用户名: 密码: 验证码:
混凝土箱型结构的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究水平荷载作用方向、配箍率、纵筋率及轴压比等相关参数对钢筋混凝土(RC)箱型构件及活性粉末混凝土(RPC)箱型构件抗震性能的影响,本文对6根钢筋混凝土箱型墩和3根活性粉末混凝土箱型墩进行了试验研究,分析了不同水平荷载作用方向及配箍率等参数对箱型墩抗震性能的影响;提出了计入双轴水平力和轴力耦合效应的箱型桥墩截面恢复力模型,编制了桥墩在双向荷载作用下的全过程非线性数值分析程序;最后以一座主跨200m的预应力混凝土连续刚构桥为背景,拟定了一座同等跨径的预应力RPC连续刚构桥,通过与同跨径普通混凝土桥比较,探讨了RPC材料在大跨度梁式桥中应用的可行性。试验与理论分析结果表明:
     (1)在相同截面及配筋下,水平荷载加载方向是影响箱型墩抗震性能的一个重要因素。RPC箱型墩在常轴力和水平低周反复荷载共同作用下,均呈弯曲型破坏;滞回曲线呈梭形且比较饱满,表明其有较好的耗能能力; R-BP-34(沿试件截面矩形对角线方向加载)骨架曲线在极限承载力后表现出较快的下降趋势,而R-BP-0(沿强轴方向加载)和R-BP-90(沿弱轴方向加载)骨架曲线经过极限承载力后下降缓慢,均有强度下降平台,说明其延性较好;在试件出现明显的荷载退化之前,在同级荷载作用下,试件的承载能力随着加载位移的增大和荷载循环次数的增加无明显变化;出现明显的荷载退化之后,在同级荷载作用下,试件的强度随着加载位移的增大和荷载循环次数的增加产生明显的衰减,这种现象R-BP-34最明显,R-BP-0次之,所有试件均表现出较好的延性,延性系数均大于4,其中R-BP-90延性最好,R-BP-0次之。对于RC箱型墩来说:从0度方向(即强轴方向)对试件施加低周反复荷载时,其承载力最高;从90度方向(即弱轴方向)对试件施加低周反复荷载时,其承载力最低,而延性则最好;而对试件进行斜向加载时,承载力居中,而延性最差。
     (2)在水平加载方向和轴压比等参数相同的情况下,不同配箍率对试件抗震性能的影响较大。对于RC箱型墩,配箍率不同的试件,其滞回曲线不同。对于配箍率为1%的试件,其滞回曲线均为梭形且比较饱满,说明该试件的耗能能力比较好,其滞回曲线的正负向在达到承载力峰值后承载力下降缓慢,而配箍率为0.5%的试件,其滞回曲线表现出一定的捏拢现象,相比之下,在侧向水平荷载达到最大值后,滞回曲线上没出现足够的稳定平台,具体表现为配筋率为1%试件的荷载峰值与配筋率为0.5%试件的荷载峰值相差不大,相对比值在0~5%之内;而配筋率为1%试件的墩顶位移峰值是配筋率为0.5%试件墩顶位移峰值的2.5倍以上。配箍率较高试件的延性明显比配箍率低的试件延性高,试件的变形能力较大。如试件BP-1-0及BP-1-34的极限位移分别为45.62mm及38.94mm;而试件BP-0.5-0及BP-0.5-34的极限位移分别为27.13mm及22.85mm。
     (3)分析各试件滞回特性和骨架曲线特点的基础上,提出了计入双轴水平力和轴力耦合效应的箱型桥墩恢复力模型,并编制了桥墩在单向荷载及双向荷载作用下的全过程非线性数值分析程序,理论分析结果与试验结果吻合良好,表明本文所提出的箱型桥墩恢复力模型及所编制程序的正确性。
     (4)无论是RPC箱型墩还是RC箱型墩,水平加载方向角对RPC与RC箱型桥墩的抗震性能都有较大影响,水平极限荷载随着水平荷载加载方向角(强轴方向定义为0度方向)的增大而减小。在同一轴压比下,弱轴受力试件延性要好于强轴受力试件,说明在同样的截面及配筋下,水平荷载加载方向角是影响试件延性的重要因素。位移延性系数并不随着加载方向角的增大而单调减小,当加载方向角小于某个值时,位移延性系数单调减小,而当加载方向角大于某个角度时,位移延性系数反而增加,对本文试件而言这个临界角度约在60°左右。水平荷载加载方向角度与试件耗能系数不是单调关系,而是存在某个临界角度,就本文试件来说,该临界角度约为60°,当施加荷载方向角小于60°时,耗能系数单调减小,而当施加荷载方向角大于60°时,耗能系数反而增加。
     (5)箱型墩的延性随着纵筋率的提高而降低,当轴压比较小时,特别是当轴压比小于0.30时,随着纵筋率的提高,位移延性系数迅速下降,这是因为当轴压比较小时,试件发生由纵筋控制的适筋破坏,墩的屈服位移或屈服曲率随着纵筋率提高而增加,但是墩的极限位移或极限曲率变化很小,从而墩的延性降低。而当轴压比大于0.30时,试件发生平衡破坏或者超筋破坏,此时试件的极限状态由混凝土控制,其屈服位移与极限位移很接近。
     (6)当纵筋率一定时,轴压比对墩顶极限水平承载力、位移延性系数及耗能系数都有影响,且对RPC与RC箱型桥墩的影响规律相同。对于RPC箱型桥墩试件来说,在纵筋率为1.9%~3.7%时,墩顶极限水平承载力并不随着轴压比的增大而单调增加,当轴压比在0.4左右,极限水平承载力达到最大值,之后承载力随着轴压比的增大而减小;而对于RC箱型桥墩试件在纵筋率为1.13%~2.54%时,当轴压比小于0.4时,试件水平极限承载力随着轴压比的增大而增大,当轴压比超过0.4时,水平极限荷载随着轴压比的增大反而减小。随着轴压比的增加,箱型墩位移延性系数及耗能系数单调减小,当轴压比在0.40与0.50之间时,试件延性系数及耗能系数减小趋势减缓。
     (7)通过对普通混凝土连续刚构及RPC连续刚构桥的受力性能及经济性方面的综合比较发现:RPC连续刚构桥结构的强度、刚度及整体稳定性都能满足规范要求,RPC连续刚构桥在地震响应方面具有明显优势,因结构自重的减轻,使得结构关键部位的内力响应尤其是墩身的内力值大为减小,高的断裂能及高韧性使结构构件可以吸收更多的地震能量,使得RPC桥墩能够较好的耗散地震能量,从而使结构能够获得更好的抗震性能。大跨预应力RPC连续刚构桥的混凝土用量、预应力钢筋用量及普通钢筋用量都大幅减少,同时RPC优异的力学性能使其在提高结构的使用寿命及减少维护费用方面将更具经济竞争力。
In the dissertation, the seismic performance of six reinforced concrete (RC) boxtype piers and three high performance concrete (RPC) box type piers were researchedwith the experimental methodology. The seismic performance of the box piers underthe loads with different directions and the influence of the stirrup ratio on its seismicperformance were analyzed mainly. Through experimental and theoretical method, theseismic performances of the box type piers including the anti-earthquake ductility,hysteresis curve, skeleton curve, and energy dissipation capacity were studiedrespectively. Based on the pre-stressed concrete continuous rigid frame bridge withmain span of200m, a pre-stressed RPC continuous rigid frame bridge with the samemain span was designed, the designed RPC and the RC bridge with the same spanwere used to discuss the seismic performance of high-pier bridge and to study thefeasibility of RPC applied in the big span beam typed bridge. The experimental andtheoretical analysis results are shown that:
     (1) In the situation of the same cross-section and reinforcement, the influenceof the direction of the horizontal loads on the seismic performance of box type pier issignificantly. The failure mode of the RPC box type pier is the bending-failure underthe axial force and laterally reversed low-cyclic loads, and its shape of hysteresiscurve is full and spindle-shaped and is showed as a good capacity of energydissipation. The skeleton curve of the R-BP-34(loading along the specimen directionof rectangular diagonal section) is showed a quick downward trend under it arrivedthe ultimate bearing capacity, while the skeleton curve of R-BP-0(loading along thestrong axis) and R-BP-90(loading along the weak axis) shows a slow decline trendwhen the skeleton curve arrived the ultimate bearing capacity. The curve shows thatthe piers have a down strength platform and a good ductility. Before the loaddegradation occurred in the specimen, the carrying capacity of the specimen had nosignificant change as the increscent of the loading displacement and the increas es ofthe number of loading cycles at the same level load. After the load degradationoccurred in the specimen, the carrying capacity of the specimen increased as theincreases of the loading displacement while a significant attenuation occurred withthe increases of the number of loading cycles at the same level load. The R-BP-34hadthe most obvious phenomenon, and the R-BP-0take the second place; All the specimens showed they had a good ductility (R-BP-90’s ductility is best, and R-BP-0is the second one) and the ductility coefficients were all larger than4. For RC boxtype pier: loading the low cyclic loading imposed on the specimen from the0degreedirection (the strong axis), it had a maximum carrying capacity, when loading the lowcyclic loading imposed on the specimen from the90degree direction (the weak axi s),it had a minimum carrying capacity, but it had a good capacity of ductility, however,when we loaded an oblique loading on the specimen, it got a middle bearing capacity,while it’s ductility was the worst.
     (2) At the same circumstances of horizontal loading direction and the axialcompression ratio, different stirrup ratio had great impact on the seismic properties ofthe specimen such as RC box-type pier; the specimens with different stirrup ratio hadthe different hysteresis curves. For the specimens with stirrup ratio of1%, thehysteresis curves are spindle and relatively plump, which can show that this specimenhad a good capacity of energy dissipation, but as for the specimens with the stirrupratio of0.5%, the hysteresis curves showed some pinch phenomenon, in contrast,when the in the lateral horizontal load reached maximum, hysteresis curve didn'tappear enough stable platform. The specimens with stirrup ratio of1%had almost thesame peak load(relative ratio in the range of0or5%) as the ones with stirrup ratioof0.5%; but the peak value of displacement of the pier on the top of the specimenswith stirrup ratio of1%was2.5times or more bigger than the one of the specimenswith stirrup ratio of0.5%. The ductility of the specimen with a higher stirrup ratiowas better than the lower ones. The deformability of the specimen was better. Such asthe limit displacement of specimens BP-1-0and BP-1-34were45.62mm and38.94mm respectively; while the limit displacement of specimens BP-0.5-0and BP-0.5-34were27.13mm and22.85mm respectively.
     (3) Based on the character of the hysteresis curves, the restoring force model ofbox type pier was established with considering the dual axle horizontal force couplingeffect. The nonlinear properties of the bridge pier under one-way and two-way loadswere analyzed, they are concluded that the hysteresis curve, moment-curvature theoryrelationship of the test pier cross-section and the relationship of load-displacement onthe top of the pier. Theoretical results are in good agreement with experimental results,and indicate that the analysis model is valid.
     (4) Both RPC and RC box test pier measured the shape of the skeleton curvewas similar to the theory of monotonic loading load-displacement curve in general,but the former's ultimate load was slightly lower. Load-displacement curve had a long decline platform under the condition of low axial compression ratio. With theincreases of the axial compressive ratio, the decline platform gradually disappeared,and load declined faster when the peak load appeared. Horizontal load loadingdirection angle had geart influence on the seismic behavior of both RPC and RC boxbridge pier. The displacement ductility ratio did not decrease monotonically as theangle of the load direction increased. When the loading direction angle is less than avalue, the displacement ductility ratio drab reduced, but when the loading directionangle was greater than a certain angle, the displacement ductility ratio increased onthe contrary.For this test specimen, the critical angle was60or so. The ductility of theweak axis force specimen was better than the strong ones at the same axialcompression ratio, which showed the horizontal load loading direction angle had greatinfluence on the ductility of the specimens at the same section and reinforcement. Theductility of the weak axis force specimen was better than the strong ones at the sameaxial compression ratio, which showed the horizontal load loading direction angle hadgreat influence on the ductility of the specimens at the same section andreinforcement.
     (5) The ductility of the box-type pier would be decreases with the increases oflongitudinal reinforcement ratio, when the axial compression ratio is very small,especially for the situation of the ratio no more than0.3, the trend of ductility of thebox-type pier would be decreases rapidly with the increases of longitudinalreinforcement ratio. This phenomenon would be explain that the ultimate state can becontrolled by the longitudinal reinforcement, which will limit the change of ultimatedisplacement and moment, and thus ductility of the box-type pier would be decreases.When the axial compression ratio more than0.3, the broken failure of the sampleswill be the over-compression failure or the equilibrium failure.
     (6) When the longitudinal reinforcement ratio was certain, axial compressionratio affected the pier top limit bearing capacity and the displacement ductility ratioand it had almost the same influence law for the box bridge pier of RPC&RC. As forthe RPC box pier specimens, when the longitudinal reinforcement ratio ranged from1.9%to3.7%, the pier top limit bearing capacity did not increase monotonically withthe increases of axial compression ratio, as the axial compression ratio was around0.4,the horizontal limit bearing capacity reaches a maximum value. As for the RC boxpier specimen,when the longitudinal reinforcement ratio ranged from1.13%to2.54%,as the axial compression ratio is less than0.4, specimen horizontal ultimate bearingcapacity increases with the increscent of the axial compression ratio, while the axial compression ratio exceeds0.4,the horizontal ultimate load decreases with theincreasment of axial compression ratio.
     (7)Taking an ordinary concrete continuous rigid frame for engineeringbackground, based on the main girder stress and structure stiffness for control goal,we drew up a pre-stressed RPC continuous rigid frame bridge with equal span.Comparing the mechanical performance and economical efficiency of the two bridgescomprehensively. There was a substantially amount decrease of concrete andpre-stressed reinforcement as well as the common reinforcement;at the same timeRPC will have more economic competitiveness in improving the using life ofstructure and reducing the maintenance costs because of its excellent seismicperformance.
引文
[1]吕西林,周德源,李思明.房屋结构抗震设计理论与实例.上海:同济大学出版社,1995,1-40
    [2]吴炎海,何雁斌.超高性能混凝土(RPC200)的配置试验研究.中国公路学报,2003,16(4):44-49
    [3]杨剑. CFRP预应力筋超高性能混凝土梁受力性能研究:[湖南大学博士论文].长沙:湖南大学,2007,19-22
    [4]单波.活性粉末混凝土基本力学性能的试验研究:[湖南大学硕士论文],长沙:湖南大学,2002,6
    [5] Cbeyrezy M, Maret V, Frouin L. Microstructural analysis of RPC. Cement andConcrete Research,1995,25(7):1491-1500
    [6] Bayard O. Fracture mechanics of reactive powder concrete: material modelingand experimental investigations. Engineering Fracture Mechanics,2003,(70):839-851
    [7] Powder Concrete. Journal of Materials in Civil Engineering,1996,8(1):1-6
    [8] Cwirzen A, Penttala V, Vornanen C. RPC mix optimization by determination ofthe minimum water requirement of binary and polydisperse mixtures. Innovationand Sustainability of Structures,2005,(1-3):2191-2201
    [9]何峰,黄政宇.养护制度对活性粉末混凝土(RPC)强度的影响研究.混凝土,2000,(5):31-34
    [10]闫光杰,阎贵平,安明喆.200MPa级活性粉末混凝土试验研究.铁道学报,2004,26(2):116-119
    [11]吴炎海,何雁斌.活性粉末混凝土(RPC200)的配置试验研究.中国公路学报,2003,16(4):44-49
    [12]龙广成,谢友均,陈瑜.养护条件对活性粉末砼(RPC200)强度的影响.混凝土与水泥制品,2001,(3):15-16
    [13] Dallaire E, Bonneau O, Lachemi M, et al. Mechanical behavior of confinedreactive powder concretes. In: Proceedings of the Materials EngineeringConference, Materials for the New Millennium, Washington:1996,(1),555-563
    [14] Karihaloo B, Vriese k. Short-Fiber reinforced reactive powder concrete. In:RILEM Proc.6,1999,53-63
    [15] Ple O, Vega E, Bernier G, et al. Biaxial tensile behavior of the reactive powderconcrete. In: AMER CONC209,2002,369-387
    [16] Bayard O, Ple O. Fracture mechanics of reactive powder concrete: materialmodeling and experimental investigations. Engineering Fracture Mechanics,2003,7097(80):839-851
    [17] Acker P, Behloul M. Ductal technology: A large spectrum of properties, a widerange of application. In: Proceedings of the International Symposium on UltraHigh Performance Concrete. Kassel:2004,11-23
    [18] Graybeal A.B. Characterization of the Behavior of Ultra-high PerformanceConcrete:[PhD thesis]. Park: The University of Maryland,2005
    [19] Kuznetsov, Valerian A. Strength and toughness of steel reinforced powderconcrete under blast loading. Transactions of Tianjin University,2006,12:70-74
    [20] Fujikake, Kazunori. Effects of strain rate on tensile behavior of reinforcedpowder concrete. Journal of Advanced Concrete Technology,2006,4(1):79-84
    [21]黄政宇,王艳,肖岩等.应用SHPB试验对活性粉末混凝土动力性能的研究.湘潭大学自然科学学报,2006,28(2):113-117
    [22]姚志雄,周瑞忠,石成恩.活性粉末混凝土断裂力学性能.福州大学学报,2005,33(2):196-200
    [23]石成恩,周瑞忠,姚志雄.活性粉末混凝土弯曲疲劳寿命研究.福州大学学报,2005,33(4):504-508
    [24]龙广成,谢友均,王培铭等.活性粉末混凝土的性能与微细观结构.硅酸盐报,2005,33(4):456-461
    [25]余自若,阎贵平.活性粉末混凝土(RPC)的断裂力学性能.中国安全科学学报,2005,15(8):101-104
    [26]张明波,阎贵平,闫光杰等.200MPa级活性粉末混凝土抗弯性能试验研究.北京交通大学学报,2007,31(1):81-84
    [27]安明喆,张立军. RPC材料的抗折强度尺寸效应研究.中国矿业大学学报,2007,36(1):38-41
    [28]余自若,安明喆,阎贵平.活性粉末混凝土的疲劳性能试验研究.中国铁道科学,2008,29(4):35-40
    [29]余自若,阎贵平,张明波.活性粉末混凝土的弯曲强度和变形特性.北京交通大学学报,2006,30(1):40-43
    [30]钟世云,王亚妹,高汉青.纤维对自密实活性粉末混凝土强度的影响.建筑材料学报,2008,11(5):522-527
    [31]鞠杨,贾玉丹,刘红彬等.活性粉末混凝土钢纤维增强增韧的细观机理.中国科学E辑:技术科学,2007,37(11):1403-1416
    [32]赖建中,孙伟,詹炳根.生态型RPC材料的断裂力学行为研究.东南大学学报(自然科学版),2004,34(1):92-95
    [33]赖建中,孙伟,焦楚杰.生态型RPC材料的动态力学性能.工业建筑,2004,34(12):63-66
    [34] Brian F. FHWA gives superior marks to concrete bridge girder. Civil EngineeringMagazine,2001,71(10):12-13
    [35] Vool J Y L, Foster S J, Gilbert R I. Shear strength of fibre reinforced reactivepowder concrete girders without stirrups. Australia: The Univ. of New SouthWales,2003,1-131
    [36] Sameer S. Behavioral Study of Ultra High Performance Concrete Girders:
    [Doctoral thesis of University of Maryland]. Maryland: The University ofMaryland,2004
    [37]陈彬.预应力RPC梁抗剪性能研究:[湖南大学硕士论文].长沙:湖南大学,2007
    [38]杨吴生.钢管活性粉末混凝土力学性能及其极限承载力研究:[湖南大学硕士论文].长沙:湖南大学,2004
    [39]吴炎海,林震宇.钢管活性粉末混凝土轴压短柱受力性能试验研究.中国公路学报,2005,18(1):57-62
    [40]闫志刚,阎贵平,吴萱.预应力活性粉末混凝土简支梁优化设计研究.北京交通大学学报:自然科学版,2005,29(1):18-22
    [41]余自若,阎贵平,唐国栋.活性粉末混凝土(RPC)箱梁剪力滞效应有限元分析.中国安全科学学报,2004,14(9):16-19
    [42]张明波,阎贵平,余自若等.活性粉末混凝土梁受弯非线性全过程分析.中国铁道科学,2008,29(3):51-55
    [43]万见明,高日.活性粉末混凝土梁正截面抗裂计算方法.建筑结构,2007,37(12):93-96
    [44] Pierre Y B, Marco C. Precast, prestressed pedestrian bridge-world’s first reactivepowder concrete structure. PCI Journal,1999,40(5):60-71
    [45] Behloul B, Lee KC. Ductal Seonyu footbridge. Structure Concrete,2003,4(4):195-201
    [46] Brian C, Gordan C. The world’s first ductal road bridge Shepherds Gully CreekBridge. In: CIA21stBiennial Conference, Brisbane:2003,1-11
    [47] Bierwagen D, Hawash A.A. Ultra high performance concrete highway bridge. In:Proceeding of the2005Mid-Continebt Transportation Symposium, Iowa,2005,1-14
    [48] Gil A,Castro M. Custom pulse generator for RPC testing. Instruments andMethods in Physics Research,2009,602(3),75-81
    [49] Candrlic V, Bleiziffer J, Mandic A. Bakar Bridge in reactive powder concrete. In:Proceedings of the Third International Conference on Arch Brid ge. Paris:2001,695-700
    [50] Huh S B, Byun Y J, Sim Y. Pedestrian arch bridge. Structural Engineering,International Journal of the International Association for Bridge and StructuralEngineering,2005,15(1),32-34
    [51] Rebentrost M, Wight G. Experience and applications of ultra-high performanceconcrete in Asia. In: Proceedings of the Second International Symposium onUltra High Performance Concrete. Kassel:2008,19-30
    [52]曹万会,高淑平. RPC混凝土在铁路预应力T形梁中的应用试验.铁道建筑技术,2009(7),105-108
    [53]闫志刚,季文玉,安明喆.活性粉末混凝土低高度梁设计及试验研究.土木工程学报,2009,42(5):96-102
    [54] Priestley M J N, Park R. Strength and ductility of concretebridge columns underseismic loading. ACI Structural Journal,1987,84(1):61-67
    [55] Dodd L L, Cooke N. The dynamic behavior of reinforced concrete bridge pierssubject to New Zealand seismicity. Research report, Department of CivilEngineering, University of Canterbury,2003,92-94
    [56] Yuk H C, Nigel M J. Priestley seismic retrofit of circular bridge columns forenhanced flexural performance. Structural Journal,1991,88(5):572-584
    [57]刘庆华,阎贵平,陈英俊.低配筋混凝土桥墩抗震性能的试验研究.北方交通大学学报,1996,20(5):33-36
    [58]鞠彦忠,阎贵平,李永哲.低配筋铁路桥墩抗震性能的试验研究.铁道学报,2004,26(5):91-95
    [59]孙卓,李建中,闫贵平.钢筋混凝土单柱式桥墩抗震性能试验研究.同济大学学报,2006,34(2):160-164
    [60] Mander J B, Priestley M J N, Park R. Behavior of ductile hollow reinforcedconcrete columns. New Zealand National Society for Earthquake Engineering,Wellington:1983,273-290
    [61] Whittaker D, Park R, Carr A J, Experimental tests on hollow circular concretecolumns for use in offshore concrete platforms.In: Pacific Conference onEarthquake Engineering, Waimkei:1987,213-224
    [62] Zahn R A, Park R, Priestley M J N. Flexural strength and ductility of circularhollow reinforced columns without confinement on inside face. ACI StructuralJournal,1990,87(2):156-166
    [63]新保弘,村山八洲雄,须田久美子等. RC中空断面柱部材の轴方向钢筋座屈抑制配筋法.见:土木学会年次讲演会讲演概要集.东京:土木学会,1995,850-851
    [64] Taylor A W, Rowell R B, Breen J E.Behavior of thin-walled concrete box piers.ACI Structural Journal,1995,92(3):319-333
    [65] Yoshikazu T, Hirokazu I. Inelastic seismic performance of RC tall piers withhollow sectio. In: Proceedings12thWorld Conference on EarthquakeEngineering,2000,1353-1358
    [66] Yeh Y K, Mo Y L, Yang C Y. Full-scale tests on rectangular hollow bridge piers.Materials and Structures,2002,35:117-125
    [67] Yeh Y K, Mo Y L, Yang C Y. Seismic performance of rectangular hollow bridgecolumns. Structual Engineering,2002,128(1):60-80
    [68] Yeh Y K, Mo Y L. Shear retrofit of hollow bridge piers with carbon polymersheets. Journal of Composites for Construction,2005,9(4):14-17
    [69]宋晓东.桥梁高墩延性抗震性能的理论与试验研究:[同济大学博士论文].上海:同济大学,2004,11-100
    [70]陈东,李睿.山区空心薄壁高墩的非线性稳定分析.交通标准化,2007,(4):132-135
    [71]叶勇凯.中空桥柱耐震能力的探讨.科学发展月刊,1999,28(2):90-932
    [72] Daniel C, Francois D L. Strain localization in confined high-strength concretecolunms. Structural Engineering,1997,123(9):1055-1061
    [73] Daniel C, Patrick P.High-strength concrete columns confined by rectangular ties.Structural Engineering,1994,120(3):783-804
    [74] Lin J, Foster S J, Atard M M.Strength of tied high-strength concrete columnsloaded in concentric compression. ACI Journal Structural,2000,97(1):149-156
    [75] Ibrahim H H H, MacCnegor J G. Tests of eccentrically loaded high strengthconcrete columns. ACI Journal Structural,1996,93(5):585-594
    [76] Xiao Y, Martirossyan A. Seismic performance of high-strength concrete colunms.Structural Engineering,1998,124(3):241-251
    [77] Li B.Strength and dectility of reinforced concrete and flames constructed usingHigh-strength concrete:[PhD thesis]. Christchurch: The University ofCanterbury,1994:19-55
    [78]侯长欣.高强钢筋高强混凝土压弯试件抗震性能的试验研究:[清华大学硕士论文].北京:清华大学,1993,25-59
    [79]关萍,王清湘.冷轧带肋钢筋作箍筋对高强混凝土柱延性的影响.见:高强与高性能混凝土及其应用第三届学术讨论会论文集.北京,中国土木工程学会,1998,384-388
    [80]李立仁,支运芳,陈永庆等.高强约束混凝土框架柱抗震性能的研究.重庆建筑大学学报,2002,24(5):38-45
    [81]肖潇.配有高强钢筋的高强混凝土柱的抗震性能研究:[沈阳建筑大学硕士论文].沈阳:沈阳建筑大学,2004,23-45
    [82]徐伟栋.配置高强钢筋的混凝土柱抗震性能研究:[同济大学硕士论文].上海:同济大学,2007,5-67
    [83]黄栋.RPC预制拼装桥墩受力性能研究:[北京交通大学硕士论文].北京:北京交通大学,2005,30-41
    [84]周轶峰.超高性能混凝土桥墩的受力性能研究:[北京交通大学硕士论文].北京:北京交通大学,2006,66-72
    [85]赵冠远,阎贵平.超高性能混凝土柱的抗震性能试验研究.中国安全科学学报,2004,14(7):94-97
    [86]许丽娜.超高性能混凝土桥墩的地震响应分析:[北京交通大学硕士论文].北京:北京交通大学,2006,19-72
    [87]郝文秀,阎贵平,钟铁毅等.反复荷载作用下超高性能混凝土箱型桥墩力学性能的试验研究.铁道学报,2009,31(5):60-64
    [88] Richard P, Cheyrezy M. Mechanical behaviors of reactive powder concretecolumns under lateral cyclic loading. Cement and Concrete Research,1995,25(7):1501-1511
    [89] Morina V, Tenoudji F C, Feylessoufib A. Superplasticizer effects on setting andstructuration mechanisms of ultrahigh-performance concrete. Cement andConcrete Research,2001,31:63-71
    [90] Morina V, Tenoudjia F C, Feylessoufib A, et al. Evolution of the mechanicalresponses in a reactive powder concrete during seismic action. Cement andConcrete Research,2002,32(12):1907-1914
    [91] Roh H, Reinhorn A M. Modeling and seismic response of structures with RPCcolumns and viscous dampers. Engineering Structures,2010,32(8):2096-2107
    [92]中华人民共和国建设部部颁标准.混凝土结构设计规范(GB50010-2010).北京:中国建筑工业出版社,2002,10-57
    [93]中华人民共和国建设部部颁标准.金属材料室温拉伸试验方法(GBT228.1-2010).北京:中国标准出版社,2002,298-300
    [94]张荣.钢筋混凝土异形柱抗震性能的试验研究:[同济大学硕士论文].上海:同济大学,2008,33-38
    [95]单波.FRP加固钢筋混凝土柱考虑地震及使用损伤的长期性能和修复:[湖南大学博士论文].长沙:湖南大学,2006,36-48
    [96]范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001,81-86
    [97]中华人民共和国行业标准.建筑抗震试验方法规程(JTJ101-96).北京:中国建筑工业出版社,1997,9-13
    [98]朱伯龙.结构抗震试验.北京:地震出版杜,1989,20-35
    [99]袁必果.钢筋混凝土压弯试件塑性铰的试验研究.南京工学院学报,1981,(3):117-129
    [100]原海燕.配筋超高性能混凝土受拉性能试验研究及理论分析:[北京交通大学博士论文].北京:北京交通大学,2009,56-64
    [101] ACI Committee224. Control of Cracking in Concrete Structure (ACI224R-95).ACI manual of Concrete Practice,1995,134-140
    [102] Lok T S, Pei J S. Flexural behavior of steel fiber reinforced concrete. Journalof Materials in Civil Engineering,1998,10(2):86-97
    [103]杨红,白绍良.基于变轴力和定轴力试验对比的钢筋混凝土柱恢复力滞回特征研究.工程力学,2003,20(6):58-64
    [104]杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究:[重庆建筑大学博士论文].重庆:重庆建筑大学,2000,99-101
    [105]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性分析有限元理论与应用.上海:同济大学出版社,2002,13-138
    [106]朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1986,50-167
    [107]代本明.箍筋约束混凝土桥墩延性与柱支梁桥抗震性能研究:[东南大学博士论文].南京:东南大学,2007,26-29
    [108] Richard P, Cheytezy M. Reactive powder concere with high ductility and200Mpa-800Mpa compressive strength. ACI SP144,1997,507-518
    [109] Cheyrezy M. Structural application of RPC. Concrete,1999(1):20-23
    [110]陈昀明,陈宝春,吴炎海.432米活性粉末混凝土拱桥的设计.世界桥梁,2005(1):1-4
    [111]彭德运,金卫兵.预制悬拼连续梁桥的设计方法.桥梁建设,2006(1):25-28
    [112]谢红兵.节段式混凝土桥梁设计和施工指导规范.国外桥梁,1993(4):297-315
    [113]中华人民共和国交通部部颁标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004,50-69
    [114]顾安邦,向中富,贺学峰等.大跨径斜拉桥抗风抗震和稳定分析.见:中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集.北京:人民交通出版社,2002,623-632
    [115]马保林,李子青.高墩大跨连续刚构桥.北京:人民交通出版社,2001,78-82
    [116]白浩,杨昀,赵小星.高墩大跨径弯连续刚构桥梁空间非线性稳定分析.公路交通科技,2005,22(5):111-113
    [117]中华人民共和国行业标准.公路桥涵设计通用规范(JTG D60-2004).北京:人民交通出版社,2004,28-56
    [118]颜全胜,戴公连.南昆线喜旧溪河大桥双肢薄壁高墩非线性分析.长沙铁道学院学报,1998,16(1):29-33
    [119]中华人民共和国交通部部标准.公路桥梁抗震设计细则(JTG/T B02-012008).北京:人民交通出版社,2008,8-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700