用户名: 密码: 验证码:
玄武岩纤维沥青混凝土性能研究与增强机理微观分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面以其独特的性能在高等级公路中占有绝对的优势。随着经济的发展以及现代研究技术的进步,对沥青路面材料的耐久性、抗裂性、温度稳定性等方面提出了越来越高的要求。这就需要从决定材料强度的基本参数入手,从材料本身的组成及力学性能出发,来对其耐久性、抗裂性、温度稳定性以及粘弹性等进行研究。
     玄武岩纤维以其优良的物理化学性能,广泛的应用于航空、管道、坝体等领域。玄武岩纤维在整个生产过程中和应用上对环境无污染,与集料在组成成分上没有大的区别,只是与沥青结合时体积形状不同,这些说明玄武岩纤维加入到沥青混凝土基体中的可行性以及与沥青结合的优越性。
     玄武岩纤维在水泥混凝土中的应用已经取得了良好的效果,但对于在沥青混凝土中的应用研究开展的还不深入。由于玄武岩纤维加入到沥青混凝土基体中后对其力学性能的影响不同于聚合物改性沥青混凝土,玄武岩纤维的长度以及掺量都会对沥青混凝土基体的使用性能、开裂前后的力学行为、粘弹力学性能有明显的影响。因此,对玄武岩纤维沥青混凝土的性能与增强机理进行研究,将有助于选择合理的纤维长度和纤维掺量,明确玄武岩纤维微观分布情况对宏观性能影响的机理所在,这对于纤维沥青混凝土发挥出稳定的增强性能具有十分重要的意义。
     本文从玄武岩纤维的不同长度、不同掺量出发,进行了以下相关研究:
     (1)在对玄武岩纤维沥青混凝土的水温稳定性能、疲劳性能、韧性和粘弹性能研究之前,采用间接拉伸试验,以劈裂抗拉强度为评定目标来大致圈定玄武岩纤维的长度和对应的掺量范围,初步比选出不同长度的玄武岩纤维对沥青混凝土基体的增强性能。
     (2)为了确定不同长度、不同掺量的玄武岩纤维对沥青混凝土的实际改善效果,分别对不同长度、不同掺量的玄武岩纤维进行水稳定性能、高温性能、低温性能的相关试验研究,根据试验结果分析比较不同长度的玄武岩纤维对增强效果的贡献力,进一步确定玄武岩纤维长度和对应掺量值的合理性。
     (3)通过间接拉伸疲劳试验,分析比较不同长度及其对应的不同掺量的玄武岩纤维沥青混凝土的疲劳寿命,同时根据应力水平与疲劳寿命的函数关系拟合出材料的两个疲劳特性参数,通过对玄武岩纤维沥青混凝土固有的疲劳特性参数的定量评价,来分析玄武岩纤维对沥青混凝土疲劳性能提高的本质原因。
     (4)通过间接拉伸试验得到不同长度、不同掺量的玄武岩纤维沥青混凝土的荷载与水平位移曲线,引入韧性评价指标,对玄武岩纤维沥青混凝土进行裂前裂后的整体行为分析,定量评价玄武岩纤维对沥青混凝土抗裂性能的改善程度。
     (5)对不同长度、不同掺量的玄武岩纤维沥青混凝土的粘弹性能进行对比分析,选用修正的Burgers模型,通过单轴静载压缩蠕变试验所得的时间与位移曲线,拟合出表征材料粘弹性性质的参数,继而推算出材料的两个内部时间参数,探寻玄武岩纤维的加入对沥青混凝土高低温性能改善的实质所在。
     (6)通过微观分析手段,比较普通沥青混凝土和玄武岩纤维沥青混凝土的内部微观构造,验证纤维的加入能否在沥青混凝土内部形成有效空间网络结构,能否对内部存在的微裂缝和孔洞起到阻裂作用和约束作用,从而使沥青混凝土内部的有效承载面积增加。同时观察不同纤维掺量下的各相几何特征,结合复合材料观点对玄武岩纤维沥青混凝土的性能进行定性评价。
     研究结果表明:
     (1)玄武岩纤维对沥青混凝土的水稳定性能和高温抗变形能力有所改善;提高了沥青混凝土低温破坏时的强度和破坏应变,降低了破坏劲度,其中破坏应变的提高值最大达到43.72%,破坏劲度的最大降低值达25.86%,对沥青混凝土的低温抗裂性能改善明显。
     (2)玄武岩纤维提高了沥青混凝土的疲劳寿命和疲劳特性参数k值和n值,并且9mm长的玄武岩纤维对沥青混凝土的疲劳特性参数n值提高显著;玄武岩纤维提高了沥青混凝土的韧性指数,增强沥青混凝土开裂后的承载能力、延缓裂缝的扩展速度,其中9mm长对应掺量是0.05%、0.07%和6mm长对应掺量是0.15%的玄武岩纤维对沥青混凝土韧性指数提高最为明显,同比之下对沥青混凝土的裂后使用品质改善最好。
     (3)6mm和9mm长的玄武岩纤维均改善了沥青混凝土的粘弹性能,降低了沥青混凝土粘弹性能参数和内部时间参数对温度变化的敏感程度,使沥青混凝土在外荷载作用下来不及恢复的粘弹性变形累积量减少,提高沥青混凝土在低温下的应力松弛能力。
     (4)玄武岩纤维与沥青之间粘结良好,纤维均是因受力被拉断,破坏面处颗粒间连接加强,对沥青混凝土内部存在的微裂缝和孔洞起到阻裂作用和约束作用,从而增加沥青混凝土内部的有效承载面积。
     (5)经过综合分析,9mm长、掺量是0.07%的玄武岩纤维对沥青混凝土水温稳定性能、疲劳性能、韧性性能、粘弹性能的改善效果最好,6mm长、掺量是0.15%的玄武岩纤维次之。
Basalt fiber performance research of asphalt concrete reinforced with reinforcingmechanism of microcosmic analysis With its unique performance of asphalt pavement inhigh grade highway in the possession of absolute advantage. With the development ofeconomy and modern research advances in technology of asphalt pavement material,durability, crack resistance, temperature stability, put forward more and more requirements.This requires from the material strength of the basic parameter of the decision, from thematerial itself and the composition and mechanical properties of sets out, to its durability,crack resistance, thermal stability and viscoelastic and so on.
     Basalt fiber for its excellent physical and chemical properties, widely used in aviation,conduit, dam etc.. Basalt fiber in the whole production process and application, no pollutionto environment, and aggregate in composition there is no big difference, is integrated withthe asphalt volume of different shapes, the basalt fiber into the asphalt concrete of thefeasibility and superiority of asphalt binding.
     Basalt fiber in concrete applications have achieved good results, but for the asphaltconcrete application research is not thorough. As a result of the basalt fiber in asphaltconcrete on mechanical properties of different from the polymer modified asphalt concrete,basalt fiber length and volume are on asphalt concrete before and after cracking performance,mechanical behavior, viscoelastic mechanical properties have obvious effect. Therefore, thebasalt fiber performance of asphalt concrete and reinforcing mechanism research, will behelpful to the reasonable selection of fiber length and fiber content, clear the basalt fibermicro distribution of macroscopic properties of the mechanism of the effect of the fiberasphalt concrete, which play a stable enhanced performance has very important significance.
     This article from the basalt fiber of different length, different content sets out,undertook the following related research:
     (1) The basalt fiber asphalt concrete temperature stability, fatigue resistance, toughness and viscoelastic properties before, using indirect tensile test, the splitting tensile strength forevaluating targets to roughly delineated basalt fiber length and the corresponding range ofdosage, initial is selected depending on the length of the basalt fiber on asphalt concretematrix enhanced performance.
     (2) In order to identify the different length, different content of basalt fiber on asphaltconcrete practical improvement effect, separately for different length, different content ofbasalt fiber water stability, high temperature performance, low temperature performance testresearch, according to the results of analysis and comparison of different length of the basaltfiber and the reinforcing effect of contribution, to further define the basalt fiber length andthe corresponding amount of value rationality.
     (3) Through indirect tensile fatigue test, analysis and comparison of different length anddifferent dosage of basalt fiber reinforced asphalt concrete fatigue life, at the same timeaccording to the level of stress and fatigue life of the function relation between the fitting outof a two material fatigue parameters, based on the inherent fiber concrete fatiguecharacteristic parameter of quantitative evaluation, to analysis of basalt fiber on asphaltconcrete fatigue substantial cause for the performance improvement of.
     (4)The indirect tensile test to be of different lengths, different content of basalt fiberreinforced asphalt concrete load and horizontal displacement curve, introducing toughnessevaluation index, the basalt fiber asphalt concrete crack front split the overall behavioranalysis, quantitative evaluation of basalt fiber on asphalt concrete anti-crackingperformance improvement.
     (5) On different length, different content of basalt fiber reinforced asphalt concrete forthe viscoelastic properties were analyzed, using modified Burgers model, through the DanZhoujing load compression creep test result of time and displacement curve, fitting acharacterization of viscoelastic material property parameters, and then calculate the materialto the two internal time parameters, explore the basalt the addition of fiber on asphaltconcrete of high and low temperature performance improvement in essence.
     (6) Through microscopic analysis method, compared with the ordinary asphalt concreteand basalt fiber reinforced asphalt concrete internal microstructure fiber added, verify whether in asphalt concrete is formed inside the effective spatial network structure, whetherto exist inside the micro cracks and holes in the role of crack resistance and the restraintfunction, so that the asphalt concrete internal effective bearing area increased. Simultaneousobservation of different fiber content of each phase geometry characteristics, combined withcomposite view of the basalt fiber asphalt concrete performance evaluation.
     The results show that:
     (1) The basalt fiber improving the asphalt concrete water damage resistance and hightemperature deformation resistance; improve asphalt concrete in low temperature damagestrength and failure strain, reduces the failure stiffness, in which the failure strain increasemaximum reach43.72%, failure stiffness maximum reduce the value of25.86%, the asphaltconcrete at low temperature cracking resistance improved significantly.
     (2) The basalt fiber enhanced asphalt concrete fatigue life and fatigue properties of Kvalue and n value, and9mm long basalt fiber on asphalt concrete fatigue parameter n valueincreased significantly; basalt fiber enhanced asphalt concrete toughness index, reinforcedasphalt concrete cracking capacity, slow crack propagation speed, where9mm longcorresponding volume was0.05%,0.07%and6mm long corresponding dosage is0.15%ofthe basalt fiber on asphalt concrete toughness index improved most significantly, comparedto asphalt concrete crack after the use of quality improvement the best.
     (3)6mm and9mm long basalt fiber are improving the asphalt concrete the viscoelasticproperties of asphalt concrete, reduces the viscoelastic properties and internal timeparameters on the temperature variation in the degree of sensitivity, so that the asphaltconcrete in the external load down to recover less viscoelastic deformation cumulativevolume reduction, improvement of asphalt concrete under low temperature the stressrelaxation ability.
     (4) The basalt fiber and asphalt adhesion between fiber are good, because of the forcebeing broken, damaged surface of particles connected to strengthen, asphalt concrete existinside the micro cracks and holes in the role of crack resistance and the restraint function,thereby increasing the effective bearing area of asphalt concrete.
     (5) After a comprehensive analysis,9mm long, volume is0.07%of the basalt fiber on the water stability of asphalt concrete, fatigue resistance, toughness, viscoelastic propertiesimprovement of best, long6mm, volume is0.15%times of the basalt fiber; basalt fiber in theasphalt concrete, the uniformity of the distribution of basalt fiber and asphalt adhesion,basalt fibers, basalt fibers effective length direction are the main factors influencing thestrength of asphalt concrete.
引文
[1]尚正强.玄武岩纤维—SMA与OGFC沥青路面的完美选择[J].中国公路建设市场,2004.3:1-4.
    [2]胡显奇.我国纯天然玄武岩纤维异军突起[J].中国建材报,2004.3:3-5.
    [3]谢尔盖,李中郢.玄武岩纤维材料的应用前景[J].纤维复合材料,2003,17(3):17-20.
    [4]吕海荣,杨彩云,韩大伟.复合材料用玄武岩增强纤维的性能研究[J].材料工程,2009,2:89-92.
    [5]叶鼎铨.国际市场需要玄武岩纤维[J].信息集萃,2004,9:47.
    [6]JohnA. Dngelo. Superpave Mix Design Tests Methods and Requirements. APWAInternational Public Works Congress.103-115.
    [7]叶群山.纤维改性沥青胶浆与混合料流变特性研究[D].武汉理工大学,2007.10.
    [8]付极.玻璃纤维对沥青混凝土界面和路用性能的影响研究[D].吉林大学,2008.6.
    [9]J.Bilal.the Designing Airfield Pavement for Heavy Jumbo Jets.2004FAA WordwideAirport Technology Transfer Conference.
    [10]Stephen F Brown. A Chievements and Challenges in Asphalt Pavement Engineering.8thInternational Conference on Asphalt Pavement.
    [11]Kietzman J H. Performance of asbestos-asphalt pavement surface course with highasphalt contents[R]. Highway Research Record#24,1963.
    [12]袁启东.路用木质纤维在SMA混合料中作用研究[D].东北大学,2005.12.
    [13]沈金安.SMA在欧洲的应用[J].国外公路,1998,18(1):48-52.
    [14]杨红辉,袁宏伟,郝培文等.木质素纤维沥青混合料路用性能研究[J].公路交通科技,2003,8(4):10-11.
    [15]黄彭.木质素纤维在沥青混合料的应用研究[J].石油沥青,1998,12(4):9-15.
    [16]邢爱萍,孔永健.纤维加强沥青路面在我国的应用[J].东北公路,2003(2):27-30.
    [17]徐静,赵永利,刘加平.路用木质纤维性能研究[J].材料导报,2008,5(2):394-396.
    [18]Freeman R B,Burati J L,Amirkhanian S N,Bridges W C.Polyester fibers in asphaltpaving mixtures.Association Asphalt Paving Technology,1989,58:387-409.
    [19] Shaopeng Wu, Yongjie Xue, Qunshan Ye, et al. Utilization of steel slag asaggregates for stone mastic asphalt (SMA) mixtures [J].Building and Environment.2007,42(7):2580-2585.
    [20]Shaopeng Wu,Xiaoming Liu,Qunshan Ye,Ning Li.Self-monitoring electricallyconductive asphalt-based composite containing carbon fillers [J].Transactions ofNonferrous Metals Society of China,2006,S2:19-24.
    [21]Serfass J.P.,Samanos J.,Fiber-modified asphalt concrete characteristics, applicationsand behavior. Asphalt Paving Technology: Association of Asphalt PavingTechnologists-Proceedings of the Technical Sessions, Baltimore, USA,1996,65:193-230.
    [22]Mahabir Panda, Mayajit Mazumdar. Utilization of Reclaimed Polyethylene inBituminous Paving Mixes Journal of Materials in Civil Engineering,2002,14(6):527-530.
    [23]Bradley J. Putman, Serji N. Amirkhanian. Utilization of waste fibers in stonematrixasphalt mixtures. Resources, Conservation and Recycling,2004,42(3):265-274.
    [24] Chen Jian-Shiuh, Lin Kuei-Y. I. Mechanism and behavior of bitumen strength usingfibers.Journal of Materials Science,2005,40(1):87-95.
    [25]G.K.Moussa.Effect of Addition of Short Fibers of Poly-Acrylic and Polyamide toAsphalt Mixtures.AEJ-Alexandria Eng.Journal,2003,42(3),329-336.
    [26]Lee S.Joon,Rust Jon P.,Hamouda Hechmi,Kim Y.Richard, Bordan Roy H.FatigueCracking Resistance of Fiber-reinforced Asphalt Concrete.Textile Research Journal,2005,75(2):123-128.
    [27]Benedito de s.Bueno, Wander R.da Silva,Dario C.de Lima, Enivaldo Minete.Engineering Properties of Fiber Reinforced Cold Asphalt Mixes.Journal ofEnvironmental Engineering,2003,129(10):952-955.
    [28]Kuo S S, Jamshid M. Accelerated pavement performance testing of ultra-thin fiberreinforced concrete overlay, recycled concrete aggregate and patching materials[J].Construction and Building Materials,2002,(4):120-128.
    [29]Jeng Y S, Liu P. Performance evaluation of fiber reinforced asphalt concrete [R].Sponsor: Federal Highway Administration, Columbus, OH, Ohio Div. Ohio Dept. ofTransportation, Columbus, March,1994:158-164.
    [30]陈华鑫.纤维沥青混凝土路面研究[D].长安大学,2002.2.
    [31]吕伟民.沥青混合料设计原理与方法[M].同济大学出版社,2001(1).
    [32]郭乃胜,赵永生.纤维沥青混凝土等效模量的探讨[J].道路与铁道工程,2005(9):1420-1425.
    [33]林平东,冯德成.纤维加筋材料在寒冷地区道路的适用性研究[J].哈尔滨工业大学学报,2004,8(10):133-135.
    [34]李炜光,张争奇,张登良等.纤维加强沥青路面的研究[J].西安公路交通大学学报,1998,18(3):235-238.
    [35]张争奇,胡长顺.纤维加强沥青混凝土几个问题的研究和探讨[J].西安公路交通大学学报,2001,21(1):29-32.
    [36]陈华鑫,张争奇,胡长顺.纤维沥青混合料低温抗裂性能[J].华南理工大学学报,2004,32(4):82-86.
    [37]吴少鹏,薛永杰,张登峰.聚合物纤维改性沥青混凝土的研究[J].武汉理工大学学报,2003,25(12):47-49.
    [38]罗福兰,施兵,杨红辉.德兰尼特AS纤维沥青混合料路用性能研究[J].中外公路,2004,24(4):132-133.
    [39]黄彭.木质素纤维在沥青混合料中的应用[J].西安建筑科技大学学报(自然科学版),2005,37(1):104-107.
    [40]彭波,靳明,袁万杰.纤维增强沥青混合料性能的研究[J].重庆交通学院学报.2002,21(4):27-30.
    [41]彭波,戴经梁,李文瑛.沥青博尼维纤维加强沥青混合料性能研究[J].公路交通技术,2002,(2):28-29.
    [42]廖卫东,吴少鹏,张继宁,薛永杰.聚酯纤维对SMA性能影响的研究[J].公路,2004,4:126-128.
    [43]邹桂莲,张肖宁,韩传代.应用DSR评价沥青胶浆路用性能的研究[J].哈尔滨建筑大学学报,2001,34(3):112-115.
    [44]付力强,王子灵,张锐.SBS与纤维在沥青及沥青混凝土中改性效果对比分析[J].公路交通科技,2007,24(5):26-29.
    [45]周立刚,陈立田,朱旭红等.德兰尼特沥青道路专用增强纤维在公路养护工程中的应用[J].公路,2002,9:140-141.
    [46]倪富健,郭咏梅,曾兰英等.聚丙烯睛纤维SMA路用性能[J].交通运输工程学报,2003,3(3):7-14.
    [47]郭乃胜、赵颖华,纤维掺量对聚酷纤维沥青混凝土韧性的影响[J].交通运输工程学报,2006,12,6(4):32-35.
    [48]郭乃胜,赵颖华.动荷载作用下纤维沥青路面的粘弹性响应[J].沈阳建筑大学学报(自然科学版),2007(06):48-51.
    [49]郭乃胜,赵颖华.纤维沥青混凝土的粘弹性能研究[J].交通运输工程学报,2007.
    [50]S.Z.ZAHRAN,M.N.FATANI.Glass Fiber Reinforced Asphalt PavingMixture:Feasibility Assessment[J].JKAU:Eng.Sci,1999,vol.11no.1:85-98.
    [51]Aysar NAJD,郑传超.纤维加筋沥青混凝土断裂性能试验[J].长安大学学报(自然科学版),2005,10(5):28-32.
    [52]孙略伦.纤维沥青混凝土的回弹模量试验研究[J].北方交通,2006(5):37-39.
    [53]孙久民,宁金成.玻璃纤维沥青碎石混合料应用研究[J].河南科学,2005(2):255-258.
    [54]田华,曾梦澜,吴超凡,夏漾,朱沅锋.玻璃纤维和木质素纤维对沥青胶浆老化前后的高温流变性能影响[J].公路工程,2008,8.33(4):37-41.
    [55]陈华鑫,张争奇,胡长顺.纤维沥青路用性能机理[J].长安大学学报(自然科学版),2002,11.22(6):5-7.
    [56]黄珊.玻璃纤维增强沥青混凝土效果分析与试验研究[D].吉林大学,2009.5.
    [57]许淳.玻璃纤维-硅藻土复合改性沥青混凝土性能研究[D].吉林大学,2010.10.
    [58]曾梦澜,彭珊,黄海龙.纤维沥青混凝土动力性能试验研究[J].湖南大学学报(自然科学版).2010,7.33(7):1-6.
    [59]宁金成.沥青橡胶碎石、玻璃纤维沥青碎石混合料路面抗裂性能研究[D].湖南大学,2002.4.
    [60]李新娥.玄武岩纤维和织物的研究进展[J].纺织学报,2010,1,3(11):145-152.
    [61]郝孟辉,郝培文等.玄武岩短切纤维改性沥青混合料路用性能分析[J].广西大学学报(自然科学版),2011,12,36(1):101-106.
    [62]同济大学交通运输工程学院道路与机场工程系.我国公路路面SMA采用纤维之性能比较试验研究[R].2004.
    [63]郭振华,尚德库,邬翠莲,胡琳娜.海泡石玄武岩纤维复合沥青混合料性能研究[J].河北工业大学学报,2005,2,34(1):5-10.
    [64]卢辉,张肖宁.矿物纤维沥青混合料在长陡坡路段的应用[J].中外公路,2007(3):67-97.
    [65]吴少鹏,叶群山,刘志飞.矿物纤维改善沥青混合料高温稳定性研究[J].公路交通科技.2008,25(11):20-23.
    [66]汤寄予,高丹盈,韩菊红.玄武岩纤维对沥青混合料水稳定性影响的研究[J].公路,2008(1):142-158.
    [67]黄美德,曾俊标等.关于对南方湿热地区矿物纤维沥青混合料路用性能的研究[J].工程技术(中国新技术新产品),2008(12):68-69.
    [68]孙家瑛,任传军,戴亚英.纤维对沥青混合料路面性能影响研究[J].中外公路,2006,26(2):175-177.
    [69]吴智深,吴刚等.玄武岩纤维在土建交通基础设施领域研究与应用若干新进展[J].工业建筑(增刊),2009:1-14.
    [70]李花歌.矿物纤维对SMA混合料性能影响的试验研究[J].开封大学学报,2010,12,24(4):90-93.
    [71]籍建云,许婷婷,顾兴宇.增强沥青混凝土用短切玄武岩纤维优选试验研究[J].公路交通科技(应用技术版),2010(5):113-117.
    [72]刘福军.玄武岩纤维沥青混合料路用性能研究[D].哈尔滨工业大学,2010.7.
    [73]许婷婷,顾兴宇,倪富健.玄武岩纤维增强沥青混凝土试验与性能研究[J].交通运输工程与信息学报,2011,6,9(2):115-121.
    [74]徐刚,赵丽华,赵晶.玄武岩矿物纤维改善沥青混合料性能研究[J].公路,2011,6(6):167-171.
    [75]罗益锋.创新为世界高性能纤维带来勃勃生机[J].高科技纤维与应用,2009,6,34(3):7-12.
    [76]Monismith C L,Secor K E. Viscoelastic behavior of asphalt concrete pavements
    [C].Proceedings of International Conference on Structure Design of AsphaltPavements,1962,(10):476.
    [77]Krishnan J.M., Rajagopal K.R., On the mechanic behavior of asphalt [J]. Mechanics ofMaterials.2005,37(11):1085-1100.
    [78]C.L.Monismith, K.E.Sector, Viscoelastic behavior of asphalt concrete pavements.1stInternational Conference on the Structural Design of Asphalt Pavements, USA1962,476-498.
    [79]Vlachovicova Z, et al, Creep characteristics of asphalt modified by radialstyrene-butadiene-styrene copolymer[J].Construction and Building Materials.2007.21(3):567-577.
    [80]Szydlo A,Mackiewicz P Asphalt mixes deformation sensitivity to change in rheologicalparameters [J].Journal of Materials in Civil Engineering,2005,(2):1-9.
    [81]Abbas AR, Ppagiannakis AT, Masad E A. Linear and nonlinear viscoelastic analysis ofthe microstructure of asphalt concretes [J].Journal of Materials in Civil Engineering,2004:133-139.
    [82]Lee H J, Kim Y R.Viscoelastic constitutive model for asphalt concrete under cyclicloading [J].Journal of Engineering Mechanics.1998(1):32-40.
    [83]Tashman L, Masad E, et al, A crostructure-based viscoplastic model for asphaltconcrete [J].International Journal of Plasticity.2005.21:1659-1685.
    [84]Lu Y,Wright P J. Numerical approach of visco-elastoplastic analysis for asphaltmixtures [J].Comp Struct,1998,69:139-147.
    [85]W.Zhang,A.Drescher,D.E.Newcomb. ViscoelasticAnalysis of Diametral Compressionof Asphalt Concrete.Journal of Engineering Mechanics,1997,123(6):596-603.
    [86]W. Zhang, A.Drescher, D.E.Newcomb.Viscoelastic Behavior of Asphalt Concrete inDiametral Compression.Journal of Transportation Engineering,1997,123(6):495-502.
    [87]Hyun-Jong Lee, Y.Richard Kim. Viscoelastic Continuum Damage Model of AsphaltConcrete with Healing. Journal of Engineering Mechanics,1998,124(11):1224-1232.
    [88]Hyun-Jong Lee, Jo Sias Daniel, Y.Richard Kim. Continuum Damage Mechanics-BasedFatigue Model of Asphalt Concrete. Journal of Materials in Civil Engineering,2000,12(2):105-112.
    [89]J.M.Krishnan and K.R.Rajagopal,Thermodynamic Framework for the ConstitutiveModeling of Asphalt Concrete:Theory and Applications,J.Mat.Civil Eng.2004,16(2):155-166.
    [90]郑建龙.Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报,1995,11(3):32-42
    [91]郑健龙,应荣华,张起森.沥青混合料热粘弹性断裂参数研究[J].中国公路学报,1996,9(3):20-28.
    [92]郑健龙,吕松涛,田小革.沥青混合料年弹性参数及其应用[J].郑州大学学报(工学版),2004,25(4):8-12.
    [93]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究[J].长沙理工大学学报(自然科学版),2004,1(1):1-7.
    [94]郑健龙,周志刚,应荣华.沥青路面温度应力数值分析[J].长沙交通学院学报,2001,17(1):29-32.
    [95]彭妙娟,许志鸿.沥青路面永久变形的非线性本构模型研究[J].中国科学G辑:物理学力学天文学,2006,36(4):415-426.
    [96]邵腊庚,周晓青,李宇峙等.基于直接拉伸试验的沥青混合料粘弹性损伤特性研究[J].土木工程学报,2005,38(4):125-128.
    [97]封基良,黄晓明.沥青粘结料粘弹性参数确定方法的研究[J].公路交通科技,2006,23(5):16-22.
    [98]封基良.纤维沥青混合料增强机理及其性能研究[D].东南大学,2006.7.
    [99]钱国平,郭忠印,郑健龙等.环境条件下沥青路面热粘弹性温度应力计算[J].同济大学学报,2003,31(2):150-155.
    [100]王随原,周进川.SBS改性氯气混合料蠕变性能试验研究[J].公路交通科技,2006.23(12):10-13.
    [101]李一鸣.沥青混合料的松弛劲度模量[J].石油沥青,1995(1):17-22.
    [102]黄卫东,吕伟民.沥青及沥青混合料流变性质与动稳定度的关系[J].同济大学学报,2000,28(4):501-504.
    [103]侯金成.纤维沥青混凝土粘弹性能研究[D].大连海事大学,2007.3.
    [104]郭乃胜.聚酯纤维沥青混凝土的静动态性能研究[D].大连海事大学,2007.3.
    [105]易志坚,杨庆国,李祖伟等.基于断裂力学原理的纤维混凝土阻裂机理分析[J].重庆交通学院学报,2004.23(6):43-45.
    [106]蔡四维,蔡敏,王慧等.短纤维对基体微裂纹扩展的阻滞效应分析[J].复合材料学报,1995,12(3):101-107.
    [107]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建筑工业出版社,2004.
    [108]林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学技术出版社,2002.
    [109]鲁云,朱世杰,马鸣图等.先进复合材料[M].北京:科学技术出版社,2003.
    [110]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
    [111]曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002.
    [112]邹祖讳.复合材料的结构与性能[M].北京:科学出版社,1999.
    [113]Kennedy T W,Huber G A,Harrigan E T.Superior performing asphaltpavements(Superpave)[R].Auburn: National Center for Asphalt Technology,1994.
    [114]Zhong Q Y, Bekking W, Morin I. Application of digital image processing toquantitative study of asphalt concrete microstructure [C]//TRB.TransportationResearch Record1492. Washington D C: TRB,1995:53-60.
    [115]Masad E, Muhunthan B, Shashidhar N, et al Quantifying laboratory compactioneffects on th internal structure of asphalt concrete [C]//TRB. Transportation ResearchRecord1681. Washington D C: TRB,1999:179-185.
    [116]Kwan A K, Mora C F, Chan H C. Particle shape analysis of coarse aggregate usingdigital image processing [J]. Cement and Concrete Research,1999,29(9):1403-1410.
    [117]Wang L B, Frost J D, Shashidhar N. Microstructure study of WesTrack mixes fromX-ray tomography images[C]//TRB. Transportation Research Record1767.Washington D C:TRB,2001:85-94.
    [118]Masad E, Button J. Implications of experimental measurements and analyses of theinternal structure of HMA [C]//TRB. Transportation Research Record1891.Washington D C: TRB,2004:212-220.
    [119]张倩娜.基于数字图像处理技术的沥青混合料微观结构分析方法研究[D].同济大学,2000.
    [120]李智.基于数字图像处理技术的沥青混合料体积组成特性分析[D].哈尔滨工业大学,2002.
    [121]Chen J S, Liao M C. Evaluation of internal resistance in hot-mix asphalt(HMA)concrete[J]. Construction and Building Materials,2002,16(6):313-319.
    [122]胡琳娜.玄武岩纤维复合型体材料及降解机理研究[D].河北工业大学,2003.
    [123]张登良.沥青路面工程手册[M].北京:人民交通出版社,2003.
    [124]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006.
    [125]战高峰,宋高嵩.公路路基路面工程[M].武汉:武汉理工大学出版社,2007.
    [126]虞将苗,张肖宁.三种沥青混合料四点弯曲疲劳试验机的对比[J].设备管理﹠维修技术,2011,1:79-82.
    [127]SHRP Designation: M-009.Determining the fatigue life of compactedbituminousmixtures subjected to repeated flexural bending. SHRP A-003A [R].Washington, D C: StrategicHighway Research Program, Nation Research Counci. l,1994.
    [128]Strategic Highway research program. Summary Report on Fatigue Response ofAsphalt mixtures[R].SHRP-A/2R-90-011,1990.02.
    [129]万成,张肖宁,虞将苗.利用CooperNU-14试验系统评价沥青混合料疲劳性能[J].华南理工大学学报(自然科学版),2009,7,37(7):52-56.
    [130]吴旷怀.相同条件下大样本沥青混合料的疲劳性能[J].华南理工大学学报(自然科学版),2007,35(7):31-36.
    [131]杜群乐,孙立军,黄卫东等.不同设计方法下沥青混合料疲劳性能研究[J].同济大学学报(自然科学版),2007,35(9):1204-1208.
    [132]李立寒,袁坤,王太鑫.泡沫沥青稳定碎石混合料的疲劳特性研究[J].建筑材料学报,2010,13(5):687-690.
    [133]叶群山,岳红波,李力,吴少鹏.聚酯纤维沥青混凝土动态模量与疲劳性能研究[J].武汉理工大学学报,2007,9,29(9):5-8.
    [134]Sobban Khaled, Mashnad Mehedy. Mechanical Stabilization of Cemented Soil-FlyAsh Mixtures with Recycled Plastic Strips.Journal of Environmental Engineering.2003,129(10):943-947.
    [135]Sobhan Khaled, Mashnad Mehedy. Tensile Strength and Toughness ofSoil-Cement-Fly-Ash Composite Reinforced with Recycled High-DensityPolyethylene Strips. Journal of Materials in Civil Engineering,2002,14(2):177-184.
    [136]徐世法.表征沥青及沥青混合料高低温蠕变性能的流变学模型[J].力学与实践,1992,1:39-42.
    [137]邓学钧.路基路面工程[M].北京:人民交通出版社,2005.
    [138]倪良松,陈华鑫,胡长顺,卢因志.纤维沥青混合料增强作用机理分析[J].合肥工业大学学报.2003,26(5):1033-1037.
    [139]肖桂彰,郑传超.道路复合材料[M].北京:人民交通出版社,1999.
    [140]郑传超,王秉纲.道路结构断裂力学基础[M].西安:西北工业大学出版社,1990.
    [141]哈宽富.断裂物理基础[M].北京:科学出版社,2000.
    [142]陈小龙,韩跃新,王成梁,孙永升.硅藻土复合纤维改性沥青微观机理研究[J].现代矿业,2011,11:30-34.
    [143]Bahia H U, islop W P, Zhai H. Classification of Asphalt Binders into Simple andComplex Binders[J]. AAPT,1998,57:41-64.
    [144]Anderson D.A.Superpave Binder Tests and Specification[J].In Workshop Briefing,Performance Related Properties for Bituminous Binders,1999(5):23-31.
    [145]鲍燕妮,赵亚尊,徐江萍,石鸿.硅改沥青微观机理研究[J].齐鲁石油化工,2005,33:8-12.
    [146]张志清,张兴友,胡光艳,郑丽敏.硅藻土改性沥青微观机理分析[J].北京工业大学学报,2007,9:943-947.
    [147]宋晓燕,杜月宗.热力学方法分析聚合物改性沥青的稳定性[J].石油沥青.2004,3:40-45.
    [148]顾庆根,吴靖.玻璃纤维增强聚氯乙烯界面结构优化及性能研究[J].华东理工大学学报,1995(21):95-97.
    [149]陆飞.纤维沥青碎石应力吸收层配合比设计及作用机理研究[D].长安大学,2011,6.
    [150]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700