用户名: 密码: 验证码:
污泥回流强化混凝及微絮凝过滤处理北方低温低浊水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺是我国一大国情。随着水污染的加剧,人们对水的需求的增加以及饮用水标准的提高,使得现有水厂的工艺逐渐不适应要求。尤其在我国北方寒冷地区,冬季时期可长大5-6个月的时间,在此期间水体进入低温低浊期,大量水厂原有常规工艺的处理效果不佳,急需开发高效、低能的新型水处理技术。针对北方水厂在低温低浊时期的运行状况,通过对现有的低温低浊水处理工艺的比较和选择,认为强化混凝及微絮凝过滤法是在原有水厂工艺上改造最方便,同时处理效果理想的两种工艺。本文通过混凝剂的优选、搅拌条件的优化、助凝剂的投加、污泥回流等方式进行了强化混凝的研究,并在此基础上进行了微絮凝过滤的相关试验。
     本文通过混凝烧杯试验,分别对五种常用的铝盐铁盐混凝剂进行了混凝试验,根据试验结果发现聚合氯化铝(PAC)的处理效果最好,其形成的絮体粒径大且密实,对浊度和有机物都有较高的去除率。当PAC投加量为30 mg/L时,沉后出水浊度约为0.2 NTU,去除率达到85%;沉后出水CODMn低于2 mg/L,去除率约58%;UV254的去除率达到67%,色度低于5度。通过搅拌试验,发现分级搅拌的效果比较好,三级搅拌的混凝效果要优于二级搅拌。采用PAC与助凝剂聚丙烯酰胺(PAM)组合投加,可以增大絮体的凝聚能力,提高其密实性。采用污泥回流法可以增加原水浊度,提高混凝效果,PAC投加量可降低至5-10 mg/L,污泥回流后的混凝浊度宜在20-33 NTU,且污泥单独停留不能超过3天。
     通过微絮凝过滤小试试验,发现微絮凝过滤处理效果好,混凝药剂投加量少。滤料种类、混凝药剂投加量及滤速都对过滤效果有极大的影响。其中单层细石英砂(0.5-1.0 mm)及双层滤料(上层石英砂,下层无烟煤)的运行效果较好,PAC投加量可以降低至12-16 mg/L,比常规工艺减少约47-60%。
     通过对原水进行中试试验,结果表明采用强化混凝-沉淀-过滤法和微絮凝过滤法都取得较为理想的处理效果。但是由于低温低浊水的特点,沉淀效果不理想,因此推荐采用微絮凝过滤法。该法不但可以节省药剂,同时也可以简化工艺。在微絮凝过滤法中混凝药剂PAC的投加量宜为20 mg/L,滤速为7 m/h。其对浊度的去除率约90%,出水浊度在0.2 NTU左右,色度低于5度,CODMn的去除率约60%,在2 mg/L左右。
Water shortage is a major condition in China. With the increased level of water pollution and improved demand of drinking water quality for people, the traditional water treatment technology can not satisfy the present requirements. Especially in cold regions of northern China, the winter can be long for 5-6 months. During this period, the water would go into the low temperature and low turbidity state. The existing conventional water treatment processes in many water plants have poor effect, needing to develop efficient and low energy consumption water treatment technology. Considering the operational conditions of northern water plants treatment during the low temperature and low turbidity period, through the comparation and selection of the existing low temperature and low turbidity water treatment processes, we think that enhanced coagulation and micro-flocculation filtration are the most convenient and effective retrofit for the original conventional water treatment. In this paper, enhanced coagulation were studied through coagulant optimization, stirring optimization, coagulant aid, sludge reflux, etc. And based on this,some experiments related to micro-flocculation filtration were studied.
     In this paper, in the coagulation beaker tests, five common aluminum and ferric coagulant were respectively studied in coagulation tests. According to the results, we believed that polyaluminium chloride (PAC) had the best effect. The formation floc had large size and compact, had high turbidity and organic matter removal. When the PAC dosage was 30 mg/L, the effluent turbidity was approximately 0.2 NTU, the removal rate could be 85%; the effluent CODMn was less than 2 mg/L, the removal rate was about 58%; UV254 removal rate was 67 % and the chroma was less than 5 degrees. By stirring experiment, we found that classification mixing had better results and three-stages mixing had better efficient than two-stages mixing. PAC combined with polyacrylamide (PAM) dosing could increase the ability of floc cohesion and improve its compactness. Sludge reflux method can increase raw water turbidity and improve the coagulation effect. The dosage of PAC could greatly reduced to 5-10 mg/L. And the time of sludge couldn’t remain long for 3days.
     By micro-flocculation bench-scale test, we found that micro-flocculation filtration had a good treatment effect and the coagulant dosage is small. The media type, coagulant dosage and filtration rate had a greatly influence on the treatment effect. The fine quartz sand media (0.5-1.0 mm) and dual-media (upper quartz sand, the lower anthracite) ran better effect. The PAC dosage could be reduced to 12-16 mg/L and was less than the conventional process by about 47-60%.
     Through the pilot experiment of raw water, we could gain the results that enhanced coagulation-sedimentation-filtration and micro-flocculation filtration made a satisfactory treatment effect. However, due to the characteristics of low temperature and low turbidity water, the effect of sedimentation was poor. Therefore, micro-flocculation filtration not only save chemicals, but also could simplify the process. During the micro-flocculation filtration process, the appropriate dosage of PAC should be 20 mg/L and the filtration rate should be 7 m/h. It’s about 90% turbidity removal, the filtrated water turbidity was around 0.2 NTU and the chroma was less than 5 degrees. CODMn removal was about 60% and about 2 mg/L in the filtrated water.
引文
[1]苗硕.中国淡水资源现状与保护措施探讨[J].现代商贸工业, 2010, 17: 19-21.
    [2]吴季松.为可持续发展提供水资源保障[J],国土经济, 2000(2): 5-7.
    [3]国家统计局环境保护部编.中国环境统计年鉴-2010 [M].北京:中国统计出版社, 2010: 13-17.
    [4]甘萍.浅析我国水资源污染状况及处理技术[J].江西化工, 2006, 4: 82-83.
    [5]霍明昕,刘馨远.低温低浊水质特征的分析[J].中国给水排水, 1998, 14(6): 33-34.
    [6]刘晖.低温低浊地表水处理技术的探讨[J].科技信息, 2007, 10: 224-225.
    [7]李森.低温低浊高色度给水处理工艺研究[D].吉林:吉林大学硕士学位论文, 2006: 1-3.
    [8]李卓文,龙银慧.低温低浊水处理[J].广西轻工业, 2008, 113(4): 77-79.
    [9]王静.低温低浊水处理技术研究应用现状[J].低温建筑技术, 2003, 94(4): 49-50.
    [10] Duan J, Gregory J. Coagulation by Hydrolysing Metal Salts[J]. Advances in Colloid and Interface Science, 2003(100): 475-502.
    [11] Xiao F, Zhang B J, Chery LEE. Effects of Low Temperature on Aluminum(III) Hydrolysis: Theoretical and Experimental Studies[J]. Journal of Environmental Sciences-China, 2008, 20(8): 907-914.
    [12]马青山,贾瑟,孙丽珉.絮凝化学和絮凝剂[M].北京:中国环境科学出版社, 1988: 76-77.
    [13] Xiao F, Ma J, Yi P, et al. Effects of Low Temperature on Coagulation of Kaolinite Suspensions[J]. Water Research, 2008, 42(12): 2983-2992.
    [14]吴正淮.低温低浊度水净化技术的应用与发展[J].中国给水排水, 1989, 5(5): 43-46.
    [15]赵宗升,章双霜,柴峰,等.混凝动力学的发展历程[A]. 2010中国环境科学学会学术年会论文集(第四卷), 2010: 4039-4046.
    [16] Amirtharajah A. Some Theoretical and Conceptual Views of Filtration[J]. Journal American Water Works Association, 1988, 80(12): 36-46.
    [17]何少华,熊正为.过滤理论发展过程中存在的一些问题探讨[J].南华大学哈尔滨工业大学工学硕士学位论文学报(理工版), 2002, 16 (4): 31-35.
    [18]陈忠林,马军,王东田,等.松花江低温低浊时期的强化混凝生产性实验[J].哈尔滨建筑大学学报, 1996, 29(5): 73-77.
    [19] Gibbs R J. Effect of Natural Organic Coatings on The Coagulation of Particles[J] . Environment Science & Technology, 1983, 17(4): 237-240.
    [20] Jekel M R. The Stabilization of Dispersed Mineral Particles by Adsorption of Humic Substance[J]. Water Research, 1986, 20(12): 1543-1554.
    [21] Edzwald J K. Coagulation in Drinking Water Treatment: Particles, Organics, and Coagulants[C]. In IAWQ/ IWSA Joint Specialized Conference, Control of Organic Material by Coagulation and Floc Separation Processes, Geneva, Switzerland, 1992: 1-15.
    [22]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社, 2000: 226-232.
    [23]徐碧,陆雪梅,邵春燕,等.高效絮凝剂的研究进展[J].化工时刊, 2004, 18(5): 7-9.
    [24] Mattson S. Cataphoresis and The Electrical Neutralization of Colloidal Material[J]. Journal of Physical Chemistry, 1928, 32(10): 1532-1552.
    [25] Arias M, Barral M T, Diazfierros F. Effects of Iron and Aluminium Oxides on The Colloidal and Surface Properties of Kaolin[J]. Clays and Clay Minerals, 1995, 43(4): 406-416.
    [26] Arias M, Barral M T, Diazfierros F. Effects of Associations between Humic Acids and Iron or Aluminium on The Flocculation and Aggregation of Kaolin and Quartz[J]. European Journal of Soil Science, 1996, 47(3): 335-343.
    [27]董重华,严煦世,候志山,等.聚合氯化铝在低温下絮凝性能的研究[J].上海环境科学, 1988, 12 (7): 9-11.
    [28] LePrince A, Fiessinger F, Bottero J Y. Polymerized Iron Chloride: an Improved Inorganic Coagulant[J]. Journal American Water Works Association, 1984, 76(1): 93-97.
    [29] Zouboulisa, Traskasa G, Samarasb P. Comparison of Efficiency between Poly-Aluminium Chloride and Aluminium Sulphate Coagulants during Full-scale Experiments in a Drinking Water Treatment Plant[J]. Separation Science and Technology, 2008, 43(6): 1507-1519.
    [30] Gao B Y, Abbt-Braun G, Fritz H. Frimmel. Preparation and Evaluation ofPolyaluminum Chloride Sulfate(PACS) as a Coagulant to Remove Natural Organic Matter from Water[J]. Acta Hydrochimica ET Hydrobiologica, 2006, 34(5): 491-497.
    [31]汪琳,李明玉,方刚,等.聚合硫酸铝的制备及其混凝性能[J].暨南大学学报(自然科学版), 2009, 30(3): 277-281.
    [32] Wang Y L, Feng J, Dentel S K, et al. Effect of Poly Ferric Chloride (PFC) Doses and pH on The Fractal Characteristics of PFC-HA flocs[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379(1/3): 51-61.
    [33]王红宇,李久义,栾兆坤,等.聚合氯化铁絮凝处理低温低浊水的研究[J].环境污染治理技术与设备, 2005, 5(12): 25-27.
    [34]张东,乐林生,朱文娜.聚硅硫酸铝处理黄浦江原水中试研究[J].净水技术, 2007, 26(3): 36-38.
    [35] Gao B Y, Yue Q Y, Wang B J, et al. Poly-Aluminum-Silicate-Chloride (PASiC)—a New Type of Composite Inorganic Polymer Coagulant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229(1/3): 121-127.
    [36] Cheng W P, Chi F H, Li C C, et al. A Study on The Removal of Organic Substances from Low-Turbidity and Low-Alkalinity Water with Metal-Polysilicate Coagulants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312(2-3): 238-244.
    [37] Jiang J Q, Graham N J D. Observations of The Comparative Hydrolysis/ Precipitation Behavior of Polyferric Sulphate and Ferric Sulphate[J].Water Research, 1998, 32(3): 930-935.
    [38] Fu Y, Yu S L. Characterization and Coagulation Performance of Solid Poly-Silicic-Ferric(PSF) Coagulant[J]. Journal Non-Crystalline Solid, 2007, 353(22-23): 2206-2213.
    [39] Wang D S, Tang H X. Modified Inorganic Polymer Flocculant-PFSi: It’s Preparation, Characterization and Coagulation Behavior[J]. Water Research, 2001, 35(14): 3418-3428.
    [40]付英.聚硅酸铁(PSF)的研制及其混凝机理[D].哈尔滨:哈尔滨工业大学博士学位论文, 2007: 118-123.
    [41]潘碌亭.新型聚硅铝铁絮凝剂强化处理低温低浊水[J].水处理技术, 2006, 36(10): 63-65.
    [42]张海龙.复合铝铁代硫酸铝净化低温低浊水比较[J].低温建筑技术, 2002 89(3): 69-70.
    [43]夏远景,王松筠,姜传增.新型净水助凝剂在净水厂的实际应用[J].黑龙江水利科技, 2008, 36(3): 9-10.
    [44] Qin C Q, Li H R, Xiao Q, et al. Water-Solubility of Chitosan and Its Antimicrobial Activity[J]. Carbohydrate Polymers, 2006, 63(3): 367-374.
    [45] Bina B, Mehdinejad M H, Nikaeen M, et al. Effectiveness of Chitosan as Natural Coagulant Aid in Treating Turbid Waters[J]. Iranian Journal Environmental Health. Science & Engineer, 2009, 6(4): 247-252.
    [46] Yang W, Chen J, Li X, et al. Using Chloramine as a Coagulant Aid in Enhancing Coagulation of Yellow River Water in China[J]. Journal of Zhejiang University SCIENCE A, 2007, 8(9): 1475-1481.
    [47]王桂荣,张杰.强化混凝处理低温低浊水的研究[J].工业用水与废水, 2004, 35(5): 20-22.
    [48] Arora H, Giovanni G D, Lechevallier M. Spent Filter Backwash Water Contaminants and Treatment Strategies[J]. Journal American Water Works Association, 2001, 93(5): 100-112.
    [49] Edzwald J K, Tobiason J E. Fate and removal of Cryptosporidium in a Dissolved Air Flotation Water Plant with and without Recycle of Waste Filter Backwash Water[J]. Water Science and Technology: Water Supply, 2002, 2(2): 85-90.
    [50] Bourgeois J C, Walshm E, Gagnon G A. Treatment of Drinking Water Residuals: Comparing Sedimentation and Dissolved Air Flotation Performance with Optimal Cation Ratios[J]. Water Research, 2004, 38(1): 1173-1182.
    [51]吴灿东.自来水厂生产废水回用条件的研究[J].哈尔滨商业大学学报(自然科学版), 2007, 23(3): 295-297.
    [52] Adin A, Rebhun M. High Rate Contact Flocculation-Filtration with Cationic Polyelectrolytes[J]. Journal American Water Works Association, 1974, 66(2): 109-117.
    [53] Jiang S J, Liu Z Y, Liang J J. Effects of pH Value and Coagulant Dosage on Contact Filtration of Humic Substances[J]. Journal Central.South University of Technology, 2009, 16(1): 384-390.
    [54]卜恩云.用微絮凝接触过滤工艺处理低温低浊水[J].建筑技术通讯(给水排水), 1983(6): 6-9.
    [55] Zabel T F. The Advantages of Dissolved Air Flotation for Water Treatment[J]. Journal American Water Works Association, 1985, 77(5): 42-46.
    [56] De Turris A, Yabroudi S C, Valbuena B, et al. Production Water Treatment by Dissolved Air Flotation[J]. Interciencia, 2011, 36(3): 211-218.
    [57] Crossley I A, Valade M T. A Review of The Technological Developments of Dissolved Air Flotation[J]. Journal Water. Supply Research and Technology, 2006, 55(7-8): 479-491.
    [58] Liu F, Ma J, Ma W C. Removal of Particles from Water Using Dissolved Air Flotation[C]. 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009(1/11): 5621-5624.
    [59] Liu S P, Wang Q S, He W J, et al. Comparison of Dissolved Air Flotation and Sedimentation in Treatment of Typical North China Source Water[J]. The Chinese Journal of Process Engineering, 2007, 7(2): 283-287.
    [60] Liu H L, Cheng F Q, Wang D S. Interaction of Ozone and Organic Matter in Coagulation With Inorganic Polymer Flocculant-PACl: Role of Organic Components[J]. Desalination, 2009, 249(2): 596-601.
    [61]梁恒,李圭白,李星,等.高锰酸盐复合药剂(PPC)安全强化低温低浊水处理[J].环境化学, 2005, 24(2): 143-145.
    [62] Guo X, Zhang Z, Fang L, et al. Study on Ultrafiltration for Surface Water by A Polyvinyl Chloride Hollow Fiber Membrane[J]. Desalination, 2009, 238(1-3): 183-191.
    [63] Rosangela B, Leila C K M, Marcelo F V, et al. Performance of A Coagulation–Ultrafiltration Hybrid Process for Water Supply Treatment[J]. Chemical Engineering Journal, 2011, 166(2): 483-489.
    [64] Xia S J, Li X, Liu R P, et al. Pilot Study of Drinking Water Production with Ultrafiltration of Water from The Songhuajiang River (China)[J]. Desalination, 2005, 179(1-3): 369-374.
    [65]赫俊国,宋学峰,金昌锦,等.微涡旋混凝低脉动沉淀技术处理低温低浊水[J].中国给水排水, 1999, 15(4): 17-19.
    [66]黄林平,李静,陈立功.微涡旋混凝技术处理低温低浊水[J].东北电力大学学报, 2006, 26(6): 84-87.
    [67]李智,柯水洲.活性炭处理低温低浊时期湘江原水的初步实验研究[J].湖南大学学报(自然科学版), 2002, 29(3): 154-160.
    [68]李英,李军,刘景祥.粉状活性炭处理微污染低温低浊水的研究[J].黑龙江水专学报. 2003, 30(2): 21-22.
    [69]曲艳明.活性炭生物强化工艺处理低温低浊黄河水源水的试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2006: 59-60.
    [70]张云.湘江水源低温低浊度水处理试验研究[D].湖南:湖南大学硕士学位论文, 2003: 1-5.
    [71]李杨,段小睿,员建,等.低温低浊微污染水处理技术研究进展[J].中国建筑信息(水工业市场), 2010(5): 51-54.
    [72]李海英.浅谈低温低浊水处理技术[J].环境科学导刊, 2009, 28(增刊): 84-86.
    [73]王海虹,杨妍奎.低温低浊水处理工艺研究进展[J].农技服务, 2007, 24(9): 109-110.
    [74]张文胜.引黄水低温低浊期混凝特性试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2008: 1-2.
    [75] Harrelkas F, Azizi A, Yaacoubi A., et al. Treatment of Textile Dye Effluents Using Coagulation-Flocculation Coupled with Membrane Processes or Adsorption on Powdered Activated Carbon[J]. Desalination, 2009, 235(1-3): 330-339.
    [76] Christian V, Kimberly B, Eva I, et al. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and Its Biodegradable Fraction in Drinking Water[J] Water Research, 2000, 34(12): 3247-3257.
    [77] Guigui C, Rouch J C, Durand-Bourlier L, et al. Impact of Coagulation Conditions on The In-Line Coagulation/UF Process for Drinking Water Production[J]. Desalination, 2002, 147(1-3): 95-100.
    [78] Verrelli D I, Dixon D R, Scales P J. Effect of Coagulation Conditions on The Dewatering Properties of Sludges Produced in Drinking Water Treatment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348(1-3): 14-23.
    [79]严煦世,范谨初.给水工程(第四版)[M].北京:中国建筑工业出版社, 2007: 264-269.
    [80] Haarhoff J, Joubert H. Determination of Aggregation and Breakup Constants During Flocculation[J]. Water Science and Technology, 1997, 36(4): 33-40.
    [81] Han M Y, Lawler D F. The (Relative)Insignificance of G in Flocculation[J]. Journal American Water Works Association, 1992, 84(3): 79-91.
    [82] Michael R C, ASCE M, Gary L A, et al. Evaluation of Factors Affecting Performance of Direct Filtration[J]. Journal of Environmental Engineering, 1987, 113(2): 330-344.
    [83]张克锋,王永胜.直接过滤阻力增长系数K的试验研究[J].山东建筑工程学院学报, 1995, 10(1): 68-69.
    [84]张克锋.直接过滤过滤截留系数的试验研究[J].山东建筑工程学院学报, 1997, 12(3): 66-68.
    [85] Ives K J. Specifications for Granular Filter Media[J]. Effluent and Water Treatment Journal, 1975, 16(6): 297-305.
    [86]管益东.均质滤料直接过滤中的过滤特性研究[D].西安:西安建筑科技大学硕士学位论文, 2003: 21-23.
    [87]刘辉.直接过滤池过滤性能综合评价指标[J].中国市政工程,2001, 92(1): 57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700