用户名: 密码: 验证码:
CoCrMo合金的PⅢ&D技术表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,CoCrMo合金凭借其良好的生物相容性和力学性质逐渐成为骨科植入材料的首选,广泛应用在临床硬组织和器官的替换中,然而Co, Cr离子的潜在毒性在一定程度限制了它的临床应用。为了降低Co, Cr离子的释放,对CoCrMo进行表面改性研究引起了广大研究者的重视。本文采用等离子体浸没离子注入与沉积的方式对CoCrMo合金进行了低压高频氮化处理和类金刚石(DLC)薄膜的沉积。研究了不同氮气气压和射频功率对氮化层成分、结构和性能的影响;进一步研究了C2H2—Ar混合气体中的Ar含量以及基体偏压对类碳薄膜结构和性能的影响;最后对CoCrMo进行了等离子体氮化和DLC薄膜沉积复合处理,研究了复合处理后CoCrMo及其对偶件UHMWPE在25%小牛血清中的摩擦性能。
     利用X射线衍射谱(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)对氮化层的结构、成分及断面形貌进行了表征,采用电化学腐蚀实验检测氮化层的耐腐蚀性能;利用X射线光电子能谱(XPS)、激光拉曼光谱(Raman)测定了类碳薄膜的结构,使用维氏压痕和划痕法评价了膜基结合力,并用努氏显微硬度仪、销盘式摩擦磨损试验机对两种改性层的机械性能进行了表征。采用往复式摩擦磨损实验分析了经过复合处理的CoCrMo及其对偶件的摩擦性能,并用光镜和扫描电子显微镜观察磨损表面形貌。
     实验结果表明采用等离子体浸没离子注入与沉积的方式可以有效的对CoCrMo合金进行表面改性,并显著提高CoCrMo的表面性能。对Co合金进行低压高频等离子体浸没离子注入与氮化处理后,材料的机械性能得到一定程度的提高,但耐腐蚀性能明显下降,其表面成分以Cr2N、CrN以及Co2N为主,随着氮气气压的降低和射频功率的升高,氮化层的厚度逐渐增加,样品表面的机械性能呈递增趋势,即较低的气压和较高的功率更有利于氮化层机械性能的提高。在CoCrMo合金上制备DLC薄膜的结果显示,所有薄膜均具有典型类金刚石薄膜的特性,薄膜沉积明显提高了CoCrMo的耐腐蚀性能。随着混合气体中的Ar含量从20%增加到50%,薄膜中的sp3键含量逐渐增加,显微硬度提高,薄膜与基体的结合力和耐磨损性能降低,当Ar含量继续从50%增加到67%,薄膜中的sp3键含量减少,显微硬度相应降低,而薄膜与基体的结合力、耐磨损性能提高。基体偏压由15kV上升到25kV,促进了薄膜中sp3 C-C键向sp2C-C的转变,使硬度降低,膜基结合力和耐磨性能提高,而偏压对腐蚀性能影响不明显。经过复合处理的CoCrMo可显著降低其本身和UHMWPE的磨损程度。
CoCrMo alloy has been extensively used in orthopedic implants for its excellent biocompatibility and mechanical property, but its application is limitied for the potential toxiticy of Co and Cr ions. Thus, CoCrMo alloy surface modifications have attracted a lot of researcher's attention in order to reduce the Co and Cr ions release
     In this study, CoCrMo was modificated by the high frequency and low voltage ionic nitriding, and DLC were deposited on CoCrMo alloy by plasma immersion ion implantation and deposition. The effect of different gas pressure and the power of radio frequency were considered in the study. The effect of the Ar content of the C2H2—Ar mixed gas and the voltage on the structures and properties of DLC films have been investigate. Finally, DLC film was fabricated on the nitrided CoCrMo, and the biotribological behaviors of CoCrMo and counter part UHMWPE were investigated in bovine synovia lubrication.
     After the nitriding process, the microstructure and composition were characterized with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The thickness of the modified diffusion layer was investigated by scanning electron microscopy (SEM). The corrosion resistance of nitriding layer was characterized by electrochemical corrosion test. Raman spectroscopy and X-ray photoelectron spectroscopy were ultilized to characterize the structure of the DLC film. The adhesion strength were examined by WS-97 scratch tester. Surface hardness and wear resistance of the two modificated layers were performed by HXD-1000 microhardness meter and CSEM ball-on-disk-type equipment. The wear tracks of DLC/UHMWPE pairings in biotribological behaviors were acquired by optical micrographs and SEM.
     It was found that surface property of the CoCrMo alloy could be extensively improved through plasma immersion ion implantation and deposition. Plasma nitriding on CoCrMo can enhance mechanical properties apparently but decrease corrosion resistance. The micro compositons of the nitrided layers were Cr2N、CrN and Co2N. The thickness of nitriding layer increased with the increasing of the gas pressure and radio power, and mechanical properties enhanced, in other words, lower gas pressure and higher radio power were of great benefit to the property of the nitriding layer. The results also indicted that, Ar fraction in the C2H2-Ar gas mixture and the base voltage have important effects on the structure and the adhesion of the a-C:H films, and DLC films can improve corrosion resistance. When Ar fraction in the C2H2-Ar gas mixture is less than 50%, the a-C:H film microstructure transfer from graphite-like to diamond-like which contains higher sp binding, the adhesion strength and wear resistance decreased but the hardness decreased with the increment of Ar fraction. However, when Ar fraction in the C2H2-Ar gas mixture is beyond 50%, the film will contain more sp2 bonding and exhibit higher adhesion strength and wear resistance but lower hardness with the increment of the Ar fraction. With the increase of the bias voltage, C-C bonds were promoted from sp3 to sp2 due to the bombardme(?) of ion, as a result, hardness decreased and the adhesion strength, but little effects on corrosion resistance due to bias-voltage. The CoCrMo treated both nitriding and depositing DLC can decrease wear abrasion for both of the pairings.
引文
[1]李涤尘,吴永辉.人工生物活性骨骼的快速制造方法研究.生物摩擦学与人工会论文集.2000,9:67-71
    [2]戴振东,弓娟琴.人工关节摩擦学的研究.生物医学工程杂志.2006,23(3)669-673
    [3]贾如宝.钴铬钼合金与几何膝.中国钼业.1995,19(5):50-52
    [4]Qelik A, Bayrak O, Alsaran A, Kaymaz I. Effects of plasma nitriding on mechanical and tribological properties of CoCrMo alloy. Surface and Coatings Technology.2008,202: 2433-2438
    [5]Veli-Matti Tiainen. Amorphous carbon as a bio-mechanical coating—mechanical properties and biological applications. Diamond and Related Materials. 2001,10(2):153-160
    [6]Lucien Reclaru, Pierre-Yves Eschler, Reto Lerf, Andreas Blatter. Electrochemical corrosion and metal ion release from Co-Cr-Mo prosthesis with titanium plasma spray coating. August 2005,26:4747-4756
    [7]U. Turkan, Orhan Ozturk, Ahmet E. Eroglu. Metal ion release from TiN coated CoCrMo orthopedic implant material. Surface and Coatings Technol.2006,200:5020-5027
    [8]F. Karakan, Alsaran, Kaymaz. I., Celik. A. A repair process for fatigue damage using plasma nitriding. Surface and Coatings Technology.2004,186:333-338
    [9]O. Ozturk, U. Turkan, A.E. Eroglu. Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material. Surf. Coat. Technol.2006,200:5687.
    [10]陈勇军,史庆南,左孝青.金属表面改性—离子注入技术的发展与应用.表面技术.2003,32(6):4-7
    [11]任瑛,张贵锋,董闯,姜辛.等离子体浸没式离子注入沉积技术及应用.真空科学与技术学报.2009,29(3):255-263
    [12]张通和,吴瑜光.离子束表面工程技术与应用.机械工业出版社.2005:201-207
    [13]万国江,黄楠,冷永祥,杨萍,陈俊英.等离子浸没离子注入沉积纳米TiN薄膜的机械性能研究.无机材料学报.2003,18(4):904-910
    [14]文峰,戴虹,黄楠,孙鸿.等离子浸没离子注入法合成氧化钛/氮化钛梯度薄膜与控制研究.高技术通讯.2002,12:34-38
    [15]M. Xu, X. Cai, Q.L. Chen, Sunny C. H. Kwok, Paul K. Chu.Comparative study of mechanical properties of a-C:H films produced on tungsten pre-implanted stainless steel substrate by plasma immersion ion implantation and deposition. Diamond Related Materials.2007,16:1304-1310
    [16]吴知非,施云城,陈惠敏,陈英方.等离子体源离子注入高聚物薄膜电性能的改变.科学通报.1992,13:23
    [17]田修波,杨士勤.等离子体浸没离子注入绝缘体材料的研究.核技术.2006,29(5):335-338
    [18]朱生发,徐莉,黄楠,石志峰,刘恒全,张勇,氮离子注入纯铁在人工模拟体液中的腐蚀性能研究.功能材料.2007,9(38):1540-1542
    [19]赵青,耿漫,等离子体浸没离子注入(PⅢ)技术在现代材料表面改性中的应用及发展.真空.2000,(1):40-43
    [20]Jesse N. Matossian, Ronghua Wei. Challenges and progress toward a 250 kV,100 kW plasma ion implantation facility. Surface Coating Technology.1996,85:111
    [21]R. Wei, J.J. Vajo, J.N. Matossian, P.J. Wilbur, J.A. Davis, D.L. Williamson, G.A. Collins. A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel.Surface Coating Technology.1996,83:235
    [22]S. Leigh, M. Samandi, G.A. Collins, K.T. Shortb, P. Martin, L. Wielunski. The influence of ion energy on the nitriding behaviour of austenitic stainless steel. Surface Coating Technology.1996,85:37-43
    [23]S.M. Johns, T. Bell, M. Samandi, G.A. Collins. Wear resistance of plasma immersion ion implanted Ti6Al4V. Surface Coating Technology,1996,85:7-14
    [24]田修波,曾照明,王小峰,汤宝寅,高频低压等离子体浸没离子注入技术研究. 新技术新工艺.2000,(1):40-44.
    [25]P. Saravanan, V.S. Raja, S. Mukherjee. Effect of plasma immersion ion implantation of nitrogen on the wear and corrosion behavior of 316LVM stainless steel. Surface and Coatings Technology 2007,(201):8131-8135
    [26]陈畅子,冷永祥,孙鸿,朱生发,白彬,张鹏程,黄楠.工业纯铁等离子体注入与氮化工艺及其性能研究.材料工程.2008,(3):67-71
    [27]X.B. Tian, S.C.H. Kwok, L.P. Wang. Corrosion resistance of AISI304 stainless steel treated by hybrid elevated-temperature,low-voltage/high-voltage nitrogen plasma immersion ion implantation. Materials Science and Engineering.2002,326:348-354
    [28]X.B. Tian, Y.X. Leng, T.K. Kwok, L.P. Wang. Hybrid elevated-temperature, lowrhigh-voltage plasma immersion ion implantation of AISI304 stainless steel. Surface and Coatings Technology.2001,(135):178-183
    [29]S. Mukherjee, P.M. Raole, P.I. John. Effect of applied pulse voltage on nitrogen plasma immersion ion implantation of AISI 316 austenitic stainless steel. Surface and Coatings Technology.2002,157:111-117
    [30][30] R N Tarrant, Montross C S, McKenzie D R. Combined deposition and implantation in the cathodic arc for thick film preparation. Surface and Coatings Technology. 2001,36:188-191
    [31]J.H. Sui, Z.Y. Gao, W. Cai, Z.G. Zhang, DLC films fabricated by plasma immersion ion implantation and deposition on the NiTi alloys for improving their corrosion resistance and biocompatibility, Materials Science and Engineering.2007,(454):472-476
    [32]P. Yang, S.C.H. Kwok, P.K. Chu, Y.X. Leng, J.Y. Chen, J. Wang, N. Huang, Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition. Nuclear Instruments and Methods in Physics Research.2003,206:721-725
    [33]张利,尹光福,郑昌琼,蒋书文.钛合金基类金刚石梯度薄膜的生物摩擦学性能评价.功能材料.2003,3(34):278-280
    [34]Jiehe Sui, Wei Cai, Liancheng Zhao, Surface modification of NiTi alloys using diamond-like carbon (DLC) fabricated by plasma immersion ion implantation and deposition (PIIID), Nuclear Instruments and Methods in Physics Research.2006, 248:67-70
    [35]J.H. Liang, M.H. Chen, W.F. Tsai, S.C. Lee, C.F. Ai. Characteristics of diamond-like carbon film synthesized on AISI 304 austenite stainless steel using plasma immersion ion implantation and deposition. Nuclear Instruments and Methods in Physics Research. 2007,257:696-701
    [36]Nishimura Y, Chayahara A, Horino Y. A new PBIID processing system supplying RF and HV pulses through a single feed-through. Surface and Coatings Technology. 2002,156:50-53
    [37]Baba K, Hatada R. Deposition of diamond-like carbon films on inner wall of sub-millimeter diameter steel tube by plasma source ion implantation. Nuclear Instruments and Methods in Physics Research.2003,206:704-707
    [38]S. Miyagawa, S. Nakao, M. Ikeyama, Y. Miyagawa. Deposition of diamond-like carbon films using plasma based ion implantation with bipolar pulses. Surface and Coatings Technology,2002,156:322-327
    [39]Watanabe T, Ishihara M, Yamamoto K. Tribological properties of a-C:H films coated by the PBII method. Diamond and Related Materials.2003,12:105-109
    [40]G. Z. Wang, F. Ye, C. Chang, Y. Liao, R. C. Fang. Micro-Raman analysis of the cross-section of a diamond film prepared by hot-filament chemical vapor deposition. Diamond and Related 2000,9:1712-1715
    [41]J. Robertson. Diamond-like amorphous carbon. Materials Science and Engineering. 2002,37:164
    [42]Tamor M A, Vassell W C. Raman"fingerprinting" of amorphous carbon films. Applied Physics.1994,76 (6):3823
    [43]M. Yoshikawa, N. Nagai, M. Matsuki, H. Fukuda, G. Katagiri, H. Ishida, A. Ishitani. Raman scattering from sp2 carbon clusters. Physical Review B.1992,46,7169-7174
    [44]易树,尹光福,郑昌琼.类金刚石薄膜表面界面特性表征方法以及检测技术.北京生物医学工程.2004,23(3):152-153
    [45]K. L. Mittal. Adhension Measurement of Films and Coatings. Koninklijke WOhrmann Netherlands BV.1995
    [46]Ron Hutchings A review of recent developments in ion implantation for metallurgical application. Materials Science and Engineer A 1994,181:87-96.
    [47]Yue Sun, Jixin Chen, Xinxin Ma, Xingui Liu. The effect of voltage on microstructure of iron by nitrogen plasma immersion ion implantation. Surface and Coatings Technology 2003,169-170:438-442
    [48]刘洪喜,汤宝寅,王小峰,王浪平,于永泊,王宇航,孙韬.等离子体浸没离子注入与沉积合成碳化钛薄膜的摩擦磨损性能研究.摩擦学学报.2004,24(6):493-497
    [49]Puchi-Cabrera E S, Berrios J A, Teer D G. On the computation of the absolute hardness of thin solid films. Surface and Coatings Technology.2002,157:185-191
    [50]李伟军,张平.N+注入W18Cr4V钢磨损性能的研究.中国表面工程.2001,50:27-30
    [51]F. Contu, B. Elsener, H. Bohni. Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum. Corrosion Science.2005,47:1863-1875
    [52]Orhan Ozturk, Ugur Turkan, Ahmet E. Eroglu. Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material. Surface and Coatings Technology. 2006,200:5687-5697
    [53]李长胜,张光胜,戴起勋.CrMoAl钢形变和氮离子注入强化研究.润滑与密封.
    2007,32(3):65-69
    [54]Kyung H N, Min J J, Jeon G H. A study on the high rate deposition of CrNx films with controlled microstructure by magnetron sputtering. Surface and Coatings Technology. 2000,131:222-227
    [55]万金友,姚志修,翁宇庆.氮离子注入关节假体材料的耐蚀和耐磨性能.钢铁研究学报.1991,3:29-33
    [56]杜军,何家文.类石墨碳膜的制备及其与类金刚石碳膜的区分.中国表面工程.2005,18(4):6-9
    [57]Tamor M A, V assell W C. Raman, Finger Printing of Amorphous Carbon. J. App 1. Phys,1994,76(6):3823—3830
    [58]Ferrari A C, Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Physics Review,2000,61,(20):14095—14107.
    [59]Tay BK, Shi X, Tan HS. Raman studies of terahedral amorphous carbon films deposited by filtered cathodic vacuum arc. Surf Coat Technol, Surface and Coatings Technology. 1998,105:155
    [60]Ferrari A C, Robertson J.碳材料的拉曼光谱—从纳米管到金刚石.谭平恒,李峰,成会明.化学工业出版社.2007:198—200.
    [61]J.X. Liao, W.M. Liu, T. Xu, Q.J. Xue. Characteristics of carbon films prepared by plasma-based ion implantation. Carbon.2004,42:387-393
    [62]J. Qi, J.B. Luo, S.Z.Wen, J. Wang, W.Z. Li. Mechanical and tribological properties of non-hydrogenated DLC films synthe-sized by IBAD. Surface and Coatings Technology. 2000,128-129:324
    [63]Wang. J, W.Z. Li, H.D. Li. Influence of the bombardment energy of CHn+ions on the properties of diamond-like carbon films. Surface and Coatings Technology. 1999,122:273
    [64]Robertson. J. Diamond-like amorphous carbon. Materials Science and Engineer.2002, 37:129-281
    [65]Morshed. M. M, McNamara. B. P, Cameron. D. C, Hashmi M. S. J. Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. Materials Processing Technology.2003,141:127-131
    [66]高鹏,徐军,邓新绿,王德和,董闯.微波ECR全方位离子注入制备类金刚石碳膜的结构及摩擦学性能研究.物理学报.2005,54(7):3241
    [67]Y. Liu, A. Erdemir, E.I. MeletisA study of the wear mechanism of diamond-like carbon films. Surface and Coatings Technology.1996,82:48-56
    [68]J.H. Sui, W. Cai, L.C. Zhao. Surface modification of NiTi alloys using diamond-like carbon (DLC) fabricated by plasma immersion ion implantation and deposition (PIIID). Nuclear Instruments and Methods in Physics Research.2006,248:67-70
    [69]P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, R.K.Y Fu, S.C.H. Kwok, Y. Leng.Activation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition (PIII-D). Biomaterials.2003,24: 2821-2829
    [70]J.H. Liang, M.H. Chen, W.F. Tsai, S.C. Lee, C.F. Ai. Characteristics of diamond-like carbon film synthesized on 304 austenite stainless steel using plasma immersion ion implantation and deposition. Nuclear Instruments and Methods in Physics Research. 2007,257:696-701
    [71]Mitsuo. A, Uchida. S, Morikawa. K, Kawaguchi. M, Shiotani. K, Suzuki. H. E□ect of deposition parameter on hardness of amorphous carbo film prepared by plasma immersion ion implantation using C2H2. Nuclear Instruments and Methods in Physics Research.2007,257:753-757
    [72]William. F.Stickle, Peter E. Sobol, Kenneth. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Coporation Physical Electronics Division.1992:333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700