用户名: 密码: 验证码:
不同轴压比框支短肢剪力墙斜柱式转换层结构的抗震试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在高层建筑转换层结构中,转换梁的应用最为广泛,从结构传力方式看,转换梁具有传力直接、明确和传力途径清楚的优点。但梁式转换也存在着诸如梁截面尺寸过大从而影响净空高度、梁刚度过大可能形成“强梁弱柱”现象、梁端支座区钢筋过密可能造成施工困难、梁自重大从而造成经济性较差等先天性的缺陷和不足。实际结构设计时,转换梁的截面尺寸往往是由受剪承载力决定的,而转换梁中对支座区段的截面受剪承载力要求往往远远高于对跨中区段的截面受剪承载力要求。如果采用整根梁取同一截面高度的习惯做法,显然不合理。因此,如果能设法增强转换梁在支座区段的抗剪承载力,就可以有效地降低其截面尺寸,从而避免和弥补梁式转换的先天缺陷和不足,本文正是基于这一思路提出了采用斜柱式转换的框支短肢剪力墙结构模型。
     针对目前工程中广泛应用但理论研究尚不完善的斜柱式转换框支短肢剪力墙结构,本文通过对三榀剪力墙轴压比分别为0.2、0.25、0.3的斜柱式框支短肢剪力墙结构试件在竖向荷载和水平低周反复荷载作用下的拟静力试验研究,观察并记录了试件的开裂、屈服以及裂缝发展过程,测定了结构的变形及钢筋的应变,详细描述了三个试件的整个破坏过程和钢筋应变发展规律,总结了该转换结构的基本受力特点。
     在试验和分析结果的基础上,揭示出该转换结构在竖向及水平荷载下的受力机理、承载能力、破坏形态以及水平荷载下的滞回特性、变形能力、延性系数等抗震耗能及其破坏机制等,同时还揭示出采用斜柱式转换框支短肢剪力墙结构在竖向荷载下以及水平荷载下的抗震性能,从而为实际工程中这种斜柱式转换结构给出合理的设计建议和构造做法。
     研究结果表明,采用斜柱式转换的框支短肢剪力墙结构具有良好的的屈服及破坏机制,经过合理设计的框支短肢剪力墙结构具有良好的抗震性能。此类结构滞回曲线的滞回环饱满,具有较好的延性性能和耗能能力,各层刚度分布比较均匀,其弹性及弹塑性变形过程中各层变形性能较为稳定。随着短肢剪力墙墙肢轴压比的减小,结构的延性和耗能有明显增强,极限承载能力也有提高,因此实际工程设计中要控制合适的轴压比。
At present, transfer beam finds a wide application as the transfer structure in high-rise buildings. As far as the load transferring mode of the structure is concerned, transfer beam has many advantages such as clear and direct load transferring path. However, transfer beam has also many disadvantages such as low headroom caused by great depth of beam, such as strong beam and weak column phenomenon caused by great stiffness of the beam, such as construction difficulty caused by too dense steel bars in the support, such as uneconomical cost caused by great deadweight of the beam itself, and so on. In actual structural design, section dimensions of the transfer beam are at the mercy of bearing capacity for shear. It requires more great bearing capacity for shear in the support than in the mid-span of a transfer beam, and so it is unreasonable that a constant beam to be adopted in design. If a way to reinforce the bearing capacity for shear in the support can be found, section dimensions of the transfer beam will be diminished so as to make up the inborn deficiency of the transfer beam. Based on the idea above, this paper propounds a inclined column-shaped transfer frame-supported short-leg shearwall structure model.
     There is still a shortage of theoretical studies on inclined column-shaped transfer frame-supported short-leg shearwall structure, though it has been applied in present projects. Through quasi-static experiments on three inclined column-shaped frame-supported short-leg shearwall structure specimens with respectively the ratio of the axial compression ranged from 0.2, 0.25, to 0.3 under the vertical load and horizontal cyclic load. Then, observe and record the cracking load, yield load and the development of cracks, measure the structure distortion and strain of steel bars, describe amply the two specimens’whole devastation process and the strain of steel bars development regulation and finally sum up the two kinds of transfer structures’basic behavior characters.
     The research and results of analysis will reveal the stress mechanics, bearing capacity and damage shape of the transfer structure under vertical load, and its seismic dissipation and damage mechanism like hysteretic characteristics, distortion ability, ductility factor under horizontal load, and the seismic behavior of the inclined column-shaped transfer frame-supported short-leg shearwall structure under vertical and horizontal load. Rational design suggestions and constructional requirements are proposed to the application of this structure in practical projects.
     The results of the experiment revealed that the inclined column-shaped transfer frame-supported short-leg shearwall structure has a good yield and damage mechanism, and the rationally designed frame-supported short-leg shearwall structure has a good seismic behavior. This sort of structure has a full hysteretic circle of the hysteretic loops, good ductility nature and dissipation ability, with a uniform distributed rigidity and a stable deformation nature for each layer in elastic and elastic-plastic deformation process. Along with the ratio of the axial compression of the short-leg shearwall being diminished, the ductility nature and dissipation ability of the structure is obviously enhanced, the bearing capacity is also enhanced a little. The analysis of the three specimens shows that the short-leg shearwall with a moderate ratio of the axial compression of the short-leg wall-leg has the best seismic behavior.
引文
[1]宁磊.高层建筑转换层设计与选型.河北建筑工程学院学报. 2007. Vol 25 No.3
    [2]徐培福等. JGJ 3-2002.高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社.
    [3]徐正忠等. GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社.
    [4]娄宇,魏琏,丁大均.梁式转换层设计中的一些问题探讨[J].四川建筑科学研究.1996.No1. P7-11
    [5]李杰,肖建庄等.钢筋混凝土异形柱结构振动台试验研究[J].土木工程学报. 2002.6: 7-12.
    [6]高向宇,周福霖等.多层异形柱框架隔震性能的试验研究[J].世界地震工程.1997.12:21-27
    [7]程绍革,陈善阳等.高层建筑短肢剪力墙结构振动台试验研究[J].建筑科学. 2000.2:12-16.
    [8]黄东升,程文禳,彭飞.短肢剪力墙的弹塑性性能研究[J].东南大学学报. 2003.3.
    [9]张晋,吕志涛.短肢剪力墙—筒体结构模型振动台试验研究[J].东南大学学报.2001.11:4-8
    [10]程绍革,陈善阳等.高层建筑短肢剪力墙结构振动台试验研究[J].建筑科学.2000.2:12-16
    [11] Gupta,R, P, and Goel, S.C. Dynamic Analysis of staggered Truss Framing System[J]. Journal of the Structural Division. ASCE Vol.98 No.stt. July. 1972.
    [12] Wolfgang Schueller High Rise Building Structures. John wiley and sons publishing,London, 1978.
    [13] Todorovska, Maria L. Base isolation by a soft first story with inclined columns[J].Journal of Engineering Mechanics. v12n 4. Apr 1999 ASCE.
    [14] Mee, A.L.Jordan, I.A.and Ward, M.A. Wall-Beam Frames Under Static Lateral Journal of the structural Division, ASCE Vol.101, No.ST2 Feb. 1975.
    [15] Fintel, M.Staggered. Transverse wall Beams for Multistory concrete Buildings[J]. Journal of the American Concrete Institute Vol.65, No.5. May, 1968.
    [16] F.X.Fan,X.R.Tang,B.J.Sun and Z.X.Guo. Optical Elastic Experimental Study on the transfer Truss Structure in Super-High-Rise building[J]. Journal of Southeast University. Vol.11, No.1A. Oct.1995.
    [17] Architectural Institute of Japan (1990). Design guidelines for earthquake resistant reinforced concrete buildings based on ultimate strength concept. November 1990.
    [18] Minoru Wakabayashi. Design of Earthquake-Resitant Buildings. Mc-Graw-Hill Book Company, New York, 1986.
    [19] XuPeiFu, HaoRuiKun, WuLianZhong. Seismic resitant design of shear wall structure with large space ground floor. Proc. of 3-rd Inter Conf. On Tall Buildings. Hong Kong and Guangzhou,1984.
    [20] Cheng-Tzu Thomas Hsu.T-Shape Reinforced Concrete Menbersunder Biaxial Bending and Axial Compression. Journal of Structure Engineering[J]. July-August 1989.
    [21] Cheng-Tzu Thomas Hsu. Biaxially Loaded L-Shape Reinforced Concrete Columns[J]. Journal of Structural Engineering.December 1985.
    [22] L.N.Ramamurthy and T.A.Hafeez Khan. L-Shape Column Design for Biaxial Eccentricity[J]. Journal of Structural Engineering. August 1985.
    [23]廖耘.框支短肢剪力墙结构受力分析[D].西南交通大学硕士论文. 2002.
    [24]唐文亨等.高层建筑大跨度预应力桁架转换层设计与施工[J].建筑结构. 2002. No1:43-46.
    [25]罗迪,罗兆辉.高层建筑转换层结构设计中的几个问题分析[J].天津城市建设学院学报. 1999.9.Vol.5 No.3.
    [26]王万钊,王安生等.钢筋混凝土桁架式结构在水平荷载下的性能试验研究[J].工程抗震No3. 1987.
    [27]曹秀萍,马耀庭.斜柱在深圳2000大厦高为转换中的应用[J].建筑结构. 2002.8:15-16
    [28]李豪邦.高层建筑中结构转换层的新形式-斜柱转换[J].建筑结构学报. 1997.4. Vol.18.No.2:41-45
    [29]茅於川,尤亚平.高层建筑V形柱式结构转换[J].建筑科学2001.2. Vol.17. No1:38-42
    [30]容柏生.高层住宅建筑中的短肢剪力墙结构体系[J].建筑结构学报. 1997.12 Vol.18. No.6
    [31]钟树生、曹林、鲁瑛.竖向荷载作用下钢筋混凝土斜柱-短肢剪力墙局部转换节点的试验研究.四川建筑科学研究. 2005. No.1
    [32]杨超策、钟树生、凌焕文.钢筋混凝土斜柱-剪力墙局部转换节点在竖向荷载作用下的受力性能的试验研究.重庆建筑. 2005. No.3:57-63
    [33]钟树生、王章浩、曹林.竖向荷载作用下变角斜柱局部转换节点研究.重庆大学学报(自然科学版).2005.5
    [34]钟树生、勾清媛、张翼.钢筋混凝土斜柱转换节点的非线性有限元分析[J].重庆建筑大学学报,2005,27: 57-62
    [35]钟树生、凌焕文、肖德周.竖向荷载下钢筋混凝土方柱—T形薄壁柱局部转换节点试验研究.四川建筑科学研究.2005. No.2
    [36]钟永慧,钟树生.不同轴压比框支短肢剪力墙加腋梁式转换结构抗震试验研究[D].重庆:重庆大学.2007.
    [37]黄淼,钟树生.不同转换梁截面高度的框支短肢剪力墙斜柱式转换结构的抗震试验研究[D].重庆:重庆大学.2008.
    [38]祁勇,钟树生.不同肢厚比框支短肢剪力墙斜柱式转换结构的抗震试验研究[D].重庆:重庆大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700