用户名: 密码: 验证码:
日本落叶松人工林林分结构与生长量预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本落叶松作为一个外来树种,在湖北省建始县长岭岗林场栽种已有五十余年,现生长良好;为当地的经济建设和产业结构调整,起来到了巨大的作用,丰富了当地的物种多样性,改善了生态环境。为了更好的经营利用好日本落叶松人工林,本研究从构建数字林业经营的理念出发,构建了数字高程模型(DEM),提取地形特征值坡度和坡向。这为我们进一步进行生境质量评价提供了原始数据源。在生境质量评价时,对主要因子的筛选采用逐步回归法,最终得出坡度、坡向、海拔、土层厚度对日本落叶松生长影响显著,选定作为生境质量评价的主要因子。生境质量的量化评价选用灰色定权聚类法,各因子的权重采用层次分析法确定,求得海拔的权重为0.0616,土层厚度的权重为0.1737,坡度的权重为0.2910,坡向的权重为0.4737,阴坡排第一位。
     土层厚度分布图通过地统计学中的普通克立格法(OK法)获得,变异函数选用了误差相对较小的指数模型,偏基台值为17.35,块金值为90.814,基台值为108.164,空间变异性质指数为83.9%,空间相关性较弱,土层厚度的变异更多的是由随机因素引起的。
     树高、胸径、材积是研究林分结构和生长量的三主要测树因子,在设置的43块临时标准地中随机的抽取了20块标准地,经分析有65%的标准地服从正态分布,100%服从Weibull分布。进一步按灰色定权聚类法对20块标准地的生境质量进行评定,然后按生境质量相似性,分径阶统计林木株数,分析发现,全部都不服从正态分布;而生境质量为好、差类型的均服从Weibull分布,中等生境质量的不服从Weibull分布。应用全部43块临时标准地,采用平均标准木的方法获取了不同龄阶的平均胸径、平均树高、平均材积值,通过分析平均树高(H)与平均直径(D)之间存在H=0.4365D1.3292关系,相关指数为0.9957,则由D-Weibull分布可以导出H-Weibull分布,写出了树高理论概率分布表。在分析其结构规律后,对林木的总生长量采用了七种方法进行研究;连年生长量的分析采用的是对人工神经网络、经验生长方程莱瓦科威克式,理论生长方程理查兹式求一阶导数而得。若以对三测树因子总生长量拟合的残差平方和最小为标准,则胸径的最佳预估法为人工神经网络,残差平方和为0.29,树高为理论方程理查兹式,残差平方和为0.4900,材积为灰色-马尔柯夫,残差平方和为0.0002。若以三测树因子残差平方和之和,从小到大的排序结果看,理论方程理查兹<经验方程莱瓦科威克式<灰色-马尔柯夫<灰色人工神经网络<人工神经网络<灰色遗传算法     该研究的主要创新点有以下3个方面。
     1应用DEM模型提取特征因子和基于地统计学的土壤厚度研究,具体量化的对日本落叶松人工林的生境质量进行评价,来对日本落叶松的林分结构规律进行研究。
     2在对三测树因子的生长量研究时,其中采用了人工神经网络法,为了得到连年生量,采取了对神经网络函数求一阶导数的方法。
     3在确定四主要因子的白化权函数时,坡度、海拔、土厚度均可找到典型的白化权表达函数,而坡向找不到。原因有二:其一、因坡向值的提取是在ArcView软件中进行,无坡向被赋值-1,其它值则在00-360°之间。其二、据已有的大量研究资料表明,日本落叶松虽是阳性树种,但不耐上方庇荫,在阴坡、半阴坡的生长比阳坡、半阳坡要好,考虑到坡向值取值的连续性和人们的习惯,找不到现有的典型白化权函数和以前相似的研究。
Larix kaempferi, as an exotic tree, was well planted more than 50 years in Changlingang Forest Farm in Jianshi county, Hubei province and played an important role in developing local economy, adjusting industrial structure, enriching biodiversity and improving ecological environment.
    For the purposes of better management and utilization of Larix kaempferi artificial forest, based on the concept of establishing digital forestry management, in this study digital elevation model (DEM) was established, degree of slope and aspect of slope of topographic eigenvalues were extracted. This provided original data source for the further evaluation of forest habitat quality. Stepwise regression was used to select main factors in the evaluation of forest habitat quality. Degree of slope, aspect of slope, elevation and soil depth had significant effects on the growth of Larix kaempferi and were used as factors of forest habitat quality evaluation by quantifying qualitative factors in the light of regulated standards. Grey fixed weight clustering was used in the quantitative evaluation of forest habitat quality and the method of analytic hierarchy process(AHP) was used in determining weights of each factor. Weights of elevation, soil depth, degree of slope and aspect of slope were eventually calculated to be 0.0616, 0.1737, 0.2910 and 0.4737 respectively, in which shady slope ranked the first.
    Values of soil depth were obtained by using the method of Ordinary Kriging (OK) in geostatistics. The exponential model with considerable small error was selected as the variogram, in which partial sill was 17.35, nugget was 90.814, sill was 108.164 and spatial variable index was 83.9%, and this meant comparable weak spatial correlations and that the variability of soil depth derived from random factors.
    Tree height, diameter at breast height and timber volume are key stand measuring factors in studying stand structure and its increment. The analysis of 20 random sample plots sampled from 43 temporary sample plots indicated that these plots in accord with normal distribution shared 65%, and all of these plots were in accord with Weibull distribution. The further evaluation of forest habitat quality in 20 sample plots by the method of grey fixed weight clustering and the statistic of individual tree number according to the similarity of habitat quality and diameter class showed that all plots didn't coincide with normal distribution, but plots with good or bad habitat quality coincided with Weibull distribution, while plots with the medium habitat quality didn't coincide with Weibull distribution. Data of average diameter at breast height, tree height and timber volume at different age class were obtained by using the method of mean tree in temporary sample plots. The correlation between average tree height(H) and diameter at breast height(D) met the formula
    H = 0.4365D~(1.3292) , and the correlation coefficient was 0.9957. H-Weibull distribution was
    induced from D-Weibull distribution and the table of theoretical probability distribution for tree height was made. Seven methods were used to analyze the total increment after the analysis of the table of theoretical probability distribution for tree height. The analysis of current annual growth was obtained by the first order derivatives of artificial neural network, empirical Levacovic equation and theoretical Richard growth equation. With the standard of the least square sum of residues fitted by total increments of three stand measuring factors, the best methods to predict diameter at breast height, tree height and timber volume were respectively artificial neural network, theoretical Richard growth equation and grey-Markov model, in which the square sum of residues were 0.29, 0.4900 and 0.0002 respectively. Compared with the summation of the square sum of residues for three stand measuring factors by the above seven methods, the order from the smallness to bigness were theoretical Richard growth equation, empirical Levacovic equation, grey-Markov model, grey artificial neural network, artificial neural network, grey genetic algorithm and Grey model(GM) (1,1) in turn. Moreover, the square sum of residues for three stand measuring factors by theoretical Richard growth equation were all smaller than 1. As a result, the best method to study on the increment of three stand measuring factors was theoretical Richard growth equation. The main innovative ideas in this study are as the following:
    1 Based on exacting characteristic factors from DEM model and the geostatistic study on soil depth, the law of stand structure of Larix kaempferi artificial forest was studied by evaluating its habitat quality quantitatively.
    2 The artificial neural network model was used in studying increments of three stand measuring factors and the first order derivatives of artificial neural network function was used to obtain the current annual growth.
    3 In determining with function of four main factors, degree of slope, elevation and soil depth could be expressed as whiten functions, but aspect of slope could not. One reason is that the value was -1 when there was no aspect of slope, but other values were 0°-360° based on exacting values of aspect of slope in Arc View software. The other reason is that Larix kaempferi was sunny tree showed in many research documents, but it can't bear above shading and grows better on shady or semi-shady slope than on sunny or semi-sunny slope. Considering the continuity of aspect of slope valuation and usual custom, the current classic whiten function and the research similar to the past was not found.
引文
1.田志和等.日本落叶松育林学[M].北京:北京农业大学出版社.1995
    2.马常耕主编.落叶松种及种源选择[M].北京:北京农业大学出版社.1992
    3.马常耕,王建华.我国发展日本落叶松区域的探讨[J].林业科技通讯,1990,(4):26-28
    4.洪信谱,凌远云,秦文.长岭岗林场日本落叶松生长规律研究[J].中南林业调查规划,1995,(2):4-8
    5.洪信谱,凌远云,张鲜艳等.大老岭林场日本落叶松直径分布规律探讨.华中农业大学学报,1994,13(5):502-506
    6.李志林,朱庆著.数字高程模型[M].武汉:武汉测绘科技大学出版社.2005,7
    7.刘学军,龚健雅,周启鸣等.基于 DEM 坡度坡向算法精度的分析研究[J].测绘学报,2004,33(3):258-259
    8.汤国安,杨勤科,张勇等.不同比例尺 DEM 提取地面坡度的精度研究[J].水土保持通报.2001,21(1):53-56
    9.高俊.地理空间数据的可视化[J].测绘工程,2000,(3):1-3
    10.冯益明,唐守正,李增元.空间统计分析在林业中的应用[J].林业科学,2004,40(3):149-155
    11.龚健雅.当代GIS的若干理论与技术[M].武汉测绘科技大学出版社,2000.
    12.荀守华,曹汉玉,吴德军.日本落叶松生长量与立地因子的相关分析[J].山东师大学报(自然科学版),1995,10(3):264-266
    13.李哈滨,王政权.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651-657
    14.惠淑荣,刘强,兰健.日本落叶松直径结构规律的研究[J].沈阳农业大学学报.1993,24(4):365-369
    15.张建国,段爱国,童书振.林分直径结构模拟与预测研究概述[J].林业科学研究,2004,17(6):787-795
    16.董文宇,邢志远,惠淑荣等.利用Weibull分布描述日本落叶松的直径结构[J].沈阳农业大学学报,2006,37(2):225-228
    17.叶功富,涂育合,田有圳等.凹叶厚朴二元立木材积方程的研究[J].北华大学学报(自然科学版).2002,6(3):528-533
    18.孟宪宇主编.测树学[M].北京:中国林业出版社.2004,12:41-244
    19.冯仲科,赵春江,聂玉藻等著.精准林业[M].北京:中国林业出版社,2004,3:70-99
    20.冯仲科,余新晓著.3S技术及其应用[M].北京:中国林业出版社,2000
    21.赵宪文.林业遥感定量估测[M].北京:中国林业出版社,1997,2
    22.唐守正著.多元统计分析方法[M].北京:中国林业出版社,1986
    23.李风日,吴俊民,鲁胜利.Richards函数与Schnute生长模型的比较[M].东北林业大学报,1993,21(4):15-24
    24.赵军.对数字化过程中数据精度的一些讨论[J].四川测绘,2000,23(1):19-20
    25.闾国年,钱亚东,陈钟明.基于栅格数字高程模型提取特征地貌技术研究[J].地理学报,1998,53(6):562-570
    26.付炜.黄土丘陵沟壑区土壤侵蚀预测模型建立方法的研究[J].水土保持学报,1992,6(3):6-13
    27.胡良军.基于GIS的区域水土流失定量评价指标研究[J].水土保持通报,1998,18(5):24-24
    28.喻庆国,曹顺伟,邓喜庆等.云南糯扎渡自然保护区植被垂直分布研究[J].林业科技开发,2006,20(4):47-50
    29.王政权著.地统计学及在生态学中的应用[M].北京:科学出版社,1999,2
    30.沈思渊.土壤空间变异研究中的地统计学的应用及展望[J].土壤研究进展,1989,(2):11-24
    31.范文义,罗传文编.”3S”理论与技术[M].哈尔滨:东北林业大学出版社,2004,7
    32.孙玉军.可持续发展林业的理论与方法[M].哈尔滨:黑龙江科学技术出版社,1996
    33.潘成忠,上官周平.黄土半干旱丘陵区陡坡地土壤水分空间变异性研究[J].农业工程学报,2003,19(6):5-10
    34.盛浩然,魏术华,蒋文越等.数字高程模型在测树中的应用[J].林业科技开发,1999(2):19-20
    35.付晓,周维.数字高程模型及其在森林资源调查中的应用[J].广西林业科学,2002(1):12-15
    36.赖长鸿,胡庭兴,赵安玖.川西亚高山道孚林区森林景观格局地形分异研究[J].四川林业科技,2006(2):63-67
    37.吴承祯,洪伟.元材积方程V=aD_b遗传算法的最优拟合研究[J].西南林学院学报,1996,(3):166-171
    38.亢新刚,黄庆丰.华北次生林结构调整研究[J].北京林业大学学.2000,22(5):41-43
    39.余建英,何旭宏,编著.数据统计分析与SPSS应用[M].北京:人民邮电出版社;2005.312-316
    40.郎璞玫.新疆阜康地区森林资源与环境的空间分析[D].北京:中国科学院博士后论文,2003.19-90
    41.陈袁袁.渗流污染物浓度空间变异性综合评价方法研究[T].北京:北京林业大学硕士学位论文.2005(6):4-64
    42.曹尧东.丘陵红壤重金属复合污染的空间变化规律—以江西铜冶炼厂污染区为例[D].南京:南京农业大学硕士学位学位论文,2004:1-7
    43.朱建军.层次分析法的若干问题研究及应用[D].东北大学博士学位论文,2005,6
    44.宋小冬,钮心毅编著.地理信息系统实习教程[M].北京:科学技术出版社,2005,5
    45.汤国安,杨昕编著.ArcGIS 地理信息系统空间分析实验教程[M].北京:科学技术出版社,2006,4
    46.陈桂明,戚红雨,潘伟编著.MATLAB数理统计(6.X)[M].北京:科学技术出版社,2002,9
    47.雷英杰,张善文,李继武等编著.MATLAB 遗传算工具箱[M].西安:西安电子科技大学出版社,2005,4
    48.汤国安,刘学军,闾国年著.数字高程模型及地学分析的原理与方法[M].北京:科学技术出版社,2005,8
    49.周启鸣,刘学军著.数字地形分析[M].北京:科学技术出版社,2006,5
    50.周开利,康耀红编著.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005,7
    51.朱长青,史文中著.空间分析建模与原理[M].北京:科学技术出版社,2006,5
    52.刘良明主编.ArcView基础教程[M].北京:测绘出版社,2004,2
    53.董长虹编著.Matlab神经网络与应用[M].北京:国防工业出版社,2005,1
    54.王家文,曹宇编著.MATLAB6.5图形图像处理[M]。北京:国防工业出版社,2005,3
    55.周国法,徐汝梅著.生物地理统计学-生物种群时空分析的方法及其应用[M].北京:科学技术出版社,1998,6
    56.王应明,傅国伟.关于层次分析法中权的最小平方法的理论证明[J].系统工程理论与实践,1995,15(1):3-8
    57.杜之韩.判断矩阵一致性检验的新途径[J].系统工程理论与实践,1998,18(6):102-104
    58.苏为华,余明江.对灰色系统综合评价方法中两个问题的认识[J].统计研究,2002,(10),49-52
    59.崔党群.生物统计学[M].北京:中国科学技术出版社,1994.
    60.蔡贤如.Logistic方程参数优化估计方法研究[J].沈阳农业大学学报,1995,26(1):64-67.
    61.洪伟.吴承挑Taylor幂法则模型的遗传算法母优拟台研究.福建林学院学报.1997.17(1):1-4
    62.雒战波,罗键.MATLAB遗传算法工具箱及其军事应用[J].福建电脑,2006,8:89-90
    63.周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,2005,3∶1-24
    64.洪伟,潘辉.用三次设计法最优拟合Taylor幂法则模型[J].福建林学院学报,1991,11(3):253-259
    65.覃林.基于实数编码遗传算法最优拟合Taylor幂法则模型的研究[J].华中农业大学学报,1999,18(2):194-196
    66.于政中.森林经理学[M].北京:中国林业出版社,1993:59-60
    67.邓聚龙.灰色系统基本方法[M].郑州:河南大学出版社,1987,5-25
    68.盖春英,裴玉龙.公路货运量灰色模型-马尔柯夫链预测方法研究[J].中国公路学报,2003,(3):113-116
    69.傅泽强,孙启宏,蔡运龙等.基于灰色系统理论的森林火灾预测模型研究[J].林业科学,2002(5):95-100
    70.孙晓梅,张守攻,李时元等.日本落叶松纸浆材优级良家系多性状联合选项择[J].林业科学,2005(4):48-54
    71.夏元友,朱瑞赓,李新平.基于神经网络的岩质边坡稳定性评估系统研究[J].自然灾害学报,1996.5(1):98-104.
    72.吴国通,高雷阜.层次分析法在选择第三方物流供应商中的应用[J].科学技术与工程,2005:237-240
    73.吕利华,王棣.用层次分析法综合评价森林植被涵养水源功能[J].山西林业科技,1995(4):17-21
    74.魏邦龙.层次分析法(AHP)程序的设计[J].计算机农业应用,1994(3):18-21
    75.张景异,曹秀吉,刘红.新办专业的建设与管理[J].辽宁教育研究,2004(4):34-35
    76.罗云启,曾琨,罗毅编著.数字化地理信息系统建设与Mapinfo高级应用[M].北京:清华大学出版社,2005,3164-179
    77.贾乃光主编.数理统计[M].北京:中国林业出版社,1991,9
    78.宋中民,方小娟.可调式灰色GM(1,1)模型[J].烟台大学学报.2000(4):82-85:
    79.吴强.GM(1,1)预测模型的修正[J].黑龙江商学院学报,1995(3):61-64:
    80.谭冠军.GM(1,1)模型的背景值构造方法和应用(Ⅰ)[J].系统工程理论与实践,2000(4):98-103:
    81.邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999:140-181;
    82.周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:4-64:
    83.张辉,胡适耕.GM(1,1)模型的边值分析[J].华中科技大学学报.2001(4):110-111;
    84.刘思峰,郭天榜,党耀国.灰色系统理论及其应用[M].北京:科学出版社,1999.102-155;
    85.易德生,郭萍.灰色系统理论与方法:提要,题解,程序,应用[M].北京:石油工业出版社,1992.128-162.
    86.鲁如坤、史陶钧.土壤磷素在利用过程中的消耗和积累[J].土壤通报,1980,(4):6~8,
    87.孙波,赵其国,闾国年.低丘红壤肥力的时空变异[J].土壤学报,2002,39(2):1
    88.白由路.黄淮海平原水盐运动的空间格局与盐渍化演替机制[D].中国农业大学博士学位论文,1999
    89.胡克林,李保国,林启美等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,15(3):33-38
    90.史海滨,陈亚新.土壤水分空间变异的套合结构模型及区域信估值[J].水利学报,1994,(7):70-77
    91.黄绍文,金继运,杨俐苹等.县级区域粮田土壤养分空间变异与分区管理技术研究[J].土壤学报,2003,40(1):80-88
    92.郭旭东,傅伯杰,陈利顶等.河北省遵化平原土壤养分的时空变异特征[J].地理学报,2000,55(5):556-566
    93.陈浮,濮励杰,曹慧等.近20年太湖流域典型区土壤养分时空变化及驱动机理[J].土壤学报,2002,237-245
    94.张有山,林启美,秦耀东等.大比例尺区域土壤养分空间变异定量分析[J].华北农学报,1998.13(1):122-128
    95.傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246
    96.邬伦,任伏虎.昆青等.地理信息系统教程[M].北京:北京大学出版社,1994
    97.邵玉平.高斯牛顿迭代法在地震计传递函数计算中的应用[J].四川地震,2006,(3):29-33
    98.姚磊华.用改进的遗传算法和高斯牛顿法联合反演三维地下水流模型参数[J].计算物理,2005,22(4):311-318
    99.罗玉峰,崔远来,朱秀珍.高斯-牛顿法及其在作物水分生产函数模型参数求解的应用[J].节水灌溉,2004,(1):1-3
    100.郎奎健,刘宪国,赵梦仁。用计算机绘制森林立体专业图的初步研究[J].东北林业大学学报,1992,20(2):35-42
    101.罗传文.帽儿山虚拟林相的构建[J].东北林业大学学报,2002,30(5):40-43
    102.赵春江,薛绪掌,王秀等.精准农业技术体系的研究进展与展望[J].农业工程学报,2003,19(4):7-12
    103.冯仲科,张晓勤.发展我国的数字林业体系[J].北京林业大学学报,2000,22(5):102-103
    104.常成虎,巨天珍,王勤花等.甘肃小陇山日本落叶松人工林土壤养分特征分析[J],福建林业科技,2005,32(3):55-58
    105.王贺新,朱教君,陈英敏等.辽宁东部山区高龄日本落叶松林的生长分析[J].林业科学研究,2005,18(5):524~529
    106.沈作奎,鲁胜平.日本落叶松人工林抚育间伐起始期的研究[J].湖北民族学院学报(自然科学版),2003,21(4):44-47
    107.杨晓云,顾利亚,岑敏仪.数字高程模型的误差处理与精度评估[J].铁道勘 察,2004,5:20-24
    108.胡鹏,吴艳兰,胡海.数字高程模型精度评定的基本理论[J].地球信息科学,2003,(3):64-70
    109.王光霞,朱长青,史文中等.数字高程模型地形描述精度的研究[J].测绘学报,2004,33(2):168-173
    110.王战.中国落叶松林[M].北京:中国林业出版社,1992.
    111.李亮亮,依艳丽,凌国鑫等.地统计学在土壤空间变异研究中的应用[J].土壤通报,2005,36(2):265-268
    112.王学军,邓宝山等.北京污灌区表层土壤微量元素的小尺度空间结构特征[J].环境科学学报,1997,17(4):412-416.
    113.史海滨,陈亚新等.表层土壤盐分空间变异性及合理采样数目与信息估计[J].内蒙古农牧学院学报,1996,17(4):74-81.
    114.徐吉炎,Webster R.土壤调查数据地域统计的最佳估值研究—彰武县表层土壤含N量的半方差图和块状kring估值[J].土壤学报,1983.20(4):419-430.
    115.胡克林等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,12(3):23—29.
    116.牛志广,张宏伟.地统计学和GIS用于计算近海水环境容量的研究[J].天津工业大学学报,2006,25(1):74-78
    117.赵军,张久明,孟凯等.地统计学及GIS在黑土区域土壤养分空间异质性分析中的应用-以海伦市为例[J].水土保持通报,2004,24(6):53-58
    118.苏博,刘鲁,杨方廷.GM(1,N)灰色系统与BP神经网络方法的粮食产量预测比较研究[J].中国农业大学学报,2006,11(4):99—104
    119.候景儒,郭光裕.矿床统计预测及地质统计学的理论与应用,北京:冶金工业出版社,1993
    120.雷志栋,诗秀,许志荣等.土壤特性空间变异性初步研究.水利学报,1989,26(4):309-315.
    121.候景儒,镇南等.实用地质统计学.北京:地质出版社,1997,31-72.
    122.侯景儒,张树泉,潘汉军等.协同区域化和协同Kriging法.北京科技大学学报,1991,13(20)
    123.韩晨,卫海燕.基于R2V、ArcView的地形图屏幕矢量化和三维显示的方法.山西师范大学学报(自然科学版),2006,20(1):92-95
    124.范艳芳.王霓虹.周洪泽.基于专题图的GIS空间数据获取方法的研究.林业勘查设计,2004,(4):72-74
    125.孙英君,劲峰,延臣.地统计学方法进展研究[J].地球科学进展,2004,19(2):268-274
    126.李瑞霞.基于ArcGIS地质统计学模块的煤厚空间变异特征分析[J].能源技术与管理,2006,(1):97-98
    127.牛志广,张宏伟.地统计学和GIS用于计算近海水环境容量的研究[J].天津工业大学学报,2006,25(1):74-80
    128.王茯泉.地统计分析在ArcGIS和IDRISI中实现特点的讨论[J].计算机工程与应用,2005,(15):210-215
    129.Matlab软件在超临界流体萃取实验数据分析中应用[J].中成药,2004,26(8):678-680
    130.路鹏,彭佩钦,宋变兰等.洞庭湖平原区土壤全磷含量地统计学和GIS分析[J].中国农业科学,2005,386(6):1204-1212
    131.苏伟,聂宜民,胡晓洁等.利用Kriging插值方法研究山东龙口北马镇农田土壤养分的空间变 异[J].安徽农业大学学报,2004,31(1):76-81
    132.许小勇.基于实数编码的遗传算法拟合驰豫曲线[J].新余高专学报,2006,11(6):102-104
    133.佘光辉,刘恩斌,叶金盛等.非线性立木材积模型参数辨识的改进算法及其应用[J].南京林业大学学报(自然科学版),2004,28(3):1-4
    134.国家林业局.国家森林资源连续清查技术规定[M].北京:国家林业局(内部),2004:32-33
    135.骆期邦,曾伟生,贺东北编著.林业数表模型理论、方法与实践[M].长沙.湖南科学技术出版社社,2001,254-260
    136.曹汉玉.日本落叶松立地质量数量化评定表的编制及应用.山东林业科技[J],森林经理专集,1991,29-32
    137.惠淑荣,于洪飞.日本落叶松林分生长量Richards生长方程的建立与应用[J].生物数学学报,2003,18(2):204—206.
    138.艾训儒,沈作奎.中亚热带日本落叶松生物量、生长量研究[J].湖北民族学学报(自然科学版),2001,19(2):20-22
    139.马鸿,韩国涛,惠淑荣.日本落叶松林分生长数学模型的建立[J].沈阳大学学报(自然科学版),1998,(4):102-104
    140.孙翠玲,郭玉文,郭泉水.日本落叶松人工林重茬林地土壤养分含量变化及其对林木生长的影响[J].林业科研究,1997,10(3):321-324
    141.张宋智,张会军,蒋明等.小陇山林区日本落叶松速生丰产林立地类型划分及评价的研究[J].甘肃林业科技,1999,24(2):1-6
    142.向志民,何敏.灰色多层次综合评判方法及其在林业系统中的应用[J].林业科技,1998,23(4):13-17
    143.李翔,潘瑜,马景宇等.基于多种土壤养分的精准管理分区方法法研究[J].土壤学报,2007,24(1):14-20
    144.刘付程,史学正,于东升等.基于地统计学和GIS的太湖典型地区的土壤属性制图研究-以土壤全氮制图为例.土壤学报,2004,41(1):20-27
    145.方精云,菅诚.利用Weibull分布函数预测林木的直径分布[J].北京林业大学学报,1987,9(3):261-269
    146.孟宪宇.使用Weibull函数对树高分布和直径分布的研究[J].北京林业大学学报,1988,10(1):40-48
    147.刘珊红,于海龙,赵吉先.地图数字化误差分析及探讨[J].东北测绘,2001,24(3):16-18
    148. Webster R. Quantitative spatial analysis of soil in the field[J]. Advance Soil Sci, 1985, 3: 1-70
    149. Cabn M D, Hummel J W, and Brouer Bh. Spatial analysis of soil fertility for site specific crop management[J]. Soil Sci. Soc. Am, 1994. 58: 1240-1458.
    150. Burrough PA. Multiscale sources of spatial variability in soil variation[J]. Soil Sci, 1983, 34: 577-579
    151. Verhoef R L, Powe W L, Shea P J. Marx D B, and Wieman G A. Horizontal soil sampling to asess the vertical movement of agrochemicals[J]. Journal Soil and Water Conservation. 1997. 52(2): 126-131.
    152. Boland, et. al. spatial variation of soil test Phosphor and potassium, oxalate-extractable iron an d aluminum, Phosphorus-retention index an d organic carbon content in soils of western Australia[J]. Communications Soil Science and plant Analysis, 1998. 29(3/4)381-392.
    153. Brain A Necdelman. environmental management of soil phosphorus[J]. Soil Sci. SOe. Am., 2001, 65: 1516-1522.
    154.Burgess TM , Webster R. Optimal interpolation and is arithmic mapping of soil properties I : the semivariogram and punctual kriging[J]. Soil Sci, 1980 ,31 :315-331
    155.ChienYJ, et al. Geo-statistics analysis of soil properties of mid-west Taiwan soils[J]. SOU Sci., 1997, 162: 291-298.
    
    156. Matheron G. Principles of geo-statistics[J]. Economic Geology. 1963, 58: 1246-1266.
    
    157. MillerM P. SingerPM J. NielsenDR. Spatial variability of wheat yield and soil properties on complex hills[J]. SOil Sci. Am. J., 1988, 52: 668-674.
    
    158.Webster R. Quantitative spatial analysis of soil in the field[J]. Advance in Soil Sciences, 1985, 3: 1-70.
    
    159.SaatyTL. 1980. The Analytic Hierarchy Process[M]. New York, Mcgraw-Hill Inc, 3-7
    160.Tan BingJiang, Dinghua, Xu Sugin. The DEM interpolation based on Delauna triangulated networks[J], Journal of Institute of Surveying and Mapping.2001 (18):26-28
    161.Fisher E, Thornton B, Hudson G, Ed wards AC. The variability in total and extractable soil phosphorus under a grazed pasture [J]. Plant and Soil, 1998, 203: 249 -255
    162.Townshend J R G, Justice C O , Kalb V. Characterization and classification of South American land cover types using satellite data[J ]. International Journal of Remote Sensing , 1987 ,7 :1395-1416
    163 Kurkova V. Kolmogorov S theorem and muhiplayer neural networks[J ]. Neural Networks, 1992, 5: 50 1-506.
    164.KononovaMM. 1964.Soil organic matter, its nature, its role in soil formation and infertility [J]. 2nded. London: PergamonPress.5-20
    165.Russo DA. Geostatistical approach to solute transport in heterogeneous fields and its applications to salinity management. Water Resources [J]. 1984, 20 (9) : 1260 -1270
    166.Tsegaye T, Robert LH. Intensive tillage effects on spatial variability of soil test, plant growth, and nutrient uptake measurements [J]. Soil Science, 1998,163 (2) : 155- 165
    167.MONCKTON C . An Structure of Error Investigation into the Spatial Digital Elevation Data[M]. London: Taylor and Francis, 1994.
    168.TANG Guo-an, GONG Jian. ya, et al. A Simulation on the Accuracy of DE M Terrain Representation [J]. Acta Geodaetica et Cartographica Sinica, 200 1. 30(4): 361-365
    169.Liang Wenju, Li Qi, Jiang Yong, Chen Wenbo, Wen Dazhong. Effect of cultivation on spatial distribution of nematode trophic groups in black soil [J]. Pedosphere, 2003, 13 (2) : 97 -102
    170.KIDNER D B. High-order Interpolation of Regular Grid Digital Elevation models [J]. International Journal of Remote Sensing, 2003, 21(14): 2 981-2 987.
    171 Meirvenne M, Van Hofman G. Spatial variability of soil nitrate nitrogen after potatoes and its change during winter [J]. Plant and Soil, 1989,120: 103 -110
    172.Dirk Mallants Binayakp. Spmlal Variability of Hydraulicprnprtiesinamulti-layered soil profile [J]. Soil Science, 1996, 161(3): 167-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700