用户名: 密码: 验证码:
单桩横向非线性动力响应简化分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震运动过程中,地基土-桩基础的横向动力相互作用,分别称为
    桩基础的横向惯性响应和运动地震响应。关于桩基础横向动力响应的简
    化分析方法,大多数采用基于线粘弹性假设的动力Winkler地基梁模型
    (动力p-y曲线法)。不过,线性分析仅局限于小位移梯度,而在强烈的
    地震运动过程中,由于应力集中,桩周土将产生较大的非线性应力场和
    位移场,导致土-桩界面分离,桩基础的动力响应,也将呈现强烈的非
    线性。因此,在线弹性动力学理论框架下建立的简化分析方法,不能满
    意地描述桩基础的动力学响应。本文主要研究单桩横向非线性动力响应
    问题。首先,利用有限元分析软件ANSYS,构造了一个能够反映非线性
    因素影响的三维有限元模型,利用该模型,较为全面地研究了不同荷载
    作用下的单桩横向非线性动力响应,详细讨论了各种几何、物理参数和
    非线性因素对单桩横向非线性动力响应的影响。其次,根据数值模拟分
    析结果和地震运动过程中地基土-桩基础-上部结构系统动力相互作用
    的基本特征,采用描述迟滞非线性系统本构关系的Bouc-Wen模型,在
    Winkler-Kelvin地基模型的基础上,建立了一个新的、能够考虑各种非线
    性因素影响的、研究单桩横向非线性动力响应的简化分析模型。该模型
    采用非线性Winkler-Kelvin地基模型,将复杂的地基土-单桩动力相互
    作用的三维问题,简化为一维问题,即,地基土对桩轴的横向非线性作
    用力, 由随深度均匀分布的水平非线性弹簧模拟,非线性弹簧恢复力由
    退化的Bouc-Wen模型描述;地基土中由于能量耗散和内部摩擦而产生的
    幅射阻尼和材料阻尼,由与水平非线性弹簧并联的粘壶表示。该模型能
    够反映动力荷载作用下,桩周土的屈服、滞后性、变形积累、强度和刚
    度退化等材料非线性,以及土-桩界面分离等状态非线性,对单桩横向
    动力响应的影响,可以较好地描述桩周土由弹性变形到塑性变形的整个
    非线性变形过程。该模型适用于不同的地质条件,计算参数都为土力学
    参数,可以利用现行的设计规范、通过拟合准静态单调加载或循环加载
    现场试验数据曲线,加以确定和校准。最后,利用该简化分析模型、相
    关的计算方法、以及运动响应因子的概念,分别研究了单桩横向非线性
    惯性响应和非线性运动地震响应问题,并进一步讨论了各种系统参数和
    非线性因素的影响。计算结果表明,本文建立的简化分析模型,能够有
    
    单桩横向非线性动力响应简化分析方法研究
    效地模拟单桩横向非线性动力响应问题。
    关键词:工程结构;单桩横向非线性动力响应;有限元;B。uc一Wen模型;
    简化分析;惯性响应;运动响应
The lateral dynamic responses of pile-foundation in the earthquake are generally divided into lateral inertial response and kinematic seismic response. Most of the simplified analysis methods for dynamic responses of pile-foundation adopt the dynamic Winkler foundation models (the dynamic p~y curves methods) based on the linear visco-elastic hypothesis. However, the linear analysis is only within the limits of the small displacement gradient, whereas nonlinear stress- and displacement-field in the vicinity of the pile will be generated due to stress concentration and the interface of the soil-pile leaded to separation and the dynamic response of pile-foundation also presented intense non-linearity in the strong seismic motion. Therefore, the simplified analysis methods based on the linear visco-elastic dynamic theories cannot satisfactorily describe the nonlinear dynamic responses of pile-foundation. Responses of the lateral nonlinear dynamics of single piles are studied in this dissertation. First, a 3-D finite element model, which can reflects a lot of influences of the non-linear factors, is constructed using a large finite element analysis software ANSYS. With this model, this dissertation gives a relatively complete analysis the lateral nonlinear dynamic responses of the single piles and has a comparative detailed discussion about the influences resulted from the geometrical and physical parameters and the nonlinear factors over the lateral nonlinear dynamic responses of single piles. Second, Based on the predicted results of the 3-D finite element numerical simulation and the principal characteristics of the dynamic interactions of the soil-pile foundation-superstructure system, using the basic theory of the random vibration for the hysteretic nonlinear systems, e.g. Bouc-Wen model, a newer simplified model which can be truthfully reflect the main characteristics of the lateral nonlinear dynamic responses of the single piles is established. The nonlinear Winkler-Kelvin sub-grade model is adopted in this simplified model and the complicated 3-D problems of the soil-single piles dynamic interaction are simplified to the 1-D, that is to say, the lateral nonlinear acting force of the soil to the pile shift is simulated with the
    
    horizontal nonlinear springs which have the continuous uniform distribution, while the nonlinear spring restoring force is described by the deteriorated Bouc-Wen model; the radiation damping and material damping due to the energy dissipation and inner friction in the soil are displayed with the dashpots which are in parallel with the horizontal nonlinear springs. The influences of the material non-linearity, such as, the yielding, the hysteretic effects, the mechanical property deterioration of the soil surrounding the piles, and state non-linearity, such as no continuous conditions of the soil-pile interface, etc, on the behaviors of the lateral dynamics of the single piles are taken into consideration in this model. The whole process of the nonlinear deformation from elastic to plastic of the soil surrounding the pile can also be described with this simplified model. The simplified model is applicable in various geological conditions. Only two model parameters have to be calibrated by fitting experimental data and using current design codes. Finally, with the developed methods, calibrated model and the concepts of the kinematic response factors, the lateral nonlinear inertial responses and kinematic seismic responses of the single piles are studied respectively. It is also studied that the influences of various kinds of the systematic parameters and nonlinear factors over the lateral dynamic responses of the single piles. The predicted results show that the simplified model developed in this dissertation can simulate the lateral nonlinear dynamic responses of single piles effectively.
引文
[1] 陈国兴.土体-结构体系地震性能研究.哈尔滨建筑工程学院学报, 1994, 27 (5)
    [2] 汪梦甫,沈蒲生.钢筋混凝土高层结构非线性地震反应分析现状.世 界地震工程,1998,14(2)
    [3] Reissner,E.S. Axialsymmetrische durch eine schuttelnde masse erregte schwingungen eines homogenen elastischen halbraumes. Ingenieur-Archiv, 1936, 7(6)
    [4] Sung,T.Y. Vibration in semi-infinite solids due to periodic surface loading. ASTM-STP, No. 156, Symposium on Dynamic Testing of Solids, 1953
    [5] Bycroft,G.N. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum. Phil Trans, Royal Society, London, Ser A, 1956
    [6] Richart,F.E., Whitman,R.V. Comparison of footing vibration test with theory. J SM, ASCE, 1967, 93(6)
    [7] 严人觉,王贻荪,韩清宇.动力基础半空间理论.北京:中国建筑工 业出版社,1981
    [8] Lysmer,J., Kuhlemeyer,R.L. Finite dynamic model for infinite media. Proc. ASCE, 1969, 95(4)
    [9] Smith,W. A non-reflecting plane boundary for wave propagation problems. Journal Comp Phys, 1973, Vol.15
    [10] Liao,Z.P., Wong,H.L. A Transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn. And Earth Eng., 1984, 3
    [11] Lysmer.J., Richart,F.E. Dynamic response of footings to vertical loading. J EM, ASCE, 1966, 95(4)
    [12] Wolf,J.P., Somaini,D.R. Approximate dynamic model of embedded foundation in time domain. Earthquake Engineering and Structural Dynamics, 1986, 14
    [13] De Barros,F.C.P., Luco,J.E. Discrete models for vertical vibrations of surface and embedded foundation. Earthquake Engineering and Structural Dynamics, 1990, 19
    
    [14] Jean,W.Y., Ling,T.W., Penzien,J. System parameter of soil foundation for time domain dynamic analysis. Earthquake Engineering and Structural Dynamics, 1990, 19
    [15] 栾茂田,林皋.地基动力阻抗的双自由度集总参数模型.大连理工大 学学报,1996,36(4)
    [16] 梁青槐.土-结构动力相互作用数值分析方法的评述.北方交通大 学学报,1997,21(6)
    [17] 门玉明,黄义.土-结构动力相互作用问题的研究现状及展望.力学 与实践,2000,22(4)
    [18] Whitman,R.V. Analysis of soil-structure interaction: State-of-the-art review. Experi. and Structural Dynamics, Institute of Sound and Vibration, Southampton, 1972
    [19] Kausel,E., Roesset,J.M. Soil-structure interaction for nuclear containment structure. Proc. ASCE, Power Division Specialty Conference, Boulder, Colorado, 1974
    [20] Kuhlemeyer,R.L. Static and dynamic laterally loaded floating piles. Journal of Geotech. Engineering, Proc. ASCE, Vol.105, GT2, 1979, 289-304
    [21] Blaney,G.W., Kausel,E., Roesset,J.M. Dynamic stiffness of piles. Proc. 2nd Int. Conf. on Numerical Methods in Geomechanics, ASCE, Vol.2, 1976, 1001-1012
    [22] Blaney,G.W., O'Neill,M.W. Analysis of dynamic laterally loaded pile in clay. Journal of Geotech. Engineering, Proc. ASCE, 1986,Vol.112, No.9, 827-840
    [23] Matlock,H. Correlations for design of laterally loaded piles. ASCE, Journal of Soil Mechanics and Foundations, Div., SM5, 1970, 63-91
    [24] Reese,L.C., Cox,W.R., Koop,F.D. Analysis of laterally loaded piles in sand. Proc. 6th Offshore Technology Conference, Houston, Texas, 1974 Paper 2080, 473-483
    [25] PenzienJ. Soil-pile foundation interaction. Earthquake Engineering, Ch.14, Prentice-Hall, 1970, 349-381
    [26] Novak,M., Nogami,T., Aboul-Ella,F., Dynamic soil reactions for plane strain case. Journal of the Engineering Mechanics Division, ASCE, Vol.104, No.EM4, Proc. Paper 13914, 1978, 953-959
    
    [27] 李耀庄,邓子胜.单桩和群桩动力阻抗研究进展.广东五邑大学学报 (自然科学版),2000,2,
    [28] Novak,M., EI Sharmouby,B. Stiffness constants of single piles. Journal of Geotechnical Engineering, ASCE, 1983, 109(7) ,
    [29] 王贻荪.埋置基础及桩强迫振动的 Baranov-Novak 法.湖南大学地 基基础教研室,1983
    [30] Veletsos,A.S., Dotson,K.W. Impedances of soil layer with disturbed boundary zone. Journal of Geotechnical Engineering, ASCE, 1986, 112(3)
    [31] Han,Y.C., Sabin,G.C.W. Impedances for radially inhomogeneous viscoelastic soil media. Journal of Engineering Mechanics, ASCE, 1995, 121(9)
    [32] Nogami,T., Konagai,K. Time domain axial response of dynamically loaded single piles. Journal of Engineering Mechanics, ASCE, 1986, 112(11)
    [33] Gazetas,G., Dobry,R. Horizontal response of piles in layered soils. Journal of Geotechnical Engineering, ASCE, 1984, 110(1)
    [34] Bentiey,K.J., El Naggar,M.H. Numerical analysis of kinematic response of single pile. Journal of Canada Geotechnical, 2000,Vol.37, 1368-1382
    [35] 韩英才,李贵宝,首培休.单桩的振动试验研究.岩土工程学报, 1989, 11(3)
    [36] Kaynia,A.M., Kausel,E. Dynamic stiffness and seismic response of pile groups. Research Report R82-03, Massachusetts Institute of Technology, 1982
    [37] Dobry,R., Gazetas,G. Simple method for dynamic stiffness and damping of floating pile groups. Geotechnique, 1988, 4
    [38] Gazetas,G., Makris,N. Dynamic pile-soil-pile interaction, Part Ⅰ: Analysis of axial vibration. Earthquake Engineering and structural dynamics, 1991, 20
    [39] Makris,N., Gazetas,G. Dynamic pile-soil-pile interaction. Part Ⅱ: Lateral and seismic response. Earthquake Engineering & Structural Dynamics, 1992, Vol.21, 145-162
    [40] Gazetas,G., Fan,K., Kaynia,A. Dynamic response of pile groups with different configurations. Soil Dynamics and Earthquake Engineering, 1993, 12
    [4
    
    [41] El Naggar,M.H., Novak,M. Nonlinear lateral interaction in pile dynamics. Soil Dynamics and Earthquake Engineering, 1995,Vol.14, No.2, 141-157
    [42] El Naggar,M.H., Novak,M. Nonlinear model for dynamic axial pile response. Journal of Geotechnical Engineering, ASCE, 1994,Vol. 120, No.2, 308-329
    [43] Han,Y.C., Vaziri,H. Dynamic response of pile groups under lateral loading. Soil Dynamics and Earthquake Engineering, 1992, 11
    [44] Wu,G.X., Finn,W.D.L. Dynamic elastic analysis of pile foundations using finite element method in the frequency domain. Journal of Canada Geotechnical, 1997, Vol.34, 30-43
    [45] Wu,G.X., Finn,W.D.L. Dynamic elastic analysis of pile foundations using finite element method in the time domain. Journal of Canada Geotechnical, 1997, Vol.34, 44-52
    [46] 王有为,王开顺.地震作用下群桩水平刚度的计算方法及其程序设 计.土木工程学报,1984,17(1)
    [47] 卞舜道,郑大同.桩基础在水平-摇摆耦合振动作用下的动力计算 (桩-土-基础相互作用理论).建筑结构学报,1988,5
    [48] 王有为,王开顺.建筑物-桩-土相互作用地震反应分析的研究.建 筑结构学报,198 5,6(5)
    [49] 谢明雨,孙焕纯.桩基础的高层建筑弹塑性地震反应分析.大连工学 院学报,1983,22(2)
    [50] Arnold,P.,Bea,R.G.,Idriss,J.M.强震作用下土-桩-结构系统的研 究.国外地震工程,1984,1
    [51] 范敏,解明雨,邬瑞锋.土-桩-结构相互作用体系的非线性地震 反应分析.地震工程与工程振动,1985,5(3)
    [52] 俞载道,傅公康.桩-土-高层框剪结构动力相互作用分析.同济大 学学报,1984,12(1)
    [53] 陈清军,徐植信.层状土介质中群桩及其上部结构体系对任意入射 地震波的响应.地震工程与工程振动,1994,14(1)
    [54] Kagawa,T., Jr.Kraft,L.M. Seismic p-y response of flexible piles. Journal of Geotechnical Engineering, ASCE, 1980, 106(8)
    [55] Kagawa,T., Jr.Kraft,L.M. Lateral pile response during earthquakes. Journal of Geotechnical Engineering, ASCE, 1981, 107(12)
    
    [56] 蒯行成.地基-基础-上部结构动力相互作用分析:[湖南大学博士 论文].长沙:湖南大学土木工程学院,1998
    [57] 严士超,杜一平.电视塔-桩-土相互作用地震反应分析.土木工程 学报,1991,24(3)
    [58] 袁万城,胡勃,范立础.柱式桥墩横向抗震性能及评价.同济大学学 报,1996,24(6)
    [59] 房营光,孙均.平台-群桩-水流-土体系统地震反应.土木工程学 报,1998,31(5)
    [60] Novak,M., Mitwally,H. Transmitting boundary for axisymmetrical dilation problem. Journal of Engineering Mechanics, ASCE, 1988, Vol.114, No.1, 181-187
    [61] API. American Petroleum Institute, Recommended practice for planning, designing and constructing fixed offshore platforms. API. Recommended Practice 2A(RP 2A). 19th ed., American Petroleum Institute, Washington,D.C. 1991, 47-55
    [62] Kramer,S.L. Geotechnical earthquake engineering. Prentice-Hall Inc., Englewood Cliffs, N. J., 1992
    [63] El-Sharnoouby,B., Novak,A. Static and low frequency response of pile groups. Journal of Canadian Geotechnical, 1985,Vol.22, 79-84
    [64] Poulos,H.G., Davis,E.H. Pile foundation analysis and design. John Wiley & Sons, New York,1980
    [65] Trochanis,A.M., Bielak,J., Christiano,P. A three-dimensional nonlinear study of piles leading to the development of a simplified model. Technical Report of Sponsored by the National Science Foundation, Grant ECE-86/1060, Carnegie Mellon University, Washington, D.C.
    [66] Caughey,T.K., Derivation and application of Fokker-Planck equation to discrete dynamic systems subjected to white random excitation[J]. Journal of Acoust Soc. Am., 1963, 35, 1683-1692
    [67] Caughey,T.K., Equivalent linearization techniques[J]. Journal of Acoust Soc. Am., 1963, 35, 1706-1711
    [68] Caughey,T.K., Nonlinear theory of random vibrations[J]. Advances in Applied Mechanics, 1971,11
    [69] Masing,G., Eigenspannungen und verfestigung beim messing[D]. Proc. Second Internatl. Congr. App. Mechs., Zurich
    [70] Ramberg,W. and Osgood,W.T., Description of stress-strain curves by three parameters[D]. Technical Note 902, NACA, 1943
    [7
    
    [71] Wen,Y.K., Approximate method for nonlinear random vibration[J]. Journal of Engineering Mechanics, Div. Am. Soc. Civ. Engrs 101, EM4, 1975, 389-401
    [72] Wen,Y.K., Method for random vibration of hysteretic system[J]. Journal of Engineering Mechanics, Div. Am. Soc. Civ. Engrs 102, EM2, 1976, 249-263
    [73] Baber,T.T. and Wen,Y.K., Random vibration of hysteretic, degrading system[J]. Journal of Engineering Mechanics, ASCE, Vol.107, No.EM6, 1069-1087
    [74] Makris,N. Soil-pile interaction during the passage of Rayleigh waves: An analytical solution. Earthquake Engineering & Structural Dynamics, 1994, Vol.23, No.2, Feb., 153-167
    [75] Mc.Clelland,B., Focht,J.A.Jr. Soil modulus for laterally loaded piles. Transactions, ASCE, 1958, Vol.123, No.2954, 1049-1086
    [76] Matlock,H.S., Reese,L.C. Generalized solutions for laterally loaded piles. Journal of Geotech Engineering, Div., ASCE, 1960, 86(5) , 63-91
    [77] Matlock,H.S. Correlations for design of laterally loaded piles in soft clay. Proc. Annual Offshore Technology Conference, Houston, 1970 Paper No.OTC1204, I-577-594
    [78] Kaynia,A.M., Novak,M. Response of pile foundations to Rayleigh waves and to obliquely incident body waves. Earthquake Engineering & Structural Dynamics, 1992, Vol.21, 303-318
    [79] Cheng,F-P., Roesset,J.M., Tassoulas,J.L. Dynamic response of circular foundations in an elastoplastic medium. Geotechnical. Engineering Report, GR 86-3. Department of Civil Engineering, University Texas Austin, Austin, TX, 1986
    [80] 刘忠,沈蒲生,陈铖.单桩横向非线性动力响应的简化分析模型.工 程力学(已采纳) (Liu Zhong, Shen Pu-sheng, Chen Cheng. Simplified model for nonlinear response analysis of single pile under dynamic lateral loads[J]. Journal of Engineering Mechanics (accepted), (in Chinese))
    [81] 吴世明.土动力学,北京:中国建筑工业出版社,2000年12月
    [82] Bouc,R. Modele mathematique d'hysteresis. Acustica, 1971, 21, 16-25(in French)
    
    [83] Randolph,M.F., Houlsby.G.T. The limiting pressure on a circular pile loaded laterally in cohesive soil. Geotechnique, 1984, 34, 613-62
    [84] Broms,B.B. Lateral resistance of piles in cohesive soils. Journal of the Soil Mechanics and Foundations, Div., ASCE, 1964, 90, SM2, 27-63
    [85] Broms,B.B. Lateral resistance of piles in cohesionless soils. Journal of the Soil Mechanics and Foundations, Div., ASCE, 1964, 90, SM3, 123-156
    [86] Dobry,R., Vinecte,E., O'Rourke,M.J., Roesset,J.M. Horizontal stiffness and damping of single piles. Journal of the Geotechnical Engineering Division, ASCE, 1982, Mar. Vol.108, No.GT3, 439-459
    [87] Reese,L.C, Cox,W.R., Koop,F.D. Field testing and analysis of laterally loaded piles in stiff clay. Proceedings, 7th Offshore Technology Conference, Houston, TX, 1975, 671-690
    [88] Reese,L.C., Weich,R.C. Lateral loading of deep foundations in stiff clay. Journal of the Geotechnical Engineering Division, ASCE, 1975, Vol.101, No.GT7, 633-649
    [89] Brown,D.A., Morrison,C, Reese,L.C. Lateral load behavior of pile group in sand. Journal of the Geotechnical Engineering, ASCE, 1988, Vol.144, No. 11, 1261-1276
    [90] Kramer,S.L., Satari,R., Kilian,A.P. Evaluation of in situ strength of a peat deposit from laterally loaded pile test results. Transportation Research Record, No 1278, Transp. res. board, Washington, D. C. 1992, 103-109
    [91] Crouse,C.B., Kramer,S.L., Michell,R., Hushmand,B. Dynamic test of pipe in saturated peat. Journal of Geotechnical Engineering, ASCE, 1993, 119, 1550-1583
    [92] Ting,J.M. Full scale cyclic dynamic lateral pile response. Journal of Geotechnical Engineering, ASCE, 1987, 113(1), 30-45
    [93] Gazetas, G., Mylonakis, G. Seismic soil-structure interaction: New evidence and emerging issues. Geotechnical Earthquake. Engineering and Soil Dynamics III, ASCE, eds. P. Dakoulas, M. K. Yegian, and R. D. Holtz, Vol. II, 1998, 1119-1174
    [94] Fan Ke, Gazetas,G., Kaynia,A.M., Kausel,E., Ahmad,S. Kinematic seismic response of single piles and pile groups. Journal of Geotechnical Engineering, 1991, Vol.117, No.12, Dec, 1860-1879
    
    [95] Kaynia,A.M., Kausel, E. Dynamics of piles and pile groups in layered soil media. Soil Dynamics and Earthquake Engineering, 1991, Vol.10, No.8, Nov. 386-401
    [96] Roesset J.M. Soil amplification of earthquakes. Numerical Methods in Geotechnical Engineering ( Eds. Desai, C.S. and Christian, J.T. ), McGraw-Hill, New York, 1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700