用户名: 密码: 验证码:
水泥分解炉结构参数优化与煤粉燃烧的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分解炉是新型干法水泥生产技术中的核心设备,对其结构参数进行优化一直是水泥工作者关注的重点。分解炉同时又是一个耗能设备,大量消耗煤炭资源。长期以来,我国干法水泥工业分解炉中使用的主要燃料是烟煤,低挥发分煤因具有着火点高、不易燃烬的特点,而在使用中会导致各种问题。现今,随着我国煤炭资源的日益紧张,烟煤的日益减少,使用低挥发分无烟煤甚至低挥发分高灰分劣质煤,已成为分解炉设计中必须解决的关键问题。本研究采用数值模拟的方法,结合定性与定量分析来研究分解炉内的流场结构并对其进行优化设计,通过研究气相停留时间、固相停留时间、固/气停留时间比、煤粉的燃烬时间等表征分解炉特性的参数来优化炉内的流场结构,并为分解炉内低挥发分无烟煤甚至低挥发分高灰分劣质煤的使用提供理论指导。
     本研究选用了喷腾式、旋流式和旋—喷结合式三种典型结构的水泥分解炉进行数值模拟。对于每一种炉型,分别从气相流、气固二相流、煤粉燃烧的角度展开研究,采用的数学模型分别是标准k-ε双方程模型、离散相模型和混合分数方法结合简化的β-PDF模型。针对每一个方面分别进行最优化的设计,亦分别从不同的方面对三种不同的炉型进行对比分析,主要结论如下:
     (1)在SLC-S型喷腾式分解炉内,气流场呈简单的喷腾状,只是在分解炉下部空间贴近壁面处有回流出现。炉内阻力损失很小,但生料在炉内分散不均匀,若增加一个与原生料进口的水平投影夹角大于或等于135°的新生料进口可以改善这种状况,且尤以157.5°为最佳。对煤粉燃烧的研究结果表明:该炉型对煤质的适应性很强,适合烧劣质煤,煤粉在该分解炉内的燃烬率很高。对低挥发分高灰分劣质煤燃烧进行优化设计的研究结论为:当三次风速率为30m/s、煤粉喷射角度向下,且当两煤粉进口的水平夹角为180°时最佳。
     (2)在NST-I型旋流式分解炉内,气流在整个空间内呈螺旋式上升状,且在整个流场中形成了一系列围绕着分解炉中心轴旋转上升的涡。生料在整个炉膛内的分散状况极好,有效容积高。顺着三次风的旋转方向,当生料进口与三次风进口之间的水平夹角在45°~135°的范围内时较为适宜,且尤以135°为最佳。对煤粉燃烧的研究结果表明:进煤管方位对煤粉燃烬率的影响极大,其中在三次风进口附近且在三次风的初始运动方向上的煤粉流燃烬率很高,而远离三次风进口的煤粉流燃烬率则很低,因此煤粉的整体燃烬率不高。优化研究结果表明:当其中一个煤粉进口位于三次风进口附近时,建议将另外一个煤粉进口安置在避开三次风的初始运动方向的位置上。
     (3)在TDF型旋—喷结合式分解炉中,下半柱体部分的流场以“旋流”效应为主,上半柱体部分的流场以“喷腾”效应为主。生料主要聚集在分解炉下半柱体部分生料进口这一侧,而在气流速率很高的中心区生料浓度较稀。对气固二相流场进行优化设计得到的优化方案为:保持烟气速度不变,当三次风速率在14m/s~20 m/s的范围内时,或者保持三次风速度不变,当烟气速率在20m/s~30m/s的范围内时较为合适;当生料入射角度在24°~34°的范围时较佳;同一高度的两个生料进口所形成的平面夹角越小越有利,当它们重合在一起时最佳。对煤粉燃烧的研究结果表明:该分解炉对煤质的适应性很好,有利于低挥发分高灰分劣质煤的燃烧。对劣质煤燃烧进行优化设计所得到的优化方案为:当同侧的两进煤管之间的夹角为90°时最佳,在此角度下三次风速率越大则煤粉燃烧越充分,尤以24m/s最为理想。
     (4)对比研究结果表明:喷腾式分解炉和旋—喷结合式分解炉对煤质的适应性很强,皆有利于低挥发分高灰分劣质煤的燃烧,且通过调整参数能进一步地提高劣质煤在炉内的燃烬率;旋流式分解炉对煤质的适应潜力很大,但需要选择合适的进煤管方位。
Precalciner is not only a key equipment in cement industry on which the optimization of structure parameter are carried on frequently,but also an energy consumer.High-quality bituminous coal is commonly used in precalciners of cement industry in china for a long time.And low-volatile coal is almost not used since it is hard to be ignite and burnout.Recently,in order to reduce the energy consumption,more and more attentions have been paid on inferior coal combustion in precalciners.In this paper,combining qualitative studies and quantitative analysis, numerical simulations was carried out aiming at three actual precalciners under operational-based boundary conditions.What obtained from the analyzed result provides important theoretical information and significant referenced value for optimization of structure parameter and low-volatile or high ash inferior coal combustion in precalciners.
     In this paper,aiming at spouted precalciner,swirling precalciner and swirling-spouted precalciner,the gas flow field,gas-solid flow field and coal combustion are simulated respectively with the k-εmodel,the Discrete Phase Model and theβ-PDF modle used.The optimum performance parameters for gas-solid flow field and low-volatile combustion were presented,and also the differences between the three types were studied with the strongpoint or shortcoming of each type illustrated legibly.Results are as follows:
     (1)There is a simple spraying-liked flow field only with reversed-flow appears near the wall at the bottom in the spouted precalciner.Though the pressure drop from the tertiary inlet to the outlet is low,there is an ununiform particle dispersion condition.The dispersion condition can be improved by adding a new raw meal inlet to this type of precalciner,and the optimal horizontal projection angle between the two raw meal pipes is larger than or equal to 135°,especially at 157.5°.The research results of coal combustion show that this type of precalciner has a good adaptability for different quality coal combustion,and it is suitable for inferior coal combustion. The researches of low-volatile coal combustion for optimum condition show that it is optimum when the tertiary air velocity is 30 m/s with the incident angle of coal particles downward and with the angle between the two coal pipes is 180°.
     (2)There is a high-velocity stream rising spirally near the wall with a series of spirally rising vortexes exist around the center axis in the swirling precalciner. Particles disperse uniform throughout the precalciner.By changing the initial tertiary air velocity but fixing the initial flue gas velocity-and vice versa-the predicted results were compared.It is advised to set the raw meal inlet along the direction of the initial tertiary air with the horizontal projection angle between the raw meal inlet and the tertiary air inlet is in the range of 45°and 135°,especially, 135°is the best.The research results of coal combustion show that the coal burn-off rate is high coming from the coal pipe located on the same side of the tertiary air inlet,while it is quite low coming from the coal pipe located on the different side of the tertiary air inlet,resulting in a low total coal burn-off rate,indicating the importance of the location of coal pipe.It is suggusted that when one of the coal pipe is near the tertiary air inlet and have the same initial moving direction with the tertiary air,it is better to keep the other coal flow out of the initial direction of the tertiary air.
     (3)There is a very complex and turbulent flow field in the swirling-spouted precalciner:in the half down-body of the precalciner,there is a high velocity region in the center while two series of "c-shaped" low-velocity regions occur around the center;at the center-body,there appear two high-velocity vortexes cause by the "neck",resulting in a spraying-liked flow field with a uniform velocity in the half up-body;in the top space,a bracket-shaped vortex appears caused by both the two outlets located on the same side and the coping on the top.The simulation results of the gas solid flow filed show that there are many particles near the raw meal inlets but few in the center of high gas velocity region.With the the fixed initial tertiary air velocity,it is optimum when the flue gas velocity is between 20m/s and 30m/s.It is optimum when the angle between the raw meal pipe and the precalciner body is in the range of 24°and 34°.The better,the smaller of the angle between two raw meal inlets on the same side,and it is optimum when the angle is 0°in this research.The research results of coal combustion show that this type of precalciner has a good adaptability for different quality coal combustion,and it is suitable for low-volatile inferior coal combustion.The optimum researches results show that it is beneficial when the angle between the two coal pipes on the same side is 40°;with the angle of 90°,the larger the velocity is,the higher the coal burn-off rate is,and it is optimum when the tertiary air velocity is 24 m/s.
     (4)Comparing research indicates that both the spouted precalciner and the swirling precalciner in this research have a good adaptability for coal combustion with different quality,and it is suitable for low-volatile inferior coal combustion.If adjust parameters properly,the coal burn-off rate will increase greatly.There is a great potential for inferior coal combustion in the swirling-spouted precalciner if the position and direction of the coal pipes are adjusted suitably.
引文
[1]陈全德.全国第四届悬浮预热和预分解窑技术经验交流会论文集.北京:中国建材工业出版,2000.5-11
    [2]陈全德.新型干法水泥技术原理与应用.北京:中国建材工业出版社,2004.91-95
    [3]李海涛.新型干法水泥生产技术与设备.北京:化学工业出版社,2006.118-119
    [4]范毓林.微增型分解炉的设计与低挥发分煤的应用.水泥技术,1999.(3):10-11
    [5]郝令旗,张浩云,齐国彤.新型干法水泥生产技术的现状与发展.新世纪水泥导报,2004.(4):1-4
    [6]胡道和,考宏涛,李昌勇等.原燃料特性与分解炉设计.新世纪水泥导报,1(2):34-35
    [7]陈全德.新型干法水泥技术原理与应用.北京:中国建材工业出版社,2004.95
    [8]Shibaoka M.Fuel,1985.64.263
    [9]Eliiott,M.R..煤利用化学(上册).徐晓,吴奇虎等译.北京:化学工业出版社,1991.597-619
    [10]孙学信,陈建原.煤粉燃烧物理化学基础.武汉:华中理工大学出版社,1991.109-110
    [11]Ching-Yi Tsai ans Alan W.Scaroni,Reactivity of bituminous coal chars during the initial stage of pulverized-coal combustion.Fuel,1987.66(11).1400-1405
    [12]Hurt R H,Davis K A,Yang N Y C et al.Residual Carbon from Pulverized-coal -fired Boilers.Fuel,1995.74(9).1297-1306.
    [13]S.Brunllo et al.Kinetic Study of Char Combustion in a Fluidzed Bed.Fuel,1996.75(5).537-540
    [14]Michael Cloke,Tao Wu,Richelieu Barranco,et al.Char Characterisation and its Application in a Coal Burnout Model.Fuel,2003,82(17).1989-2000
    [15]魏兴海,顾永达,沈平等.TG—DSC法研究煤、焦的燃烧.煤炭学报,1994.(4):439-445
    [16]向银花,房倚天,张守玉等.煤焦部分气化、燃烧集成热重分析研究.燃料化学学报,2000.(5):435-438
    [17]何宏舟,骆仲泱,岑可法.一个可用于比较煤焦反应性的判据.浙江大学学报(工学版),2006.(11):1998-2001
    [18]张薇,简森夫,胡道和.分解炉内煤粉燃烧特性的研究.水泥技术,1996.(1):16-18
    [19]李建锡,分解炉中CaCO3分解与煤燃烧的相互作用研究.水泥技术.1999.3:20-24
    [20]]谢峻林,何峰,宋彦保.水泥分解炉工况下煤焦的燃尽动力学过程研究.燃料化学学报,2002,30(3):223-188
    [21]谢峻林.分解炉中煤粉燃烧特性及相关问题研究:[博士学位论文].武汉:武汉理工大学材料学院,2001
    [22]胡道和,考宏涛,李昌勇等.原、燃料特性与分解炉设计.新世纪水泥导报,1(1):15-18
    [23]张薇,简森夫,胡道和.研究分解炉内煤粉燃烧特性的新方法.水泥,1996.(1):8-11
    [24]张军,傅维标.煤粒均相着火规律的研究.工程热物理学报,1996.17(1):121-124
    [25]傅维标,郑双铭,张百立.煤焦燃烧反应动力学的通用规律研究.工程热物理学报,1994.15(4):435-440
    [26]张圣溪,黄福旺.影响我厂预分解窑达标达产因素浅析.见:新型干法水泥生产技术研究会编,悬浮预热和预分解窑第二届技术经验交流会论文集.北京:中国建材工业出版社,1994.114-116
    [27]郭崇涛,煤化学.北京:化学工业出版社,1992.113
    [28]朱之培,高晋生.煤化学.上海:上海科学科技出版社,1984.269
    [29]Howard J.B.and Essenhigh R.H.,Combustion and flame,1956.(9).337-339
    [30]Weibiao Fu.Et al.A Study On Devolutilization of Large Coal Particles Combustion and Flame,1987.(70).253-226
    [31]徐建国,魏赵龙.用热分析方法研究煤的热解特性.燃烧科学与技术,1999.5(2):175-179
    [32]王云鹤,梁栋,王成卫等.煤升温氧化过程特征的热重分析.广州大学学报(自然科学版),2006.(6):65-68
    [33]Wall TF,phong-Anant D,Gururajian VS,Et al.Combustion and Flame 1998(72).111-118
    [34]Gupta R.p.,Gururajan,V.s.,Lucas,J.A.Et al.,Combustion and Flame1990(79).33-299
    [35]Tomeczke,J.and Wojcik,J,Twenty-third Symposium(international)on Combustion.The Combustion Institute,1990.1163-1167
    [36]邹显宏,熊友辉,孙学信.基于CO_2气体释放法的煤燃烧特性研究.燃料化学学报,2003.(2):185-188
    [37]熊友辉,邹显宏,孙学信.采用CO_2气体释放法研究煤的燃烧特性.燃烧科学与技术,2004.(2):114-119
    [38]傅维镳,韩洪僬,赵岩等.影响煤粒燃尽时间的研究.工程热物理学报,1991.12(3):328-332
    [39]梁庚荣,梁静珠等.热重分析对燃煤反应特性的初步探讨.中国动力工程学会煤燃烧技术会议.哈尔滨,1887
    [40]朱建国,周玉铭,张小鹏.煤燃烧动态特性热分析法.动力工程.1991.11(3):37-44
    [41]朱群益,赵广播,秦裕琨等.采用热天平研究煤粉燃烧特性时的零维燃烧模型.动力工程,1996.16(5):34-38
    [42]张薇,简淼夫.几种煤粉悬浮态燃烬特性的研究.南京化工大学学报,1995.17(S1):10-13
    [43]张薇,简淼夫,周松林等.高温悬浮态气固反应试验台的开发与应用.南京化工大学学报(自然科学版),1995.17(1):19-23
    [44]张薇,简淼夫,胡道和.悬浮状态下煤粉燃烧特性的研究.工业炉,1995.(4):16-19
    [45]胡芝娟,陆继东,王世杰等.高温气固悬浮试验台动态特性的研究.华中科技大学学报(自然科学版),2004.(6):90-92
    [46]王世杰,陆继东,胡芝娟等.煤焦还原NO的实验研究.华中科技大学学报(自然科学版),2006.(1):21-23
    [47]刘长江.水泥分解炉环境下煤焦燃烧特性的评价方法研究:[硕士学位论文].武汉:武汉理工大学材料学院.2006
    [48]肖天来,谢峻林,刘长江.煤燃烧特性综合测试仪.中国专利,200520095894,2005-04-11
    [49]Kolyfetis,E.,Vayenas,C.G..Mathematical modellling of separate line precalciners(SLC).ZKG International,1988.41(11).559-563
    [50]王超群.一种新型的喷腾分解炉.水泥技术,2000.(4):10-13
    [51]李兆锋.喷腾式分解炉流场的数值模拟计算.建材技术与应用,2005.(6):4-5
    [52]吴君棋,陆继东,黄来等.旋喷结合分解炉的流场模拟.硅酸盐学报,2002.(6):702-706
    [53]黄来,陆继东,胡芝娟等.旋喷结合分解炉内流场在不同结构和入口条件下的数值模拟,水泥技术,2002.(6):5-8
    [54]吴君棋,陆继东,狄东仁等.旋喷结合分解炉的流场模拟.中国水泥,2002.(8):34-37
    [55]黄来,陆继东,胡芝娟等.旋喷结合分解炉内流场的数值模拟.燃烧科学与技术,2003.(3):274-279
    [56]黄来,陆继东,任合斌等.旋喷结合分解炉的数值模拟.化工学报,2005.(5):829-834
    [57]赵蔚琳,李兆峰.FLS分解炉二维流场的数值模拟计算.工业炉,2002.(2):45-47
    [58]赵蔚琳,侯立红.DD分解炉内湍流流场的数值分析.硅酸盐通报,2002.(2):26-28
    [59]陈作炳,卢海波,彭建新等.强化悬浮式分解炉内气固两相流场的数值模拟.硅酸盐学报,2006.(1):50-54
    [60]毛娅,陈作炳,陈定方等.基于两相流理论的RSP型分解炉三维流场数值模拟研究.武汉理工大学学报(交通科学与工程版),2006.(6):1015-1018
    [61]毛娅,陈作炳,陈定方等.强化悬浮式分解炉内热态、冷态流场比较研究.武汉理工大学学报(交通科学与工程版),2007.(4):696-698
    [62]卢海波.强化悬浮式水泥分解炉内流场数值模拟:[硕士学位论文].武汉:武汉理工大学机电工程学院,2006
    [63]丁苏东,孙德群,蔡玉良.低NO_x型分解炉内部过程的数值模拟研究.中国水泥,2007.(4):46-50
    [64]吴慧英.基于计算流体力学的循环预烧分解炉的三维流场数值模拟:[硕士学位论文].昆明:昆明理工大学材料学,2006
    [65]梅书霞,谢峻林.高效喷旋分解炉内湍流流场的数值模拟.中国水泥,2006.(9):52-56
    [66]黄来,陆继东,李昌军等.双喷腾分解炉内气固两相流场的数值模拟.硅酸盐学报,2003.(8):748-753
    [67]Hu Zhijuan,Lu Jidong,Huang Lai,etc.Numerical simulation study on gas-solid two-phase flow in pre-calciner.Communications in Nonlinear Science and Numerical Simulation.2006.11(3).440-451
    [68]Huanpeng Liu,Wentie Liu,Jianxiang Zheng,etc,.Numerical Study of Gas-solid Flow in A Precalciner Using Kinetic Theory of Granular Flow.Chemical Engineering Journal,2004.102(2).151-160
    [69]王家楣,肖国权.分解炉内气固两相流场不同模型模拟结果分析.海军工程大学学报,2005.(3):5-8
    [70]王家楣,肖国权,谢峻林.水泥分解炉生料口位置对炉内两相流场的影响.武汉理工大学学报,2005.(5):53-55
    [71]郑建祥,刘文铁,赵云华等.分解炉内气固两相流动特性的数值模拟.硅酸盐学报,2005.(7):853-858
    [72]Wang Jiamei,Xiao Guoquan,Ma Baoguo.Numerical Simulation of The Gas-solid Two-phase Flows in A Precalciner.Journal Wuhan University of Technology,Materials Science Edition,2006.21(4):177-179
    [73]毛娅,陈作炳,陈定方等.基于两相流理论的RSP型分解炉三维流场数值模拟研究.武汉理工大学学报(交通科学与工程版),2006.(6):1015-1018
    [74]叶旭初,胡道和.SLC分解炉内燃烧、分解的数值模拟研究.硅酸盐学报,1994.(4):325-330
    [75]黄来,陆继东,任合斌等.双喷腾分解炉中燃烧和分解耦合数值的模拟.硅酸盐学报,2004.(10):1271-1275
    [76]黄来,陆继东,狄东仁等.分解炉中气体成分分布的数值模拟.化工学报,2004.(7):1161-1167
    [77]Lu Jidong,Huang Lai,Hu Zhijuan,etc.Simulation of The Gas-solid Two-phase Flow,Coal Combustion and Raw Meal Calcination in A Pre-calciner.ZKG International.2004.57(2).55-63
    [78]王家楣,肖国权.分解炉内煤粉燃烧和CaCO_3分解流场的数值模拟.海军工程大学学报,2005.(2):8-11
    [79]胡芝娟.分解炉氮氧化物转化机理及控制技术研究:[博士学位论文].武汉:华中科技大学热能工程系,2004
    [80]黄来,陆继东,李卫杰等.分解炉中NO生成模拟与优化.化工学报,2006.(11):2624-2630
    [81]Huang Lai,Lu Jidong,Hu Zhijuan,etc.Numerical Simulation and Optimization of NO Emissions in A Precalciner.Energy and Fuels,2006.20(1).164-171
    [82]Huang Lai,Lu Jidong,Wang Shijie,etc.Numerical Simulation of Pollutant Formation in Precalciner.Canadian Journal of Chemical Engineering,2005.83(4).675-684
    [83]刘民.煤燃烧通用模型在分解炉数值模拟中的应用:[硕士学位论文].南京:南京工业大学材料加工工程系,2005
    [84]李德峰.适合劣质煤分解炉内流场的数值模拟研究[硕士学位论文].武汉:武汉理工大学机电工程学院,2006
    [85]谢峻林,梅书霞,衣明辉.煤粉在分解炉内燃烧机理的数值模拟研究.煤炭科学技术,2005.(5):48-51
    [86]梅书霞,谢峻林,夏福明等.分解炉内不同煤质煤粉燃烧的数值模拟.武汉理工大学学报,2005.(8):20-22
    [87]甘祥琪,段正武,唐义雄.低挥发分煤在新型干法窑生产中的应用.新世纪水泥导报,2004.(6):11-15
    [88]王超群.劣质煤的燃烧及燃烧器的设计.新世纪水泥导报,1999.(04):6-9
    [89]四川水泥研究所分解炉组.谈谈烧煤分解炉的几个问题.水泥,1977.(01):12-19
    [90]胡志俊.高灰分煤煅烧熟料出现的问题及对策.新世纪水泥导报,2006.(04):46-47
    [91]狄东仁,陈涵萱,徐江东等.低挥发分煤在新型干法生产线上的应用.水泥技术,1999.(1):8-10
    [92]矫深田.预分解窑使用高灰分煤的实践.水泥工程,1999.(03):11-12
    [93]王银山.低挥发分煤在RFC预分解短窑上的应用.水泥技术,1999.(6):39-40.
    [94]孟长林,李明珠,齐彦敏.低挥发分煤在预分解窑上的应用.水泥,2003.(10):13-15
    [95]王钰城.100%燃用无烟煤预分解窑的生产调试.新世纪水泥导报,2004.(03):13-12
    [96]刘文兵.低质煤在2000t/d预分解窑的应用,水泥,2005.(2):24-26
    [97]郑桂林,刘文兵.5000t/d预分解窑煅烧劣质煤的生产实践,水泥工程,2005.(02):56-58
    [98]万长均,谭中炳,康亮等.贫瘦煤在小型预分解窑的应用.水泥,2006.(6):29-31
    [99]覃守平.预分解窑使用劣质煤浅析.水泥技术,2005.(05):56-58
    [100]陈全德,陈晶,崔素萍等.水泥预分解技术与热工系统工程.北京:中国建材工业出版社,1998.157-169
    [101]张兆顺,崔桂香,许春晓.北京:清华大学出版社,2005.1
    [102]李光熙,陶文铨,宇波等.平板通道内充分发展湍流直接数值模拟.工程热物理学报,2004.(6):1031-1033
    [103]罗坤,樊建人,刘兰等.直接模拟离散颗粒对湍流射流的影响.工程热物理学报,2005.(4):617-620
    [104]李瑞霞,柳朝晖,贺铸等.各向同性湍流内颗粒碰撞率的直接模拟研究.力学学报,2006.(1):25-32
    [105]齐学义,郭秀峰,王德国等.二维大涡数值模拟的算例及其分析.甘肃工业大学学报,2003.(2):56-58
    [106]郑水华,罗坤,樊建人等.大涡模拟气固两相三维湍流射流.浙江大学学报(工学版),2005.(4):574-578
    [107]王永康,刘向军.入口非均匀性对直方管内湍流影响的大涡模拟研究.冶金动力,2006.(6):39-43
    [108]路明,孙西欢,李彦军等.湍流数值模拟方法及其特点分析.河北建筑科技学院学报,2006.(2):106-110
    [109]金新阳,杨伟,金海等.数值风工程应用中湍流模型的比较研究.建筑科学,2006.(5):1-5
    [110]Fan J.R.,Jin J.Liang,X.H.Chen,etc.Modeling of Coal Combustion and NOx Formation in A W-shaped BoilerFurnace.Chemical Engineering Journal,1998.71(3).233-202
    [111]Kurose,R.,Ikeda,M.and Makino,H.,Combustion Characteristics of High Ash Coal in A Pulverized Coal Combustion.Fuel,2001.80(10).1447-1455.
    [112]Chen,C.W.,Numerical Analysis For The Multi-phase Flow of Pulverized Coal Injection Inside Blast Furnace Tuyee.Applied Mathematical Modelling,2005.29(10).871-884
    [113]赫伟建,王迎新,段树林等.船舶机舱空间温度场速率场的数值模拟.大连海事大学学报,2005.311:39-41
    [114]吴飞,钟珞.分解炉科学计算可视化研究.武汉理工大学学报(信息与管理工程版)2001.23(4):109-112.
    [115]蒲舸,张力,辛明道.CFBC旋风分离器气固两相流数值模拟与优化.工程热物理学报,2006.27(2):268-270.
    [116]谭晓军,陈丽华,李宏剑.半圆管惯性分离器气固两相流动数值模拟[J].水动力学研究与进展A辑,2005.20(z1):910-915.
    [117]Fluent帮助文件
    [118]朱曼明,陈义良,吕柳艳等.湍流射流火焰的PDF模拟及误差分析.中国科学技术大学学报,2004.(2):176-182
    [119]许晋源.煤粉复合旋流火焰燃烧特性研究(2)——数值模拟.燃烧科学与技术,1997.(2):87-95
    [120]殷健,郑楚光,周力行等.NO_x生成湍流反应率的二阶矩-PDF数值模拟.燃烧科学与技术,2001.(1):67-71
    [121]向军,熊友辉,郑楚光等.PDF-ARRHENIUS方法模拟煤粉燃烧氮氧化物生成.中国电机工程学报,2002.(6):157-161
    [122]李芳芹,魏敦崧,任建兴.旋流燃烧煤粉锅炉NO_x生成的数值模拟.煤气与热力,2005.(4):13-12
    [123]方庆艳,黄来,姚斌等.采用双混合分数/PDF方法模拟混煤在四角切圆锅炉内的燃烧.动力工程,2006.(2):185-190
    [124]吴玉新,张建胜,王明敏等.用简化PDF模型对气化炉运行特性的分析.中国电机工程学报,2007.(32):57-62
    [125]Y.R.Sivathanu and G.M.Faeth.Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames.Combustion and Flame,1990.(82).211-230
    [126]李昌勇,金春强,胡道和.SLC-S分解炉气固两相运动规律研究.燃烧科学与技术,2003.(9):239-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700