悬跨管道动力特性试验研究.水利学报,2003,(1):12-16.
    [57]Li X, Liu Y K, Zhou J et al. Experimental study on free spanning submarine pipeline under dynamic excitation. China Ocean Engineering,2002,16(4):536-548.
    [58]格赫曼 A C,扎伊涅特季诺夫X X.管道的抗震设计与监护.北京:地震出版社,1992.
    [59]孙政策,段梦兰,张文,等.现用海底管线抗震设计方法存在的问题及解决办法.振动工程学报,2004,17(3):263-268.
    [60]孙政策,段梦兰,张文,等.地震波条件下海底管线抗震设计方法的研究.石油学报,2005,26(2):115-118.
    [61]Pu Q, Li K, Gao F P. Scour of the seabed under a pipeline in oscillating flow. China Ocean Engineering,2001,15(1):129-137.
    [62]李桂清.抗震机构计算理论与方法.北京:地震出版社,1985.
    [63]Fyrileiv O, Mork K et al. Assessment of free spanning pipelines using the DNV guideline. Proceedings of the Eighth International Offshore and Polar Engineering Conference,1998:100-106.
    [64]李昕,刘亚坤,周晶,等.海底悬跨管道动力响应的试验研究和数值模拟.工程力学,2003,20(2):21-25.
    [65]邹德高,孔宪京,娄树莲,等.饱和砂土地基中地下管线的振动台试验数值模拟分析.水利学报,2004,(12):112-119.
    [66]中国石油天然气总公司抗震办公室.输油(气)埋地钢质管道抗震设计规范(SY/T0450 3/97).北京:石油工业出版社,1998.
    [67]侯忠良,王优龙,姚伯英,等.地下管线抗震.北京:学术书刊出版社,1990.
    [68]王金英,赵冬岩.渤海海底管线工程的现状和问题.中国海上油气(工程),1992,4(1):1-6.
    [69]Parmelee R A, Ludtke C A. Seismic soil-structure interaction of buried pipelines. Proceedings of US National Conference Earthquake Engineering.Oakland,1975:405-415.
    [70]Wang L R L, Chen K M. Seismic response behavior of buried pipelines. Journal of Pressure Vessel Technology, ASME,1979, (101):21-30.
    [71]Wang L R L. Seismic evaluation model for buried lifelines. Proceedings of the Speciality Conference on Lifeline Earthquake Engineering. San Francisco, ASCE,1981:335-347.
    [72]Nelson I, Weidlinger P. Dynamic seismic analysis of long segmented lifelines. Journal of Pressure Vessel Technology, ASME,1979, (101):10-20:
    [73]Muleski G E, Ariman T. A shell model for buried pipes in earthquakes. International Journal of Soil Dynamic Earthquake Engineering,1985, (4):43-51.
    [74]Takada S, Tanabe K. Three-dimensional seismic response analysis of buried continuous or jointed pipelines. Transactions of ASME,1987, (109):35-42.
    [75]Takada S, Higashi S. Shell model FEM analysis for jointed buried pipelines. Proceedings of China-Japan Symposium on Lifeline Earthquake Engineering. Beijing,1990:145-152.
    [76]Hindy A, Novak M. Earthquake response of underground pipeline. International Journal Earthquake Engineering Structure Dynamics,1979, (7):451-476.
    [77]叶耀先,魏链,陈聃.浅埋地下管线的振动性状.地震工程论文集.北京:科学出版社,1982.
    [78]王海波,林皋.半无限弹性介质中管线地震反应分析.土木工程学报,1998,20(3):80-91.
    [79]甘文水,侯忠良.地震行波作用下埋设管线的反应计算.地震工程与工程振动,1988,8(2):79-86.
    [80]梁建文.地下管线的地震反应和动态稳定:(博士学位论文).天津:天津大学,1991.
    [81]Verley R L P, Sotberg T. A soil resistance model for pipeline placed on sandy soils. Offshore Mechanics and Arctic Engineering Conference.1992:123-131.
    [82]Verley R L P, Lund K M. A soil resistance model for pipeline placed on clay soils.Offshore Mechanics and Arctic Engineering Conference.1995:225-232.
    [83]Brennodden H, Lieng J T, Sotberg T, et al. An energy-based pipe-soil interaction model. Offshore Technology Conference.1989:146-158.
    [84]Orgill G, Barbas S T, Crossley C W. Current practice in determining allowable pipeline free spans. Offshore Mechanics and Arctic Engineering Conference.1992:139-145.
    [85]Muleski G E, Ariman T, Aumen C P. A shell model for a buried pipe in a seismic environment. ASME Journal of Pressure Vessel Technology,1979,10(44):44-50.
    [86]Datta T K, Mashaly E A.Pipeline response to random ground motion. Earthquake Engineering and Structural Dynamics,1986, (14):559-572.
    [87]Kershenbaum N Y, Choi H S, Mebarkia S A. Subsea pipeline behavior under seismic impact. The 8th International Offshore and Polar Engineering Conference,1998, (2):85-93.
    [88]高惠瑛,冯启民.场地沉陷埋地管道反应分析方法.地震工程与工程振动,1997,17(1):68-75.
    [89]冯启民,赵林.跨越断层埋地管道屈曲分析.地震工程与工程振动,2001,21(4):80-87.
    [90]汤爱平,陆钦年.埋地生命管道系统智能检测的初步研究.世界地震工程,2001,17(1):105-111.
    [91]张进国,吕英民,赵国忠.地震作用下储罐与管道连接波纹管的动力响应.世界地震工程,2004,20(3):123-127.
    [92]蒋录珍,朱庆杰.跨断层地下管道破坏的数值模拟.福州大学学报(自然科学版),2005,33(Supp.):321-324.
    [93]朱庆杰,刘英利,蒋录珍,等.管土摩擦和管径对埋地管道破坏的影响分析.地震工程与工程振动,2006,26(3):196-199.
    [94]Seed H B, Martin P P, Lysmer J. Pore water pressure changes during soil liquefaction. Journal of the Geotechnical Engineering Division, ASCE 1976,102(GT2):323-246.
    [95]Booker J R, Rahman M S, Seed H B. GADFLFA-A computer program for the analysis of pore water pressure generation and dissipation during cycle or earthquake loading. Report No UCB/EERC276 /24. Berkley:University of California 1976.
    [96]Christian J T. Consolidation with internal pressure generation. Journal of the Geotechnical Engineering Division, ASCE,1976,102(GT10):1111-1115.
    [97]徐志英.地震期间超孔隙水压力变化估算方法.水利学报,1981,(4):68-73.
    [98]Xu Z Y, Shen Z J. Generation, diffusion and dissipation of seismic pore water pressure in earth dam by fem dynamic analysis. Journal of Hohai University (Natural Sciences) 1981, (4):1-16.
    [99]张建民,谢定义.饱和砂土振动超孔隙水压力增长的实用算法.水利学报,1991,(8):45-51.
    [100]栾茂田,钱令希.层状饱和砂土振动超孔隙水压力扩散与消散简化解法.大连理、工大学学报,1995,35(2):215-221.
    [101]Wang Z L. Bounding surface hypo-plasticity model for granular soils and it's application: [dissertation]. Davis:University of California,1990.
    [102]Liu H L, Iai S, Koji I. Evaluation of deformation to the pneumatic caisson foundations of the Kobe Ohashi bridge. Report of the Port and Harbor Research Institute,1997,36(2):23-39.
    [103]刘汉龙,井合进.大型沉箱式码头岸壁地震反应分析.岩土工程学报,1998,20(2):25-36.
    [104]徐杨青.循环荷载作用下饱和士超孔隙水压力内时模型的研究.第六届全国土力学及基础工程会议论文集.上海:同济大学出版社,1991.
    [105]沈瑞福,王洪瑾,周克骥,等.动主应力旋转下砂土超孔隙水压力发展及海床稳定性判断.岩土工程学报,1994,16(3):70-78.
    [106]江闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散.中国土木工程学会士力学及基础工程学会主编.第一届土力学及基础工程学术会议论文选集.北京:建筑工业出版社,1964,130-138.
    [107]Seed H B, Booker R. Stabilization of potentially liquefiable sand deposits using gravel drains. Journal of Geotechnical Engineering Division,1976,102(7):1-15.
    [108]徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限元法动力分析..华东水利学院学报,1981,9(4):1-16.
    [109]王天颂,刘颍,仝筠.地震荷载作用下饱和砂层孔隙水压力增长与消散.岩土工程学报,1983,5(3):86-102.
    [110]Wilson N E, Elgohari M M. Consolidations of soils under cyclic loading. Canadian Geotechnical Engineering Journal,1974,2(3):432-447.
    [111]Baligh M M, Levadoux J N. Consolidation theory for cyclic loading. Journal of Geotechnical Engineering Division,1978,104(4):145-432.
    [112]Alonso E E, Krizek R J. Randomness of settlement rate under stochastic load. Journal of Geotechnical Engineering Division,1974,100(6):1211-1226.
    [113]Casagrande A. Liquefaction and cyclic deformation of sands:a critical review. Fifth Pan-American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina,1975.
    [114]Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading. Journal of Soil Mechanics and Foundation Engineering Division, ASCE,1966,92(SM6):105-134.
    [115]Foda M A, Hill D F, DeNeale P L and Huang C M. Fluidization response of sediment bed to rapidly falling water surface. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE,1997, 5(123):261-265.
    [116]Hsu J R C, Jeng D S and Lee C P. Oscillatory soil response and liquefaction in an unsaturated layered seabed. International Journal for Numerical and Analytical Methods in Geomechanics,1995, 19(12):825-849.
    [117]Seed H B, Idriss I M. Pore-water pressure change during soil liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1976,102(4):323-346.
    [118]Liyanapathirana D S, Poulos H G. Numerical simulation of soil liquefaction due to earthquake loading. Soil Dynamic and Earthquake Engineering,2002, (22):511-523.
    [119]艾晓秋,李杰.地下管线的有效应力地震反应分析.防灾减灾工程学报,2005,25(1):1-6.
    [120]Christian J T, Taylor P K, Yen J K C, Erali D R. Large diameter underwater pipeline for nuclear power plant designed against soil liquefaction. Proceedings of Offshore Technology Conference, Dallas,1974:596-606.
    [121]Herbich J B, Schiller R E, Watanabe R K, Dunlap W A. Seafloor scour design guidelines for ocean-founded structures. Marcel Dekker, New York,1984.
    [122]Silvis F. Wave induced liquefaction of seabed below pipeline. The 4th Young Geotechnical Engineers'Conference, Delft, The Netherlands,1990:18-22.
    [123]Kitaura M, Miyajima M. Response analysis of pipelines in liquefaction processes Using hybrid procedure. Proceedings of the 1st China-Japan Symposium on Lifeline Earthquake Engineering. Beijing,1997:79-86.
    [124]Fuchida K, Wang L R L, Akiyoshi T. Behavior of a buried pipeline subjected to liquefied ground movements. Proceedings of the 2nd China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Xi'an,1994:59-66.
    [125]Kitaura M, Miyajima M. Large dynamic response of buried pipeline in liquefaction processes. Proceedings of the 2nd China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Xi'an,1994:75-82.
    [126]Fuji S, Takada S, Li T. Study on behavior of buried pipelines against liquefaction and its countermeasure. Proceedings of the 2nd China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Xi'an,1994:96-104.
    [127]Mayajima M, Kitaura M, Yoshida M. Liquefaction potential for lifeline a seismic design. Proceedings of the 2nd China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Xi'an,1994:176-184.
    [128]侯忠良,甘文水,肖五虎.加热输油管道地震反应分析.工业建筑,1990,(1):23-27.
    [129]甘文水,侯忠良.液化土中埋设管线的上浮反应.特种结构,1980,6(3):3-7.
    [130]Xiong J G, Wang T, Wang G, et al. Seismic behavior of buried pipelines during liquefaction. Proceedings of the 2nd China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Xi'an,1994:185-192.
    [131]Mohri Y, Kawabata T, Ling H I. Experiments on shallowly buried pipelines using shaking table. Proceedings of the 10th Earthquake Engineering Symposium. Tokyo,1998:1913-1916.
    [132]Mohri Y, Kawabata T, Ling H I. Experimental study on the effects of vertical shaking on the behavior of underground pipelines. Proceedings of the 2nd International Conference on Earthquake Geotechnical Engineering. Lisbon,1999:489-494.
    [133]邹德高,孔宪京,Ling H I,等.地震时饱和砂土地基中管线上浮机理及抗震措施试验研究.岩土工程学报,2002,24(3):323-326.
    [134]Koseki J, Matsuo O, Tanaka S. Uplift of sewer pipes caused by earthquake-induced liquefaction of surrounding soil. Soil and Foundations,1998,38(3):75-87.
    [135]Sun L X. Centrifugal testing and finite element analysis of pipelines buried liquefiable soil. PH.D. Thesis, Columbia University.2001.
    [136]Wang L R L, Shim J S, Ishibashi L, et al. Dynamic response of buried pipelines during liquefaction process. Soil Dynamic and Earthquake Engineering,1990,9(1):44-50.
    [137]林均岐,熊健国.液化场地土中埋设管线的上浮反应分析.地震工程与工程振动,2000,20(2):96-100.
    [138]Zienkiewicz. O C, Huang M, Pastor M. Numerical prediction for Model No.1. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems. Rotterdam:Balkema,1994: 259-274.
    [139]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散三维动力分析.地震工程与工程振动,1985,5(4):56-72.
    [140]徐志英,周健.奥罗维尔土坝三维排水有效应力分析.水利学报,1991,(6):19-27.
    [141]栾茂田,郭莹,李木国,等.土工静力-动力液压三轴-扭转多功能剪切仪开发及其应用.大连理工大学学报,2003,43(5):670-675.
    [142]何杨.复杂应力条件下饱和砂土孔隙水压力及体变特性试验研究:(博士学位论文).大连:大连理工大学,2007.
    [143]孟上九,曹文海,袁晓铭.地震荷载下土体残余应变及孔隙水压力研究综述.世界地震工程,2001,17(3):49-53.
    [144]栾茂田,王栋,郭莹,等.海床与海洋地基的动力分析理论与设计方法研究进展评述.土动力学与岩土地震工程.北京:中国建筑工业出版社,2002,28-47.
    [145]Yoshimine M, Ishihara K, Vargas W. Effects of principal stress direction and intermediate principal stress on undrained shear behaviour of sand. Soils and Foundations,1998,38(3):179-188.
    [146]Sato K, Yoshida N. Effect of principal stress direction on undrained cyclic shear behaviour of dense sand. Proceedings of the Ninth International Offshore and Polar Engineering Conference[C]. France, 1999:542-547.
    [147]李万明,周景星.扭剪与三轴试验中孔隙水压力不均匀性的研究.岩土力学,1991,12(4):33-39.
    [148]王洪瑾,马奇国,周景星,等.土在复杂应力状态下的动力特性研究.水利学报,1996,(4):56-64,72.
    [149]付磊,王洪瑾,周景星.主应力偏转对砂砾料动力特性影响的试验研究.岩土工程学报,2000,22(4):435-440.
    [150]Symes M J, Gens A, Hight D W. Undrained anisotropy and principal stress rotation in saturated sand. Geotechnique,1984,34(1):11-27.
    [151]Dakoulas P, Sun Y. Behaviour of fine sand under cyclic rotation of principal stresses using the hollow cylinder apparatus.Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis, Missouri,1991:535-542.
    [152]王平安,于澍.主应力轴旋转下饱和砂土振动孔隙水压力发展和变化的研究.西安建筑科技大学学报,1996,28(4):433-437.
    [153]Ishihara K, Yamazaki A. Analysis of wave-induced liquefaction in seabed deposits of sand. Soils and Foundations,1984,24(3):85-100.
    [154]Ishihara K, Yamazaki A, Haga K. Liquefaction of K0-consolidation sand and under cyclic rotation of principal stress direction with lateral constraint. Soils and Foundations,1985,25(4):63-74.
    [155]沈瑞福,王洪瑾,周克骥,等.动主应力连续旋转下砂土孔隙水压力发展及海床稳定性判断.岩土工程学报,1994,16(3):70-78.
    [156]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [157]谢定义.土动力学.西安:西安交通大学出版社,1988.
    [158]谢定义,张建民.饱和砂土瞬态动力学特性与机理分析.西安:陕西科学技术出版社,1995.
    [159]刘颖,谢君斐.砂土震动液化.北京:地震出版社,1984.
    [160]Seed H B, Martin G R, Lysmer J. Pore-water pressure changes during soil liquefaction. Journal of the Geotechnical Engineering Division, ASCE,1976,102(GT4):323-346.
    [161]张建民,谢定义.饱和砂土振动孔隙水压力增长的实用算法.水利学报,1991,(8):45-51.
    [162]郭莹.复杂应力条件下饱和松砂的不排水动力特性试验研究:(博士学位论文).大连:大连理工大学,2003.
    [163]Martin G R, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division, ASCE,1975,101(GT5):423-438.
    [164]汪闻韶.饱和砂土振动孔隙水压力试验研究.水利学报,1962,(2):35-47.
    [165]曹亚林,何广讷,林皋.土中振动孔隙水压力升长程度的能量分析法.大连工学院学报,1987,26(3):83-89.
    [166]郭莹,刘艳华,栾茂田,等.复杂应力条件下饱和松砂振动孔隙水压力增长的能量模式.岩土工程学报,2005,27(12):1380-1385.
    [167]Finn W D L, Bhatia S K. Endochronic theory of sand liquefaction. Proceedings of the 7th World Conference on Earthquake Engineering. Turkey; Istanbul,1980,149-158.
    [168]徐杨青,郭见扬.波浪荷载下海洋土孔隙水压力内时模型的研究.岩土力学,1991,12(3):43-52.
    [169]徐干成,谢定义,郑颖人.一个新的内时参量动孔隙水压力模型及其适应性研究.水利学报,1995,(12):39-53.
    [170]邵生俊.砂土的物态本构模型及应用.西安:陕西科学技术出版社,2001.
    [171]万良勇.不同类型孔隙水压力的动力效应研究:(硕士学位论文).陕西:西安理工大学,2002.
    [172]Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading. Proc. ASCE. J. AMFD. 1966,92(SM6):105-134.
    [173]Castro G, Poulos J. Factors affecting liquefaction and cyclic mobility. Journal of Geotechnical Engineering, ASCE,103(6):501-506.
    [174]Robertson P K, Woeller D J, Finn W D L. Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canada Getechnical Journal,1992, (29):685-695.
    [175]张小玲.三向非均等固结条件下密实粉煤灰动力变形特性的试验研究:(硕士学位论文).大连:大连理工大学,2006.
    [176]土工试验操作规程(SL236-1999).1999.
    [177]曲鹏.波浪作用下海底管线及周围海床动力响应分析:(博士学位论文).大连:大连理工大学,2008.
    [178]Biot M A. General theory of three-dimensional consolidation. Journal of Applied Physics,1941,12: 155-164.
    [179]Ogawa Y, Koike T. Structural design of buried pipelines for severe earthquakes. Soil Dynamics and Earthquake Engineering,2001,21 (3):199-209.
    [180]Datta T K. Seismic response of buried pipelines:a state-of-the-art review. Nuclear Engineering and Design,1999, (192):271-284.
    [181]赵密.粘弹性人工边界及其透射人工边界的比较研究:(博士学位论文).北京:北京工业大学,2004.
    [182]Lysmer J, Kulemeyer R L. Finite dynamic model for infinite media. Journal of Engineering Mechanics, ASCE,1969,95:759-877.
    [183]孙林松,王德信,谢能刚.接触问题有限元分析方法综述.水利水电科技进展,2001,21(3):18-20.
    [184]何君毅,林祥都.工程结构非线性问题的数值解法.国防工业出版社,1994.
    [185]Bathe K J, Chaudhary A. Solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering,1985,21:65-88.
    [186]Wang X, Dong J. Formulation and study of thermal-mechanical coupling of saturated porous media. International Journal of Computers and Structures,2003,81(8-11):1019-1029.
    [187]Zienkiewicz 0 C, Taylor R L. The Finite Element Method.4th Edition, MacGrawHill, London, 1989.
    [188]Britto A M, Gunn M J. Critical state soil mechanics via finite elements. Chichester:Ellis Horwood Limited,1987.
    [189]刘金云.软弱土层输水隧道地震响应及减震措施研究(博士学位论文).大连:大连理工大学,2008.
    [190]邱流潮,金峰.地震分析中人工边界处理与地震动输入方法研究.岩土力学,2006,27(9):1501-1504.
    [191]Guddati M N, Tassoulas J L. Characteristics methods for transient analysis of wave propagation in unbounded media. Computer Methods in Applied Mechanicsand Engineering,1998,164:186-206.
    [192]Wang X, Jeng D S, Lin Y S. Effects of a cover layer on wave-induced pore water pressure around a buried pipe in an anisotropic seabed[J]. Ocean Engineering,2000,27:823-839.
    [193]邵广彪,冯启民,王华娟.海底土层地震液化的数值分析方法.第七届全国土动力学学术会议论文集.北京:清华大学出版社,2006,460-465.
    [194]章根德,顾小芸.波浪引起的海底土层中的应力场和位移场.力学与实践,1989,12(6):29-33.
    [195]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报,1998,31(3):55-64.
    [196]LYSMER J, KUHLEMEYER R L. Finite dynamic model for infinite media. Journal of Engineering Mechanics Division, ASCE,1969,95:859-877.
    [197]于加云.隧道地震反应的数值分析.现代隧道技术,2005,42(5):42-45.
    [198]Bathe K J. Finite Element Procedures. New Jersey, Prentice-Hall, Inc.1996:645-653.
    [199]Wang X, Jeng D S, Lin Y S. Effects of a cover layer on wave-induced pore water pressure around a buried pipe in an anisotropic seabed. Ocean Engineering,2000,27:823-839.
    [200]曲鹏,栾茂田,郭莹,等.波浪作用下饱和海床-管线动力相互作用的有限元分析.第七届全国土动力学学术会议论文集.北京:清华大学出版社,2006,445-453.
    [201]Pickering D J. Anisotropic elastic parameters for soil[J]. Geotechnique,1970,20(3):271-276.
    [202]HERBICH J B. Offshore pipeline design element[M]. Marcel Dekker INC. New York,1981,5-7.
    [203]O'Rourke T D, Gowdy T E, Stewart H E, et al. Lifeline and geotechnical aspects of the 1989 Loma Prieta earthquake. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and soil Dynamics. University of Missouri-Rolla:MO,1999:1601-1612.
    [204]Mohri Y, Yasunaka M, Tani S. Damage to buried pipeline due to liquefaction induced performance at the ground by the Hokkaido-Nansei-Oki Earthquake in 1993. Proceedings of First International Conference on Earthquake Geotechnical Engineering. Rotterdam:Balkema,1995:31-36.
    [205]栾茂田,张晨明,王栋,等.波浪作用下海床孔隙水压力发展过程与液化的数值分析.水利学报,2004,(2):94-100.
    [206]PRATER E G, STUDER J. Some considerations on the seismic behavior of Rockfill Dams. Thirteenth International Congress on Large Dams. New Delhi:India,1979,2:1096-1113.
    [207]SEED H B, RAHMAN M S. Wave-induced pore water pressure in relation to ocean floor stability of cohesionless soils. Marine Geotechnology,1978,3:123-150.
    [208]ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, Japanese Society of Soil Mechanic and Foundation Engineering,1990,30(4): 90-104.
    [209]孙政策,段梦兰,刘立名,等.海底管线地震应力分析方法和建议.中国工程科学,2003,5(8):75-80.
    [210]Chan A H C. A unified finite-element solution to static and dynamic geomechanics problems. Ph.D. thesis, February, Univ. College of Swansea, Wales,1988.
    [211]Chan A H C. User manual for DIANA-SWANDYNE Ⅱ. Department of Civil Engineering, Univ. of Birmingham,1995.
    [212]Chan A H C, Famiyesin O O, Muir W D. Numerical prediction for model No.1[A]. Arulanandan K, Scott R F. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems [C]. Rotterdam:Balkema A A,1994.86-108.
    [213]Madabhushi S P G, Zeng X. Seismic response of gravity quay wall Ⅱ:numerical modeling[J]. Jounal of Geotechnical Geoenvironmental Engineering, American Society of Civil Engineering.1998, 124(5):418-427.
    [214]Ou J H, Chan A H C.3D numerical modelling of dynamic saturated soil and pore fluid interaction. Proceedings of a Joint Conference of the Association for Computational Mechanics in Engineering (UK) and the Irish Society for Scientific and Engineering Computation. Belfast,2006: 151-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700