用户名: 密码: 验证码:
基于煤气化的IGCC-甲醇多联产系统的模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用Aspen Plus软件模拟子IGCC-甲醇多联产系统,并对该系统进行子节能分析。对气化炉建立了一维修正模型,分析了煤种、颗粒粒径、颗粒停留时间分布对气化炉出口的组成、温度和碳转化率的影响。
     考察的IGCC-甲醇多联产系统配置方案中气化工艺分别采用废锅流程和激冷流程,IGCC和甲醇合成组合方式分别采用串联和并联。以相对节能率作为指标,对多联产系统进行了能耗分析。结果表明:废锅流程节能效果优于激冷流程。废锅并联组合通往甲醇侧的合成气比例增大时,相对节能率增大;废锅串联组合甲醇合成圈循环比增加时,相对节能率增大。本文采用分摊算法分别计算了废锅并联多联产系统发电和甲醇合成的煤耗。结果显示,随着通往甲醇合成侧的合成气量的增加,供电煤耗显著减少,甲醇合成煤耗略有减少。
     本文在考虑颗粒停留时间分布和反应动力学的基础上,建立气化炉的一维修正模型,该模型包含煤粒脱挥发份和挥发份燃烧子程序、气化子程序和传热子程序。通过该模型计算得到了气化炉出口气相组成和总碳转化率,以及颗粒相在气化炉中的温度分布和不同粒径的颗粒的碳转化率,考察了煤种动力学参数等对气化炉出口的组成、温度和碳转化率的影响。
The IGCC-methanol polygeneration systems were simulated using Aspen Plus software. Energy saving of IGCC-methanol polygeneration system was analysed.An improved one-dimensional steady-state model for an entrained flow coal gasifier was developed in this thesis.
     In order to evaluate the configurations of the IGCC-methanol polygeneration system based on entrained-bed pulverized coal gasification, the polygeneration systems were simulated using Aspen Plus software. Different configurations, including waste heat boiler process/quench process and series/parallel combination of IGCC and methanol synthesis were evaluated by caculating the relative energy saving ratio.The results show that the waste heat boiler process is more energy-efficient than the quench process. For the parallel polygeneration systems with waste heat boiler process, the relative energy saving ratio increases when the proportion of the synthesis gas to methanol side increases. For the series polygeneration systems with waste heat boiler process, the relative energy saving ratio increases when the proportion of cycle gas increases in the methanol synthesis process. Based on allocation of energy, coal consumption of methanol synthesis and power generation of the IGCC-methanol parallel system with waste heat boiler process were calculated respectively.
     Because the one-dimensional model is reasonable simplified and its computing speed is very fast,it is suited to be used in the simulation study of polygeneration systems.In this study, an improved one-dimensional model for entrained flow coal gasifier was built by considering kinetics of heterogeneous and homogeneous reactions and residence time distribution of particles. This model includes the coal pyrolysis and volatile combustion subroutine, gasification subroutine and heat balances subroutine.The temperature and composition of the syngas of the coal gasifier, the distribution of gas composition,temperature and carbon conversion of particles was caculated by using the model. The effect of coal type and particle diameter on the the distribution of gas composition,temperature and carbon conversion was analysed.
引文
[1]于广锁,牛苗任,王亦飞等.气流床煤气化的技术现状和发展趋势[J].现代化工2004,24(5):23-26.
    [2]肖云汉.以煤气化为基础的多联产技术创新[J],中国煤炭,2008,34(11):11-12.
    [3]Consultant Committee of China State Maior Fundamental Research Plan [C]. Strategy Report on Energy Field in 10th "Five year Plan".2001.
    [4]Anthony V. Bridgwater and Mark Anders. Economics of liquid fuels production by coal gasification [J]. Fuel,1991,70(10):1193-1207.
    [5]邓世敏,林汝谋,金红光,等.IGCC多联产总能系统[J].燃气轮机技术,2002,15(3):10.
    [6]罗陨飞,杜铭华,李文华.美国未来洁净煤技术研究推广技术概述[J].洁净煤技术,2005,11(4):6-8.
    [7]陈晓仁,苏广宇.美国洁净煤技术发展现状[J].洁净煤技术,2001,7(3):58-59.
    [8]高晋生,K.H.Van Heek,陈茺.德国煤炭能源化工研究与开发的现状与前景[J].煤炭转化,1995,18(1):26-29.
    [9]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统-资源/能源/环境整体优化与可持续发展[J].中国工程科学,2000,2(8):59.
    [10]DOE/USA.Clean Coal Technology Denmonstration Program[R].1993.
    [11]Benjamin, C.B.Hsieh.Overview of Clean Teachnology in the United States [R]. The United States of America and the People Republic of China Experts Report on IGCC, 1996.
    [12]李现勇,肖云汉,蔡睿贤.整体煤气化联合循环(IGCC)技术的发展和应用[J].热能动力工程,2001,16(96):575.
    [13]徐振刚.多联产是煤化工的发展方向[J].洁净煤技术,2002,8(2):5-6.
    [14]冯静,倪维斗,曹江,等.多联产配置是推动我国IGCC系统发展的重要途径[J].燃气轮机技术,2007,20(4):1-2.
    [15]金红光,高林,郑丹星等.煤基化工与动力多联产系统开拓研究[Z].中国工程热物理学会工程热力学与能源利用学术会议,北京,2000.
    [16]焦树建IGCC技术发展的回顾与展望[J].电力建设,2009,30(1):5.
    [17]段立强,林汝谋,金红光,等.整体煤气化联合环(IGCC)技术进展[J].燃气轮机技术,2000,13(1):13.
    [18]宿建峰,李和平,负小银,等IGCC的特点与CO2捕捉技术[J].华电技术,2009,31(1):62-63.
    [19]Sherw in M B, Blum D B. Methanol synthesis in a three phase reactor. Prep Pap Am Chem Soc, Div Fuel Chem,1975,120(3):146.
    [20]李天文,曹永生.甲醇合成工艺进展[J].现代化工,1999,19(9):8-11.
    [21]段立强,杨勇平,林汝谋.与SOFC整合的CO2准零排放IGCC新系统研究[J].工程热物理学报,2006,27(5):26-27.
    [22]Robert F. Geosits and Lee A. Schmoe IGCC - The Challenges of Integration Proceedings of GT2005 ASME Turbo Expo 2005:Power for Land[R], Sea and Air June 6-9,2005 Reno-Tahoe, Nevada, USA.
    [23]F. Emun, M. Gadalla, T. Majozi, D. Boer. Integrated gasification combined cycle (IGCC) process simulation and optimization[J]. Computers and Chemical Engineering, 34(2010):331-338.
    [24]Foster Wheeler. Optimizing IGCC Design[J]. Foster Wheeler Review 1999, Autumn, 17-21.
    [25]Smith, A. R, Klosek, J., Woodward, D. W.. Next-generation integration concepts for air separation units and gas turbines[J]. J. Eng. Gas Turbines Power 1997,119 (2),298-304.
    [26]Thomas,M.Performance and Cost Models of Oxygen Generation Plants for the Integrated Environmental Control Model (IECM).Technical Report[R], Department of Engineering and Public Policy,Carnegie Mellon University, Pittsburgh, PA, December 20,2001.
    [27]Holt, N.1998 Gasification Technologies Conference[Z]. held in San Francisco, CA, October 6,1998; Gasification Technologies Council:Washington, DC.
    [28]Buchanan, T. L, DeLallo, M. R, Goldstein, H. N., Grubbs, G. W., White, J. S. Market-based Advanced Coal Power Systems[R]. Final Report, DE-AC01-94FE62747;prepared by Parsons Infrastructure and Technology for the U. S. DOE, Office of Fossil Energy:Washington, DC, December 1998.
    [29]H.C.Hristopher Frey and Yunhua Zhu. Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems[J], Environ. Sci. Technol.2006,40: 1693-1699.
    [30]Jurgen Karg, Gunther Haupt, Gerhard Zimmermann. Optimized IGCC Cycles for Future Applications [Z].2000 gasification technologies conference san francisco,california,october 8-11,2000.
    [31]F.Casella, P.Colonna. Dynamic modeling of IGCC power plants[J]. Applied Thermal Engineering,2012(35):91-111.
    [32]Patrick J.Robinson, William L.Luyben. Integrated gasification combined cycle dynamic model:H2S absorption/stripping,water-gas shift reactors,and CO2 absorption/stripping [J]. Ind.Eng.Chem.Res,2010(49):4766-4781.
    [33]林汝谋,金红光,高林.化工动力多联产系统及其集成优化机理[J].热能动力工程,2006,21(4):333-335.
    [34]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统[M].北京:科学出版社,2008:575-576.
    [35]Ma Lin-wei, Ni Wei-dou, Li Zheng, et al. Analysis of the co-production system of methanol and electricity based on coal gasification Power [J]. Eng2004,24(3):451-6[1, in Chinese].
    [36]Duan Yuanyuan, Zhang Jin, Shi Lin, et al. Exergy analysis of methanol-IGCC polygeneration technology based on coal gasification[J]. Tsinghua Sci Technol 2002, 7(2):190-3.
    [37]Liu Guang-jian, Li Zheng, Wang Ming-hua, et al. Energy savings by co-production:A methanol/electricity case study [J]. Applied Energy 87 (2010) 2854-2859.
    [38]王辅臣.大型合成氨厂渣油气化与炭黑回收系统数学模拟[D].上海:华东化工学院,1991.
    [39]Smith W R, Missen R W. Chemical Reaction Equilibrium Analysis:Theory and Algorithms[M]. New York:Wiley,1982.
    [40]代正华,龚欣,王辅臣等.气流床粉煤气化的Gibbs自由能最小化模拟[J].燃料化学学报,2005,33(2):129-133.
    [41]Smith P J, Smoot L D. One-Dimensional Model for Pulverized Coal Combustion and Gasification[J]. Combustion Science and Technology,1980,23(1):17-31.
    [42]Ubhayakar S K, Stickier D B, Gannon R E. Modelling of Entrained-bed Pulverized Coal Gasifiers[J]. Fuel,1977,56(3):281-291.
    [43]C.Y.Wen, T.Z.Chaung. Entrainment coal gasification modeling[J]. Ind.Eng. Chem.ProcessDes.Dev,1979,18(4):684-695.
    [44]Govind R, Shan J. Modeling and simulation of an entrained flow coal gasifier[J]. AICHE J.1984,30(1):79-92.
    [45]Vamvuka D, Woodburn E T, Senior P R. Modelling of an entrained flow coal gasifier 1.Development of the model and general predictions[J]. Fuel,1995,74(10):1452-1460.
    [46]Vamvuka D, Woodburn E T, Senior P R. Modelling of an entrained flow coal gasifier 2.Development of the model and general predictions[J]. Fuel,1995,74(10):1461-1465.
    [47]于遵宏,王辅臣等.煤炭气化技术[M].北京:化学工业出版社,2010:396-401.
    [48]Smoot L Douglas, Hedman Paul O, Smith Philip J. Pulverized-coal Combustion Research at Brigham Young University[J]. Progress in Energy and Combustion Science, 1984,10(4):359-441.
    [49]贺阿特,冯霄,董绍平等.德士古渣油气化炉的数值模拟[J].高校化学工程学报,2001,15(6):526-530.
    [50]吴玉新,张建胜,王明敏等.简化PDF模型对Texaco气化炉的三维数值模拟[J].化工学报,2007,58(9):2369-2374.
    [51]Watanabe.H and M.Otaka. Numerical simulation of coal gasification in entrained flow coalgasifier[J]. Fuel,2006,85(12-13):1935-1943.
    [52]Caixia Chen, Masayuki Horio, Toshinori Kojima. Numerical simulation of entrained flow coal gasifiers.Part I:modeling of coal gasification in an entrained coal gasifier[J]. Chemical Engineering Science 55 (2000):3861-3874.
    [53]王辅臣.射流携带床气化过程研究[D].上海:华东理工大学,1990.
    [54]于遵宏,沈才大,王辅臣等.水煤浆气化炉气化过程的三区模型[J].1993,21(1):90-95.
    [55]Rory F.D. Monaghan, Ahmed F. Ghoniem. A dynamic reduced order model for simulating entrained flow gasifiers Part I:Model development and description[J].2011, 94(1):61-80.
    [56]Yang Zhiwei, wang zhe, Wang Jihong. A dynamic model for an oxygen-staged slagging entrained flow gasifier[J].2011,25(8):3646-3656.
    [57]焦树建.论IGCC的空分系统[J].燃气轮机技术,1998,11(4):1-12.
    [58]Zhenghua Dai, Xin Gong, Xiaolei Guo, Haifeng Liu. Fuchen Wang and Zunhong Yu. Pilot-trial and modeling of a new type of pressurized entrained-flow pulverized coal gasification technology [J]. Fuel,2008,87(10-11):2304-2313.
    [59]廖小敏,盖恒军,邱祖民.NHD脱硫系统模拟与优化[J].应用化工,2009,38(1]):1694-1700.
    [60]李正西,秦旭东,宋洪强,等.低温甲醇洗和NHD工艺技术经济指标对比[J].中氮肥,2007,1(1):1-6.
    [61]孟庆军.甲醇合成过程的Aspen模拟[J].化肥设计,2005,43(6):8-12.
    [62]董君,王松玲,陈海平,等.M701F型燃气轮机性能分析[J].电力科学与工程,2005,(4):12-14.
    [63]王松岭,胡红丽,张学镭.基于ASPEN PLUS软件的燃气-蒸汽联合循环的模拟[J].汽轮机技术,2005,47(6):417-418.
    [64]马顺勤.基于Aspen Plus对整体煤气化联合循环系统的模拟分析[D].北京:华北电力大学,2008.
    [65]王逊,肖云汉.串并联与并联形式的联产系统效率比较[J].中国电机工程学报,2005,25(2):144-149.
    [66]麻林巍,倪维斗,李政,等.以煤气化为核心的甲醇、电的多联产系统分析 (下)[J].动力工程,2004,24(3):603-608.
    [67]Xiang W G, Chen S Y, Xue Z P, et al. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process [J]. International Journal of Hydrogen Energy,2010,35(16):8580-8591.
    [68]Lin H, Jin H G, Lin G, et al. Economic analysis of coal-based poly generation system for methanol and power production[J]. Energy,2010,35(2):858-863.
    [69]倪维斗,李政,江华.煤基多联产系统(化工过程-动力装置)的分析[J].煤炭转化,2003,26(4):1-4.
    [70]Ng K S, Sadhukhan J. Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power[J]. Biomass and Bioenergy, 2011,35(3):1153-1169.
    [71]Tsatsaronis G, Kapanke K, Marigorta A M B. Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power [J]. Energy,2008,33 (2): 321-330.
    [72]Sun S E, Jin H G, Gao L, et al. Study on a multifunctional energy system producing coking heat, methanol and electricity [J]. Fuel,2010,89(7):1353-1360.
    [73]Kim J, Park M, Kim C. Performance improvement of integrated coal gasification combined cycle by a new approach in exergy analysis[J]. Korean Chem Eng,2001, 18(1):94-100.
    [74]Wang Z F, Zheng D X, Jin H G. Energy integration of acetylene and power polygeneration by flowrate-exergy diagram[J]. Applied Energy,2009,86 (3):372-379.
    [75]Zhou L, Hu S Y, Li Y R, et al. Study on co-feed and co-production system based on coal and natural gas for producing DME and electricity [J]. Chemical Engineering Journal, 2008,136(1):31-40.
    [76]Yang H, Li Y R, Shen J Z, et al. Evaluating waste treatment, recycle and reuse industrial system:an application of the emergy approach[J]. Ecological Modelling,2003,160 (1-2):13-21.
    [77]Helen H L, Kulkarni M.A, Singh A, et al. A game theory based approach for emergy analysis of industrial ecosystem under uncertainty[J]. Clean Technologies and Environmental Policy,2004,6(3):156-161.
    [78]王云波等.层次分析法在多联产系统综合性能评价中的应用[J].动力工程,2006,26(4):580-586.
    [79]王灵梅,倪维斗,李政.基于能值的不同煤基发电系统的可持续性评价[J].中国电机工程学报,2006,26(13):98-102.
    [80]李政,刘广建,倪维斗.甲醇/电联产系统的能耗特性[J].中国电机工程学报,2008, 28(8):1-6.
    [81]林汝谋,孙士恩,金红光,等.双气头多联产系统的相对节能率及其参照基准[J].中国电机工程学报,2009,29(11):1-7.
    [82]陈斌,高林,金红光.二甲醚/动力多联产系统初步研究[J].工程热物理学报,2004,25(5):741-744.
    [83]Quinn R, Dahl T A, Toseland B A. An evaluation of synthesis gas contaminants as methanol synthesis catalyst poisons[J]. Applied Catalysis A:General,2004,272(1-2): 61-68.
    [84]王明华,李政,冯静,等.甲醇/电联产系统中甲醇合成与精馏模拟及变负荷研究[J].热能动力工程,2008,23(4):363-368.
    [85]张向荣,高林,金红光,等.煤基氨-动力多联产系统的设计和分析[J].动力工程,2006,26(2):289-294.
    [86]李超,代正华,许建良,等.多喷嘴对置式气化炉内颗粒停留时间分布数学模拟研究[J].高校化学工程学报,2011,25(3):416-422.
    [87]David Merrick.Mathematicl models of the thermal decomposition of coal [J]. Fuel, 1982,62:534-539.
    [88]Badzioch S, Hawksley P G W, Peter C W. Kinetic of the thermal decomposition of pulverized coal particles[J]. Ind.Eng.Chem.Process Design and Develop,1970,9: 521-528.
    [89]Kobayashi H, Howard J B, Sarofim A F. Coal devolatilization at high temperatures[R].18th Symposium(International) on Combustion. The Combustion Institute,Pittsburgh,PA,1977.
    [90]Solomon P R, et al. Model of coal devolatilization [J]. Energy&Fuels,1988,2: 405-410.
    [91]Solomon P R. Characterization of coal and coal thermal decomposition [R]. Chapter III report,Advanced Fuel Research,Inc.East Hartford,CN,1980.
    [92]Solomon P R,Colket M B. Coal devolatilization[R].17th Symposium (International) on Combustion. The Combustion Institute,Pittsburgh,PA,1979.
    [93]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社,2003.
    [94]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998.
    [95]M.L.de Souza-Santos. Comprehensive modeling and simulation of fluidized bed boiler and gasifiers[J]. Fuel,1989,68:1507-1522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700