用户名: 密码: 验证码:
天然产物中α-糖苷酶抑制剂的发现与评价体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是一类由胰岛素分泌功能受损引起的,以持续的高血糖为主要生化特征的代谢综合征。控制血糖水平是糖尿病治疗过程中的关键要素。一种重要的策略是通过抑制淀粉水解延缓小肠中的淀粉消化及葡萄糖吸收过程来实现。肠道内淀粉消化需要三种主要的α-糖苷酶参与,首先胰腺α-淀粉酶(HPA)将淀粉水解成短的直链或支链的寡糖,寡糖随后被麦芽糖-葡萄糖苷酶(MGAM)和蔗糖-异麦芽糖酶(SI)水解为葡萄糖。其中,MGAM拥有两个功能独立的催化亚基(MGAM-N和MGAM-C)。目前α-糖苷酶已经逐渐成为降糖药物研发的重要靶点之一。
     天然产物是药物开发的重要资源之一,许多有价值的酶抑制剂都来源于天然产物,而从天然产物中筛选κ-糖苷酶抑制剂并进行药物开发已成为新药研发的热点。本研究利用已构建的包含411种传统中药的提取物库,分别针对HPA,MGAM-N和MGAM-C三种靶蛋白,进行α-糖苷酶抑制剂的筛选。发现23种中药提取物对MGAM-N有明显抑制效果;20种对MGAM-C有明显抑制作用;16种对HPA有明显抑制活性。筛选结果显示出一定的规律,对HPA有抑制作用的中药与对MGAM-N/C有抑制活性的中药有较为明显的差异。
     进一步对1000株土壤放线菌的发酵产物进行筛选,获得20株α-糖苷酶抑制剂生产菌。应用柱前衍生化高效液相色谱法对ακ-糖苷酶抑制剂1-脱氧野尻霉素(DNJ)产生菌进行筛选。结果发现一株编号为PW409的DNJ产生菌。通过对PW409菌株进行多相分类学研究,将PW409菌株初步确定为戈壁三素链霉菌(Streptomyces gobitrici)。在此基础上开发了基于生物学活性的高效液相色谱串联四级杆飞行时间质谱(HPLC-Q/TOF)α-糖苷酶抑制剂筛选方法,对链霉菌PW409的发酵液进行活性物质的分离和鉴定,发现其发酵产物中除含有DNJ以外,还含有α-糖苷酶抑制剂类米格列醇(miglitol),其中DNJ在发酵液中的含量为11.2mg/L, miglitol的含量为95.8mg/L,为α-糖苷酶抑制剂的开发提供了新的菌种资源。
     本研究发现天蓝黄链霉菌ZG656产生的混合型抑制剂AIB656具有极强的α-淀粉酶抑制活性,同时也对MGAM-N和MGAM-C有较强的抑制作用。本课题开发了基于多靶点的生物活性发现与评价方法对AIB656中的α-糖苷酶抑制剂进行系统的筛选及鉴定。利用UPLC-Q/TOF从AIB656中共鉴定出51种阿卡他定类化合物,并发现5个馏分对MGAM-N有明显的抑制活性;8个馏分对MGAM-C有显著的抑制活性;9个馏分对HPA有较强的抑制活性。生物活性筛选结合虚拟的分子对接筛选的研究结果显示:分子量较小的阿卡他定分子(2-4个类糖环)显示出较强的MGAM-N抑制活性。3-5个类糖环的分子对MGAM-C有较强的抑制活性;分子量较大的阿卡他定分子(6-15个类糖环)具有明显的HPA抑制活性。结果表明三种α-糖苷酶对不同分子大小的阿卡他定类抑制剂的选择性有较大的差异。通过分子对接计算及相互作用研究,推测阿卡他定I0-1分子是通过与氨基酸Asp327,Asp542, His600和Asp203形成氢键,而牢固地结合于MGAM-N的活性中心,并完全占据MGAM-N活性中心的两个D-葡萄糖结合位点(-1和+1位),阿卡他定10-1分子中N-键取代了MGAM-N正常底物中的O-连糖苷键导致其抑制活性的产生。阿卡他定I01完全占据MGAM-C活性中心的结合位点(-1,+1,+2和+3位),从结构生物学角度解释了I0-1是阿卡他定类分子中最强的MGAM-N的抑制剂和I01是阿卡他定类分子中最强的MGAM-C的抑制剂的分子机制。
     而DNJ为代表的α-糖苷酶抑制剂的生物利用度研究表明,a-糖苷酶抑制剂在体内的吸收速度较快,DNJ的达峰时间为0.8h,绝对生物利用度达到55.02%。考虑到DNJ被快速吸收入血会减弱DNJ抑制小肠内α-糖苷酶的作用,本论文通过考察添加不同的药用辅料来改变DNJ在体内的吸收特性。结果发现:加入0.5%羧甲基纤维素钠(CMCNa)能够显著降低DNJ的最大血药浓度,降低DNJ在大鼠体内的血药曲线下面积,表明CMCNa能够抑制和延缓DNJ在肠道内的吸收。小鼠的口服葡萄糖耐量实验也证明了CMCNa能够增强DNJ的降糖效果。
     本研究分别建立了液相、质谱、分子对接与酶学检测相结合的多种α-糖苷酶抑制剂的筛选策略,并针对MGAM-N, MGAM-C和HPA,对中药提取物以及放线菌次生代谢产物进行了的系统的筛选,结合结构生物学分析使我们明确了不同的α-糖苷酶对抑制剂分子的选择偏好存在明显的差异,而多个不同大小的α-糖苷酶抑制剂分子的联合使用会对糖尿病的治疗更加有效,这对α-糖苷酶抑制剂治疗糖尿病药物的研发有重要的指导意义。
Type2diabetes mellitus, is a metabolic syndrome that is characterized by continuous high level of glucose in the blood with defects in insulin secretion, insulin action or both. Controlling blood glucose levels is critical. One efficient strategy is to slow down the digestion process of ingested carbohydrates and starches and thus delay the glucose absorption by inhibiting the enzymes involved in the hydrolysis of dietary starches into glucose. Three a-glucosidases are involved in the complete digestion of dietary starches and sugars into glucose in intestine. The digestion is initiated by human pancreatic a-amylase (HPA) that hydrolyzing starch into shorter linear and branched dextrin chains. The resultant oligoglucans is eventually hydrolyzed at the nonreducing into glucose by two small-intestinal brush-border exohydrolases:maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM has two independent functional catalytic domains. Therefore, a-glucosidase is becoming one of the crucial targets for anti-diabetes drugs research and development.
     Natural products have long proved to be valuable sources, and various enzyme inhibitors are derived from natural products. Screening a-glucosidase inhibitors for anti-diabetes drugs development from natural products has been a central topic in drug discovery. Firstly, a library of TCM extracts that including411kinds of TCM was constructed. A high-throughput screening (HTS) method was established for a-glucosidase inhibitors screening against MGAM-N, MGAM-C and HP A.23kinds of TCM extracts has significant MGAM-N inhibitory activity;20kinds of TCM showed notably inhibitory effect against MGAM-C;16kinds of TCM could inhibit the activity of HPA efficiently. Compared the TCM with a-glucosidase inhibitory activity, the TCM that has inhibitory activity against MGAM-N'and MGAM-C were different from the TCM with HPA inhibitory activity.
     20strains with MGAM-C inhibitory activity were found in the process of the high throughput screening of actinomycetes broth against MGAM-C. Pre-column derivatization HPLC method was applied for screening1-deoxynojirimycin (DNJ) producing strains. DNJ was detected from the broth of strain PW409. Polyphasic taxonomy studies verified strain PW409belonged to Streptomyces gobitrici. Biological activity based HPLC-Q/TOF method was established for screening and identifying a-glucosidase inhibitors in the broth of strain PW409, DNJ and miglitol was identified as the active compounds. The quantification analysis indicated the content of DNJ and miglitol were11.2mg/L and95.8mg/L. The studies provided new strain resource for α-glucosidase development.
     AIB656was extracted from the broth of Strain ZG656, which has extremely strong α-amylase inhibitory activity. The efficient MGAM-N and MGAM-C inhibitory activity were also comfirmed. Multi-targets based biological activity discovery and evaluation system was established for screening and identification of α-glucosidase inhibitors.51acarviostatins was identified in AIB656by UPLC-Q/TOF.5fractions had efficient MGAM-N inhibitory activity;8fractions showed strong MGAM-C inhibitory effect;9fractions demonstrated excellent HPA inhibitory activity. The biological practical screening and molecular docking results elucidated the smaller molecules showed remarkable MGAM-N inhibitory activity; Acarviostatin with3-5mimic sugar rings showed strong inhibitory ability against MGAM-C; The larger acarviostatins molecules (6-15mimic sugar rings) had significant HPA inhibitory activity. The results clarified the selectivities of the three different α-glucsosidase to various sizes inhibitors were quite distinct. Molecular docking and interaction study showed acarviostatin10-1firmly binded to the active site of MGAM-N by forming hydrogen bond with Asp327, Asp542, His600and Asp203. acarviostatin10-1occupied the binding site (subsite-1and+1) in the catalytic center of MGAM-N perfectly. Acarviostatin101spanned the binding site (subsite-1and+1,+2,+3) in the catalytic center of MGAM-C completely and formed stable binding state. The results clarified the mechanism in structure biology that acarviostatin10-1is the best MGAM-N inhibitors and acarviostatin101is the best MGAM-C inhibitors in acarviostatins.
     The pharmacokinetics and bioavailability of a-glucosidase inhibitor were studied. The result indicated that the absorption rate of a-glucosidase inhibitor was very fast. The Cmax of DNJ was0.8h, and the absolute bioavailability of DNJ was55.02%. Considering quickly absorption of DNJ would decrease the inhibitory activity in intestine, adjuvants was selected for changing the absorption characteristics. The pharmacokinetics of DNJ indicated the Cmax and AUC of DNJ were significantly decreased by CMCNa. CMCNa could postpone the absorption rate of DNJ in intestine. The oral glucose test verified the pharmacodynamics of DNJ was improved by CMCNa.
     The systematically a-glucosidase inhibitor discovery and screening approaches were established based the combination of HPLC-MS, molecular docking and enzyme evaluation. Comprehensive multi-targets including MGAM-N, MGAM-C and HPA based a-glucosidase inhibitor screening were proceeded against the extracts of TCM and secondary metabolites of actinomycetes. The reaults and structure biology studies clarified the distinct selectivities of the three a-glucosidases to various sizes inhibitors. The combination of different a-glucosidase inhibitors or composite intervention was probably more effective for diabetes treatment, which was of importance for the a-glucosidase inhibitors type anti-diabetes drugs research and development.
引文
[1]陈迎春,抗糖尿病药物瑞格列奈中间体的合成研究[D].吉林大学2007.
    [2]杨潇,陈祥贵,代娟.基于细胞水平的2型糖尿病药物筛选模型研究进展[J].中国药房,2006,17(19).
    [3]关子安,周镔,荀永学,现代糖尿病学[M].Vol.331,天津科学技术出版社,2000.
    [4]昌玉兰.糖尿病药物治疗新进展[J].华中医学杂志,2001,25(3):131-132.
    [5]杜伟奇,施秀芳,邱明艳等.治疗糖尿病药物的研究进展[J].中国医院药学杂志,2005,25(1):67-69.
    [6]陈灏珠.内科学第[J].北京:人民卫生出版社Ⅰ,1996,997:275.
    [7]颜晓燕,盛艳梅,莫正纪.几类新型糖尿病治疗药物近期研究进展[J].四川生理科学杂志,2006,28(2):74-76.
    [8]J. A. Davidson. Important Considerations for Clinical Decision Making: Renal Impairment in Patients with Type 2 Diabetes [J]. Endocrine Practice,2013,19: 7-7.
    [9]马培奇.新型抗糖尿病药物的开发及其市场预测[J].药学进展,2005,29(8):381-382.
    [10]梁渊,程锦泉,彭绩等.2型糖尿病药物常规治疗与强化治疗的生理指标与主观指标评价[J].中国药房,2008,19(2):118-118.
    [11]田金英,张天娇,叶菲等.口服降血糖药物概况[J].临床和实验医学杂志,2005,4(2):105-108.
    [12]孙琳.糖尿病并发症研究进展[J].中国民康医学,2012,24(2):228-228.
    [13]R. J. Mahler, M. L. Adler. Type 2 diabetes mellitus:update on diagnosis, pathophysiology, and treatment [J]. Journal of Clinical Endocrinology & Metabolism,1999,84(4):1165-1171.
    [14]J. A. Colwell. Intensive Insulin Therapy in Type Ⅱ Diabetes [J]. Diabetes, 1996,45:3.
    [15]P. Reichard, B. Y. Nilsson, U. Rosenqvist. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus [J]. New England Journal of Medicine,1993,329(5): 304-309.
    [16]B. Gaster, I. B. Hirsch. The effects of improved glycemic control on complications in type 2 diabetes [J]. Archives of Internal Medicine,1998, 158(2):134.
    [17]王长江.口服抗糖尿病药物的合理选择[J].安徽医学,2009,30(4):362-363.
    [18]刘丽莹,黎刚,黄永英等.抗糖尿病药物的药理研究进展[J].中国医药导报,2009,6(25):8-10.
    [19]P. Rorsman. The pancreatic beta-cell as a fuel sensor: an electrophysiologist's viewpoint [J]. Diabetologia,1997,40(5):487-495.
    [20]D. R. Guay. Repaglinide, a Novel, Short - Acting Hypoglycemic Agent for Type 2 Diabetes Mellitus [J]. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy,1998,18(6):1195-1204.
    [21]赵赛,朱雄,王尔华.口服2型糖尿病药物的研究进展[J].安徽医药,2006,10(3):161-163.
    [22]郭丰广,郝吉福,孝建华等.抗糖尿病药物研究进展[J].泰山医学院学报,2008,29(3):4-4.
    [23]沈澄.口服降糖药及其合理选择[J]. Chinese General Practice,2002,5(0): 2.
    [24]S. Schwartz, R. Goldberg, P. Strange. Repaglinide in type 2 diabetes:a randomized, double blind, placebo-controlled, dose-response study. Repaglinide Study Group [J]. Diabetes,1998,47(Suppl 1):A98.
    [25]韩莹,王秋娟.治疗糖尿病药物的研究进展[J].中国新药杂志,2000,9(7):442-448.
    [26]吴畏.糖尿病药物治疗进展[J].医学理论与实践,2010,23(003):280-282.
    [27]陈卫琼.糖尿病口服药物概况[J].Gut,2005:117.
    [28]邵丙扬.二甲双胍在糖尿病治疗中的地位[J].德国医学,16(2):79-81.
    [29]C. J. Bailey, R. C. Turner. Metformin [J]. The New England journal of medicine,1996,334(9):574.
    [30]D. G. Maggs, T. A. Buchanan, C. F. Burant, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitusa randomized, double-blind, placebo-controlled trial [J]. Annals of internal medicine,1998, 128(3):176-185.
    [31]杨奇红,郑燕芳.糖尿病胰岛素抵抗的中西医研究进展[J].甘肃中医,2002,15(6):79-82.
    [32]A. R. Saltiel, J. M. Olefsky. Thiazolidinediones in the treatment of insulin resistance and type II diabetes [J]. Diabetes,1996,45(12):1661-1669.
    [33]夏汉通,夏顶平.糖尿病药物及其治疗进展[J].实用全科医学,2008,6(5):520-521.
    [34]林玉宽,高颖.2型糖尿病药物治疗新进展[J].中华现代内科学杂志,2007,4(2):135-135.
    [35]梁勤英.糖尿病药物发展概述[J].中国临床医药研究杂志,2006,(09X):36-38.
    [36]何戎华.糖尿病药物治疗进展[J].中国厂矿医学,1994,19(4):289-290.
    [37]B. Junge, M. Matzke, J. Stoltefuss. Chemistry and structure-activity relationships of glucosidase inhibitors [J]. Handbook of experimental pharmacology,1996,119:411-482.
    [38]H. E. Lebovitz. Alpha-glucosidase inhibitors [J]. Endocrinology and metabolism clinics of North America,1997,26(3):539-551.
    [39]黄世杰.两个新作用机制的抗糖尿病药物[J].国外医学:药学分册,2006,33(6):435-435.
    [40]焦伟杰,朱崇泉,赖宜生等.新型抗糖尿病药物二肽基肽酶Ⅳ抑制剂[J].药学进展,2008,32(7):289.
    [41]沙向阳,张惠斌,周金培.以二肽基肽酶Ⅳ为靶点的抗糖尿病药物[J].药学进展,2006,30(6):241-246.
    [42]崔秀玲,张爱荣.糖尿病药物治疗新进展[J].现代保健:医学创新研究,2007,(09X):22-23.
    [43]井源,韩婷,吴静等.糖尿病药物治疗学新进展——第19届IDF糖尿病大会侧记[J].实用糖尿病杂志,2008,4(3):9-10.
    [44]巢濛磊,王卫庆.新型抗糖尿病药物研究进展[J].上海交通大学学报,2009,29(2).
    [45]张玲,李青,夏作理等.预防治疗2型糖尿病药物分子作用靶点的相关研究与进展[J].中国组织工程研究与临床康复,2007,11(4):729-732.
    [46]D. Gumucio, K. Wiebauer, R. Caldwell, et al. Concerted evolution of human amylase genes [J]. Molecular and cellular biology,1988,8(3):1197-1205.
    [47]S. Chiba. Handbook of amylases and related enzymes [M]. The Amylase Research Society of Japan, Pergamon Press, Oxford,1988:104-116.
    [48]G. D. Brayer, Y. Luo, S. G. Withers. The structure of human pancreatic a-amylase at 1.8 A resolution and comparisons with related enzymes [J]. Protein science,1995,4(9):1730-1742.
    [49]E. H. Rydberg, G. Sidhu, H. C. Vo, et al. Cloning, mutagenesis, and structural analysis of human pancreatic [alpha]-amylase expressed in Pichia pastoris [J]. Protein science,1999,8(03):635-643.
    [50]G. D. Brayer, G. Sidhu, R. Maurus, et al. Subsite mapping of the human pancreatic a-amylase active site through structural, kinetic, and mutagenesis techniques [J]. Biochemistry,2000,39(16):4778-4791.
    [51]H. A. Ernst, L. Leggio, M. Willemoes, et al. Structure of the Sulfolobus solfataricus alpha-glucosidase:implications for domain conservation and substrate recognition in GH31 [J]. Journal of molecular biology,2006,358(4): 1106.
    [52]B. L. Nichols, S. Avery, P. Sen, et al. The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities [J]. Proceedings of the National Academy of Sciences,2003,100(3): 1432-1437.
    [53]H. Heymann, S. Gunther. Calculation of subsite affinities of human small intestinal glucoamylase-maltase [J]. Biological Chemistry Hoppe-Seyler,1994, 375(7):451-456.
    [54]H. Heymann, D. Breitmeier, S. Gunther. Human small intestinal sucrase-isomaltase: different binding patterns for malto-and isomaltooligosaccharides [J]. Biological Chemistry Hoppe-Seyler,1995, 376(4):249.
    [55]S. Gunther, A. Wehrspaun, H. Heymann. Maltitol and maltobionate act differently on maltose-and maltooligosaccharide hydrolysis by human small intestinal glucoamylase-maltase indicating two different enzyme binding modes [J]. Archives of biochemistry and biophysics,1996,327(2):295-302.
    [56]L. Sim, R. Quezada-Calvillo, E. E. Sterchi, et al. Human intestinal maltase-glucoamylase:crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity [J]. Journal of molecular biology,2008,375(3):782.
    [57]E. J. Rossi, L. Sim, D. A. Kuntz, et al. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives [J]. FEBS Journal,2006, 273(12):2673-2683.
    [58]L. Ren, X. Qin, X. Cao, et al. Structural insight into substrate specificity of human intestinal maltase-glucoamylase [J]. Protein & cell,2011,2(10): 827-836.
    [59]B. Lee, F. M. Richards. The interpretation of protein structures:estimation of static accessibility [J]. Journal of molecular biology,1971,55(3):379-IN374.
    [60]L. Sim, C. Willemsma, S. Mohan, et al. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains [J]. Journal of Biological Chemistry,2010,285(23):17763-17770.
    [61]E. M. Danielsen. Dimeric assembly of enterocyte brush border enzymes [J]. Biochemistry,1994,33(6):1599-1605.
    [62]M. A. Hediger, D. B. Rhoads. Molecular physiology of sodium-glucose cotransporters [J]. Physiological reviews,1994,74(4):993-1026.
    [63]B. Thorens. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,1996,270(4):G541-G553.
    [64]C. Cheeseman. GLUT2 is the transporter for fructose across the rat intestinal basolateral membrane [J]. Gastroenterology,1993,105(4):1050.
    [65]F. Stumpel, R. Burcelin, K. Jungermann, et al. Normal kinetics of intestinal glucose absorption in the absence of GLUT2:evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum [J]. Proceedings of the National Academy of Sciences,2001,98(20): 11330-11335.
    .[66] A. Harvey. Strategies for discovering drugs from previously unexplored natural products [J]. Drug discovery today,2000,5(7):294-300.
    [67]周青.治疗糖尿病药物的研究进展[J].福建中医药,2005,36(5).
    [68]高小平,张蔚瑜,邹文俊等.中药提取物中α-葡萄糖苷酶抑制剂的筛选[J].天然产物研究与开发,2003,6.
    [69]N. Jong-Anurakkun, M. R. Bhandari, G. Hong, et al. a-Glucosidase inhibitor from Chinese aloes [J]. Fitoterapia,2008,79(6):456-457.
    [70]S.-S. Lee, H. C. Lin, C.-K. Chen. Acylated flavonol monorhamnosides, a-glucosidase inhibitors, from Machilus philippinensis [J]. Phytochemistry, 2008,69(12):2347-2353.
    [71]单连海,郭海霞.口服Ⅱ型糖尿病药物研究进展[J].中国教育发展研究杂志,2008,5(003):83-84.
    [72]沈萍,陈向东,卫扬保,微生物学,高等教育出版社,2009.
    [73]姜成林.放线菌资源开发利用[J].工业微生物,1989,19(6):31-35.
    [74]H. Friedel, P. Todd. Nabumetone. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in rheumatic diseases [J]. Drugs,1988,35(5):504.
    [75]王家驰.新一代α-葡萄糖苷酶抑制剂—伏格列波糖(倍欣)[J].中国糖尿病杂志,1999,7(2):126-127.
    [76]L. J. Scott, C. M. Spencer. Miglitol [J]. Drugs,2000,59(3):521-549.
    [77]L. Sim, K. Jayakanthan, S. Mohan, et al. New glucosidase inhibitors from an Ayurvedic herbal treatment for type 2 diabetes:structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata [J]. Biochemistry,2009,49(3):443-451.
    [78]T. Mahmud. The C7N aminocyclitol family of natural products [J]. Natural product reports,2003,20(1):137-166.
    [79]H. Dong, T. Mahmud, I. Tornus, et al. Biosynthesis of the Validamycins: Identification of Intermediates in the Biosynthesis of Validamycin A by Streptomyces hygroscopicus var. 1 imoneus [J]. Journal of the American Chemical Society,2001,123(12):2733-2742.
    [80]Y. Horii, K. Fujita, M. Owhashi. Partial purification and characterization of eosinophil chemotactic factors from soluble extract of Fasciola species [J]. American journal of veterinary research,1986,47(1):123.
    [81]P. Geng, G. Bai. Two novel aminooligosaccharides isolated from the culture of Streptomyces coelicoflavus ZG0656 as potent inhibitors of a-amylase [J]. Carbohydrate research,2008,343(3):470-476.
    [82]P. Geng, X. Meng, G. Bai, et al. Profiling of acarviostatin family secondary metabolites secreted by Streptomyces coelicoflavus ZG0656 using ultraperformance liquid chromatography coupled with electrospray ionization mass spectrometry [J]. Analytical chemistry,2008,80(19):7554-7561.
    [83]S. Inouye, T. Tsuruoka, T. Nida. The structure of nojirimycin, a piperidinose sugar antibiotic [J]. The Journal of antibiotics,1966,19(6):288.
    [84]A. Watson, G Fleet, N. Asano, et al. Polyhydroxylated alkaloids-natural occurrence and therapeutic applications [J]. Phytochemistry,2001,56(3): 265-295.
    [85]P. Joubert, G. Foukaridis, M. Bopape. Miglitol may have a blood glucose lowering effect unrelated to inhibition of alpha-glucosidase [J]. European journal of clinical pharmacology,1987,31(6):723-724.
    [86]I. Hemmila, S. Webb. Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications [J]. Drug discovery today,1997,2(9):373-381.
    [87]H.-C. Liu, Z. He, Z. Rosenwaks. Application of complementary DNA microarray (DNA chip) technology in the study of gene expression profiles during folliculogenesis [J]. Fertility and sterility,2001,75(5):947-955.
    [88]D. Joseph-McCarthy. Computational approaches to structure-based ligand design [J]. Pharmacology & therapeutics,1999,84(2):179-191.
    [89]韩博,陈文,杨春梅.高通量筛选技术在中药研究的应用[J].江西中医学院学报,2005,17(5):36-38.
    [90]J. R. Broach, J. Thorner. High-throughput screening for drug discovery [J]. Nature,1996,384(6604):14-16.
    [91]J. ZHANG, T. D. Chung, K. R. Oldenburg. Validation of High Throughput Screening Assays [J]. Journal of biomolecular screening,1999,4(2).
    [92]S. A. Sundberg. High-throughput and ultra-high-throughput screening: solution-and cell-based approaches [J]. Current Opinion in Biotechnology, 2000,11(1):47-53.
    [93]R. Hertzberg, A. J. Pope. High-throughput screening: new technology for the 21st century [J]. Current opinion in chemical biology,2000,4(4):445-451.
    [94]J. Trias. The role of combichem in antibiotic discovery [J]. Current opinion in microbiology,2001,4(5):520-525.
    [95]锚志红,蒋志胜.药物筛选新方法-高通量筛选[J].生物学通报,2003,38(3).
    [96]J. S. Major. Minireview:Challenges of High Throughput Screening Against Cell Surface Receptors [J]. Journal of Receptors and Signal Transduction, 1995,15(1-4):595-607.
    [97]C.-f. WU, Y. XU, Y.-p. LI. Progress on research of screening methods for-alpha-glucosidase inhibitors from Chinese medicinal herbs [J]. International Journal of Pharmaceutical Research,2008,1:004.
    [98]刘立超,吕点点,李先磊.高通量筛选在中药研究中的应用[J].畜牧与饲料科学,2009,30(4):19-19.
    [99]杨润军,李青旺,赵蕊.四氧嘧啶与链脲佐菌素诱导小鼠糖尿病模型的效果比较[J].西北农林科技大学学报(自然科学版),2006,34(2):23-26.
    [100]M. Ganzera. Recent advancements and applications in the analysis of traditional Chinese medicines [J]. Planta medica,2009,75(07):776-783.
    [101]A. Marston, K. Hostettmann. Natural product analysis over the last decades [J]. Planta medica,2009,75(07):672-682.
    [102]X. Su, L. Kong, X. Li, et al. Screening and analysis of bioactive compounds with biofingerprinting chromatogram analysis of traditional Chinese medicines targeting DNA by microdialysis/HPLC [J]. Journal of Chromatography A,2005,1076(1):118-126.
    [103]S.L. Li, P. Li, L.H. Sheng, et al. Live cell extraction and HPLC-MS analysis for predicting bioactive components of traditional Chinese medicines [J]. Journal of pharmaceutical and biomedical analysis,2006,41(2):576-581.
    [104]X. Zhao, H. Lu, J. Huang, et al. Binding Interaction Between Prazosin and Immobilized Receptor by Frontal Analysis [J]. Chromatographia,2012, 75(7-8):411-415.
    [105]L. Yu, J. Zhao, Q. Zhu, et al. Macrophage biospecific extraction and high performance liquid chromatography for hypothesis of immunological active components in Cordyceps sinensis [J]. Journal of pharmaceutical and biomedical analysis,2007,44(2):439-443.
    [106]Y. Hou, X. Cao, L. Dong, et al. Bioactivity-based liquid chromatography-coupled electrospray ionization tandem ion trap/time of flight mass spectrometry for β2 AR agonist identification in alkaloidal extract of Alstonia scholaris [J]. Journal of Chromatography A,2012,1227:203-209.
    [107]郭凤霞,曾阳,陈振宁.来源于天然产物的α-葡萄糖苷酶抑制剂筛选研究进展概述[J].青海师范大学学报:自然科学版,2012,28(1):76-80.
    [108]H. Matsuura, H. Miyazaki, C. Asakawa, et al. Isolation of a-glusosidase inhibitors from hyssop (Hyssopus officinalis) [J]. Phytochemistry,2004,65(1): 91-97.
    [109]朱亚利,张德甫,张茜等.22味中药体外对α-葡萄糖苷酶的抑制作用[J].中华中医药杂志,2010,12:064.
    [110]朱文佳,朱林敏,周锋伟等.12味药食两用中药抑制α-葡萄糖苷酶作用研究[J].大连工业大学学报ISTIC,2011,30(5).
    [111]季芳,肖国春,董莉等.药用植物来源的α-葡萄糖苷酶抑制剂研究进展[J].中国中药杂志,2010,35(12):1633-1640.
    [112]罗培,莫正纪.优化山茱萸中α-葡萄糖苷酶抑制剂的提取工艺[J].华西药学杂志,2004,19(4):273-274.
    [113]韩淑英,李继安,姜春花等.10味中药提取物对α-葡萄糖苷酶的抑制作用[J].中华中医药杂志,2009,24(8):1035-1037.
    [114]杨秀芳,吴明鑫.虎杖中α-葡萄糖苷酶抑制剂的初步研究[J].中成药,2008,30(1):4-6.
    [115]吴晓青.何首乌化学成分与药理活性的研究进展[J].时珍国医国药,2009,20(1):146-147.
    [116]陈浙江,袁萍,叶晓平等.治疗糖尿病常用中药对α-葡萄糖苷酶和α-淀粉酶的抑制活性研究[J].中成药,2008,30(11):1661-1664.
    [117]X. Qin, L. Ren, X. Yang, et al. Structures of human pancreatic alpha-amylase in complex with acarviostatins:Implications for drug design against type II diabetes [J]. J Struct Biol,2011,174(1):196-202.
    [118]C. A. Tarling, K. Woods, R. Zhang, et al. The search for novel human pancreatic alpha-amylase inhibitors:high-throughput screening of terrestrial and marine natural product extracts [J]. Chembiochem,2008,9(3):433-438.
    [119]T. Ochiai, T. Sugita, R. Kato, et al. Screening of an alpha-amylase inhibitor peptide by photolinker-peptide array [J]. Biosci Biotechnol Biochem,2012, 76(4):819-824.
    [120]S. Inouye, T. Tsuruoka, T. Nida. The structure of nojirimycin, a piperidinose sugar antibiotic [J]. J Antibiot (Tokyo),1966,19(6):288-292.
    [121]R. Eskandari, K. Jones, D. R. Rose, et al. Selectivity of 3'-O-methylponkoranol for inhibition of N- and C-terminal maltase glucoamylase and sucrase isomaltase, potential therapeutics for digestive disorders or their sequelae [J]. Bioorg Med Chem Lett,2011,21(21): 6491-6494.
    [122]T. Mahmud. The C7N aminocyclitol family of natural products [J]. Nat Prod Rep,2003,20(1):137-166.
    [123]L. Ren, X. Cao, P. Geng, et al. Study of the inhibition of two human maltase-glucoamylases catalytic domains by different alpha-glucosidase inhibitors [J]. Carbohydr Res,2011,346(17):2688-2692.
    [124]M.-J. Seo, Y.-D. Nam, S.-Y. Lee, et al. Isolation of the Putative Biosynthetic Gene Cluster of 1-Deoxynojirimycin by Bacillus amyloliquefaciens 140N, Its Production and Application to the Fermentation of Soybean Paste [J]. Bioscience Biotechnology and Biochemistry,2013,77(2):398-401.
    [125]朱运平,李秀婷,李里特.Bacillus subtilis B2产1-脱氧野尻霉素(DNJ)[J].食品科学,2010,31(17).
    [126]S. Murao, S. Miyata. Isolation and characterization of a new trehalase inhibitor, S-GI [J]. Agricultural and biological chemistry,1980,44.
    [127]D. C. Stein, L. K. Kopec, R. E. Yasbin, et al. Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin [J]. Appl Environ Microbiol,1984,48(2):280-284.
    [128]J. W. Kim, S. U. Kim, H. S. Lee, et al. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography [J]. J Chromatogr A,2003,1002(1-2):93-99.
    [129]G. M. Morris, D. S. Goodsell, R. S. Halliday, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function [J]. Journal of computational chemistry,1998,19(14):1639-1662.
    [130]J. Gasteiger, M. Marsili. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges [J]. Tetrahedron,1980, 36(22):3219-3228.
    [131]R. J. Russell, L. F. Haire, D. J. Stevens, et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design [J]. Nature,2006,443(7107):45-49.
    [132]A. P. Ruymgaart, R. Elber. Revisiting Molecular Dynamics on a CPU/GPU system:Water Kernel and SHAKE Parallelization [J]. J Chem Theory Comput, 2012,8(11):4624-4636.
    [133]K. M. Masukawa, P. A. Kollman, I. D. Kuntz. Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations [J]. J Med Chem,2003,46(26):5628-5637.
    [134]L. Li, V. N. Uversky, A. K. Dunker, et al. A computational investigation of allostery in the catabolite activator protein [J]. J Am Chem Soc,2007,129(50): 15668-15676.
    [135]I. Stoica, S. K. Sadiq, P. V. Coveney. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases [J]. J Am Chem Soc,2008, 130(8):2639-2648.
    [136]P. Geng, F. Qiu, Y. Zhu, et al. Four acarviosin-containing oligosaccharides identified from Streptomyces coelicoflavus ZG0656 are potent inhibitors of alpha-amylase [J]. Carbohydr Res,2008,343(5):882-892.
    [137]P. Geng, X. Meng, G. Bai, et al. Profiling of acarviostatin family secondary metabolites secreted by Streptomyces coelicoflavus ZG0656 using ultraperformance liquid chromatography coupled with electrospray ionization mass spectrometry [J]. Anal Chem,2008,80(19):7554-7561.
    [138]R. Quezada-Calvillo, L. Sim, Z. Ao, et al. Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit [J]. J Nutr,2008,138(4):685-692.
    [139]R. Eskandari, K. Jones, D. R. Rose, et al. Probing the active-site requirements of human intestinal N-terminal maltase glucoamylase:the effect of replacing the sulfate moiety by a methyl ether in ponkoranol, a naturally occurring alpha-glucosidase inhibitor [J]. Bioorg Med Chem Lett,2010,20(19): 5686-5689.
    [140]L. Sim, R. Quezada-Calvillo, E. Sterchi, et al. Human intestinal maltase-glucoamylase:crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity [J]. J Mol Biol,2008,375(3): 782-792.
    [141]C. Tistaert, B. Dejaegher, Y. Vander Heyden. Chromatographic separation techniques and data handling methods for herbal fingerprints:a review [J]. Anal Chim Acta,2011,690(2):148-161.
    [142]D. Mochly-Rosen, K. Das, K. Grimes. Protein kinase C, an elusive therapeutic target? [J]. Nat Rev Drug Discov,2012,11(12):937-957.
    [143]Y. Ma-Lauer, J. Lei, R. Hilgenfeld, et al. Virus-host interactomes--antiviral drug discovery [J]. Curr Opin Virol,2012,2(5):614-621.
    [144]Y. Hou, X. Cao, L. Dong, et al. Bioactivity-based liquid chromatography-coupled electrospray ionization tandem ion trap/time of flight mass spectrometry for beta 2 AR agonist identification in alkaloidal extract of Alstonia scholaris [J]. J Chromatogr A,2012,1227:203-209.
    [145]B. Cheng, Y. Hou, L. Wang, et al. Dual-bioactivity-based liquid chromatography-coupled quadrupole time-of-flight mass spectrometry for NF-kappaB inhibitors and beta 2 AR agonists identification in Chinese Medicinal Preparation Qingfei Xiaoyan Wan [J]. Anal Bioanal Chem,2012, 404(8):2445-2452.
    [146]Y. Hou, X. Cao, L. Wang, et al. Microfractionation bioactivity-based ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry for the identification of nuclear factor-kappaB inhibitors and beta2 adrenergic receptor agonists in an alkaloidal extract of the folk herb Alstonia scholaris [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2012, 908:98-104.
    [147]D. C. Swinney, J. Anthony. How were new medicines discovered? [J]. Nature Reviews Drug Discovery,2011,10(7):507-519.
    [148]X. H. Ma, F. Zhu, X. Liu, et al. Virtual Screening Methods as Tools for Drug Lead Discovery from Large Chemical Libraries [J]. Current Medicinal Chemistry,2012,19(32):5562-5571.
    [149]D. Si, D. Zhong, Q. Xu. Two butylated aminooligosaccharides isolated from the culture filtrate of Streptomyces luteogriseus [J]. Carbohydr Res,2001, 335(2):127-132.
    [150]H. B. Chang, S. H. Kim, Y. I. Kwon, et al. Novel alpha-glucosidase inhibitors, CKD-711 and CKD-711a produced by Streptomyces sp. CK-4416. Ⅲ. Physico-chemical properties and structure elucidation [J]. J Antibiot (Tokyo), 2002,55(5):467-471.
    [151]L. Ren, X. Qin, X. Cao, et al. Structural insight into substrate specificity of human intestinal maltase-glucoamylase [J]. Protein Cell,2011,2(10): 827-836.
    [152]P. Geng, G. Bai. Two novel aminooligosaccharides isolated from the culture of Streptomyces coelicoflavus ZG0656 as potent inhibitors of alpha-amylase [J]. Carbohydr Res,2008,343(3):470-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700