用户名: 密码: 验证码:
均质滤料直接过滤过程中的过滤特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过滤是给水处理中—个重要的单元操作过程,其中滤料是滤池的核心,它的选择直接影响滤池的过滤特性。目前,滤池的设计通常采用经验公式I/d_e=800作为设计滤池厚度的依据,但实践证明此经验公式还不能准确地反应滤池过滤特性与滤池深度L、滤料粒径d的相关关系及相关程度,在实际应用中受到很大限制。
     理论分析表明,滤池的过滤特性,即滤池的水头损失和出水浊度与滤池的L/d~2成正比。改变滤料粒径后,按照L/d~2的关系来确定滤池深度,与原滤池的过滤特性将保持更为良好的相似性。
     本文采用不同粒径的石英砂滤料,以FeCl_3、PAC作为混凝剂,通过进行标准滤池与参照滤池(分别装填细滤料、粗滤料)的平行对比试验,研究滤料粒径改变后,滤池过滤特性与滤池深度L、滤料粒径d的相关关系。同时,对均质滤料的过滤性能进行了分析、评价。
     试验结果表明:
     (1) 微絮凝—直接过滤中,以FeCl_3作为混凝剂时,滤池的过滤特性良好,PAC不适合作为混凝剂。
     (2) 在直接过滤过程中,采用FeCl_3作为混凝剂、出水浊度保持基本相同时,粗滤料的水头损失增长速度较慢,过滤周期比较长。
     (3).按照L/d~2的关系设计新滤池时,标准滤池的水头损失与新滤池的水头损失之间的差别较小,而按照L/d的关系设计新滤池时,标准滤池的水头损失与新滤池的水头损失之间的差别较大。
     (4) 当采用FeCl_3作为混凝剂,可以适当减小按照经验公式L/d_e=800设计的滤池深度。
Filtration is one of important operation units in water treatment operation process, and the sand granule used in the Deep Bed Filtration is the key to perform a satisfied capacity. For this reason, a proper choice of it can influence the filtration capacity greatly. In designing the Deep Bed, the empirical formula L/de=800 is used as the basis. However, it has been proved that the formula cannot precisely describe the functional relationship and the correlation degree between the nitration behavior of the Deep Bed filtration process, the depth of the Deep Bed and the diameter of the sand granule, and it is restricted greatly in the practical application of finding a suitable depth of the Deep Bed.
    Theoretical analysis shows that the filtration behaviors of the Deep Bed, that are the head loss and turbidity of the effluence water, have the correlation o f L/d2 with the Deep Bed When the diameter of the filtration media is changed, if the depth of the Deep Bed is designed according to the relationship of L/d2, the filtration behavior of the Deep Bed will have a closer similarity with that of the original one.
    Through choosing different diameter of sand granule, using FeCl3 and PAC as the coagulants, doing paralleled test through standard filtration column compared with referenced filtration columns (the coarser and the finer sand granule used as filtration media separately), the thesis investigates the correlation between the filtration behavior and the depth of the Deep Bed L, the diameter of the sand granule d. Meanwhile, the filtration capacity of the Deep Bed using the uniform media is analyzed and valuated.
    Research result shows that:
    (1) In the micro-flocculation joint direct filtration process, FeCl3is a suitable coagulant, but PAC is not.
    (2) FeClsused as a coagulant when the water quality after filtration has tiny difference in the direct filtration process, compared with the finer sand media, the velocity increase of the water head loss of the coarser sand media is slower, and its filtration cycle is longer.
    
    
    (3) The water head loss of the standard Deep Bed and that of the designed Deep Bed have less difference if the later is built according to the relationship of L/d2, but they have larger difference when it is constructed according to the relationship of L/d.
    (4)If using L/de=800 as a designing basis of theDeep Bed filtration when FeCl3 is usedas the coagulant, (here is space to lessen the depth of Deep Bed.
引文
[1].聂梅生,水工业工程设计手册-水资源及给水处理,中国建筑工业出版社,2001
    [2].景有海,水的过滤理论基础,西安建筑科技大学(研究生教材),2001,p2-76
    [3].王永胜,慢滤水处理技术,中国农村水利水电,2000年第一期
    [4].谢水波等,多级粗滤料滤床-慢滤综合净水工艺研究,农村水利水电,2001年第4期
    [5].德格雷蒙公司,水处理手册,中国建筑工业出版社,1983
    [6]. Amirtharajah, Appiah and O' Mella, Charles R., 1990. Coagulation Processes: Destabilization, Mixing, and Flocculation. Water Quality and Treatment,A Handbook of Community Water Supplies. ed, Pontius, Frederick W., AWWA 4th Ed. McGraw-Hill, Inc. NY.
    [7].胡万里,混凝、混凝剂、混凝设备,化学工业出版社,2001
    [8]. Richard Ford Mccorinick & P.H. King, Factors that Affects use of Direct filtration in Treating Surface Water, JAWWA, 1992, 74(5):234
    [9].张建锋、金同轨,直接过滤方式的研究,中国给水排水,1999,Vol.15,No.5
    [10].栾兆坤,微絮凝-深床直接过滤及工艺参数研究,中国给水排水,2002,Vol.18,No.4
    [11]. Kawamuras, Design and operation of high-rate filters-Part 1[J]. J. AWWA, 1975, 77(10) 77~90.
    [12].井出哲夫,水处理工程理论与应用,中国建筑工业出版社,1986,p35,p91
    [13].余健等,影响常规过滤因素的实验研究,湖南大学学报(自然科学版),第29卷第3期,2002年6月
    [14].阮如新,滤料粒度对过滤的影响,给水排水,1997,Vol.23,No.11
    [15].高士国、阮如新,无烟煤均质滤层过滤技术试验研究及工程应用,给水排水,1998,Vol.24,No.4
    [16].景有海,均质滤料过滤过程的数学模型,同济大学博士论文,2000
    [17]. W. Stumm and J. J. Morgan, Aquatic Chemistry, 2nd ed., John Wiley & Sons, New York, 1981
    [18]. Dental S K. Coagulation control in water treatment[J]. CRC Critical Review in Environmental Control, 1991, 21(1):41
    
    
    [19].栾兆坤,混凝基础理论研究进展与发展趋势,环境科学学报,第21卷增刊,2001年6月
    [20]. O' Mella, Charles R., Stumm W. Aggregation of silica dispersion by iron(Ⅲ), J. Colloid & Inter Sci., 1967, 23:633, Parthasarathy N. Buffle, J. Water Res., 1985, 19(1):25
    [21].栾兆坤,水解聚合铝溶液中形态分布的定量模拟研究,环境科学学报,第15卷第一期,1995年1月
    [22].杨日光,路光杰,硫酸铝和聚合铝的化学组分和混凝效果之对比,电力建设,1998年第7期
    [23].路光杰,无机高分子混凝剂的机理与应用,电力建设,1996年第11期
    [24].李三中,微絮凝直接过滤处理水库水的探讨,中国给水排水,1997,Vol.13,No.5
    [25].郭维华、费忠民,水中砷混凝去除机理的研究,苏州城建环保学院学报,1995年3月,第8卷第1期
    [26].周北海、王占生,砂滤床直接过滤机理的研究,中国给水排水,1994,Vol.10,No.2
    [27].李科、栾兆坤,微絮凝—直接过滤采用聚合铝处理低浊低温水研究,中国给水排水,1998年,Vol.14,No.6
    [28].张克锋,直接过滤阻力系数K的试验研究,山东建筑工程学院学报,1995年3月,第10卷,第1期
    [29].张克锋,直接过滤截留系数λ的试验研究,山东建筑工程学院学报,1997年9月,第12卷,第3期
    [30].景有海,均质滤料直接过滤性能的评价指标,给水排水,2000,Vol.26,No.3
    [31].刘辉,直接过滤池过滤性能综合评价指标,中国市政工程,2001年3月,第1期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700