用户名: 密码: 验证码:
纯铁高频低压等离子体浸没离子注入及氮化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属铀是重要的核材料,但其在使用环境中易被腐蚀,因而铀表面防腐蚀技术长期以来都是核材料领域的重要研究课题。离子注入由于其改性层与基体逐渐过渡,不会剥落而在材料防护上具有独特的技术优势。为了研究铀氮化后的耐磨抗蚀性,本文选用工业纯铁作为模型材料,采用高频低压等离子体注入(HLPⅢ)及氮化技术在工业纯铁(模拟材料)上进行氮离子注入及氮化处理,研究射频功率及氧分压对氮化后样品表面结构、成分及性能的影响。在此基础上,将高频低压等离子体注入(HLPⅢ)及氮化技术应用到异型零件(如球)上,研究脉冲频率对其表面改性层均匀性及性能的影响。
     利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)对改性层的相结构、成分及断面组织进行分析;利用HXD-1000 knoop显微硬度仪和CSEM销盘式摩擦磨损实验机评价改性前后工业纯铁的硬度及耐磨性等机械性能;利用电化学腐蚀实验评价了改性后工业纯铁的耐腐蚀性。依据电化学腐蚀中的极化曲线,用电量法计算改性层的孔隙率。
     研究结果表明,采用高频低压等离子体浸没离子注入(HLPⅢ)及氮化技术能在纯铁表面制备出结构致密、耐磨性和耐腐蚀性能优良的氮化物改性层。射频功率影响铁氮化合物的形成,并随着射频功率的增加,氮化层厚度增加,由1μm左右增至3μm左右,纯铁的表面硬度、耐磨性和耐腐蚀性提高。射频功率为600W和800W时,纯铁表面的硬度相差不大,但800W时纯铁的耐磨性和耐腐蚀性优于600W。真空室中残余的氧对氮化物的形成有很大的影响,当氧分压小于6.5×10-3Pa时,残余氧的存在不影响氮化层的结构和性能,表面改性层主要由Fe2N和Fe3N相组成,样品具有高的硬度、耐磨性和耐腐蚀性;但是,随着氧分压的增大(大于9.4×10-3Pa),样品表面的相结构由Fe2N和Fe3N的混合相向Fe3N和Fe3O4的混合相转变,硬度和耐磨性降低,耐腐蚀性下降。球经高频低压等离子体浸没离子注入及氮化处理后,样品表面的硬度、耐磨性和耐腐蚀性显著提高,具有较好的均匀性。脉冲频率对球表面均匀性、相结构、机械性能和耐腐蚀性能没有明显影响。
Uranium is a kind of important nuclear material, whose corrosion resistance is weak, and thus the protection of uranium against corrosion is an important subject in nuclear technology, especially for long term storage of non-irradiated components. Plasma immersion ion implantation is a well-known method for protection of metals against wear, fatigue and corrosion. So high frequency and low voltage plasma immersion ion implantation (HLPIII) nitriding technology at different RF power and O2 partial pressure has been applied to improve the industrial pure iron (simulation material of uranium) properties in this paper. Then the nitriding layer prepared by high frequency and low voltage plasma immersion ion implantation (HLPIII) nitriding technology with different pulse frequency on the ball was synthesized.
     After the HLPIII treatment, mechanical property and corrosion resistance of samples were evaluated and compared with the virgin Fe. The microstructure of the nitriding layer was characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy(XPS). The thickness of nitriding layer was evaluated by scanning electron microscopy (SEM). The microhardness was analyzed by HXD1000 microhardness meter, the wear resistance was analyzed by CSEM pin-on-disk wear testing machine, and the corrosion resistance was measured in a 0.9% NaCl solution at room temperature. The porosity ratio was calculated using coulometric method based on the polarization curves.
     The result indicated that the nitriding layer was synthesized on industrial pure iron using high frequency and low voltage plasma immersion ion implantation (HLPIII) and nitriding technology. The RF power influenced the phase structure and the depth of the nitriding layer of industry pure iron. With the RF power increased, the depth of the nitriding layers was increased to 3μm from 1μm, the hardness, wear resistance and corrosion resistance were raised. The O2 partial pressure influenced the formation of iron nitride. When the O2 partial pressure was less than 6.5×10-3Pa, the existence of residual oxygen didn't influence the structure and properties of the nitriding layer. And the Fe2N and Fe3N coexisted in the nitriding layer, the nitriding layer had higher hardness, wear resistance and corrosion resistance. However, with the O2 partial pressure increased (>9.4×10-3Pa), the phase structure Fe3N and Fe3O4 was formed in nitriding layer, and the hardness, wear resistance and corrosion resistance decreased with the increasing of O2 partial pressure. The hardness, wear resistance and corrosion resistance of the ball were significantly increased after the treatment of HLPIII, and had better uniformity. Pulse frequency had no significant imfluence on hardness, wear resistance and corrosion resistance of the ball treated by HLPIII.
引文
[1]吕学超、汪小琳、鲜晓斌.金属铀的氧化腐蚀及防护.材料导报,2003,17(2):23-25
    [2]郭焕军.金属铀表面高温注入铌离子的改性层研究.中国工程物理研究院硕士学位论文.2005:1-8
    [3]龙重.金属铀表面全方位离子注入氮化改性研究.中国工程物理研究院硕士学位论文.2008:4
    [4]张友寿,谢志强,王庆富等.铀的腐蚀与防腐蚀技术研究.材料导报,2005,19(8):43—46
    [5]庞晓轩,沈保罗,尹昌耕.铀及铀合金防护镀层的研究进展.材料导报,2007,21(1):72.74
    [6]梁宏伟、严东旭、白彬、郎定木、肖红、王晓红.铀表面离子注入碳改性层抗腐蚀性研究.原子能科学技术,2008,42(8):685-690
    [7]R. Arkush, M.H. Mintz, N. Shamir. Passiviation of uranium towards air corrosion by N2+ and C+ ion implantation. Journal of Nuclear Materials.2000(281):182-190
    [8]R. Arkush, S. Zalkind, M.H. Mintz, N. Shamir. The role of the diffuse interface of implanted surface layers in prevention gas corrosion-implantation of N2+and C+in uranium. Colloids and surfaces A:physicochemical and Engineering Aspects.2002(208):167-176
    [9]A. Raveh, R. Arkush, S. Zalkind, M. Brill. Passivation of uranium metal by radio-frequency plasma nitriding against gas phase (H2, H2O) corrosion. Surface and Coatongs Technology.1996(82):38-41
    [10]蔡珣.等离子体基离子注入技术发展及其应用.机械工人,2005.4:33-35;
    [11]高志、潘红良.表面科学与工程.华东理工大学出版社,2006;
    [12]赵青,耿漫.等离子体浸没离子注入(PIII)技术在现代材料表面改性中的应用及发展.真空科学与技术.2000,1:40-43
    [13]汤宝寅.等离子体源离子注入(Ⅰ)——原理和技术.物理,23(1):41-45;
    [14]J.R.CONRAD著.等离子体源离子注入:一种用离子束进行材料改性的新方法.陈英方、刘烈元译.国外金属加工,1991(2):24-29;
    [15]陈勇军、史庆南等.金属表面改性——离子注入技术的发展与应用.表面技术,2003.12,32(6):4-7:
    [16]张通和、吴瑜光.离子束表面工程技术与应用.机械工业出版社,2005
    [17]张蓉、杨湘红.几种模具表面强化新技术的简介.机床与液压,2003,6:314-315;
    [18]郑立允、熊惟皓等.刀具材料表面处理的研究现状.金属热处理,2005,30(6):31-35;
    [19]梁波、葛世东等.轴承表面改性技术的发展及其应用.轴承,2003,4:42-46;
    [20]M. Ueda, L.A. Berni, etal. Surface improvements of industrial components treated by plasma immersion ion implantation (PⅢ):results and prospects. Surface & Coatings Technology,2002,156:71-76;
    [21]E.J. Bienk, N.J. Mikkelsen. Application of advanced surface treatment technologies in the modern plastics moulding industry. Wear,1997,207:6-9;
    [22]Wolfhard Moller, Stefano Parascandola, Olaf Kruse, Reinhard Gunzel, Edgar Richter, Plasma-immersion ion implantation for diffusive treatment. Surface and Coating, 116-119(1999):1-10;
    [23]陈惠敏,等离子体浸没离子注入(PⅢ)在材料表面改性中的应用及发展,表面技术,2008,37(5):79-81;
    [24]田修波,汤宝寅,王小峰,曾照明.高频低压等离子体浸没离子注入技术研究.新技术新工艺.2000,1:40-41
    [25]Jesse N. Matossian, Ronghua Wei, Challenges and progress toward a 250KV,100KV plasma ion implantation facility. Surface and Coating Technology,85(1996):111-119;
    [26]汤宝寅,王松雁,刘爱国,曾照明,田修波.等离子体浸没离子注入及表面强化工艺的进展.材料科学与工艺.1999,7(增刊):182-185
    [27]田修波,汤宝寅,ChuPaulK. AISI304钢表面低电压等离子体基离子注入层摩擦磨损性能.摩擦学学报.2000,20(2):81-84
    [28]R.Lopez-Callejas, A.E. Munoz-Castro, R. Valencia A., S.R. Barocio, E.E. Granda-Gutie rrez, et al. Surface modification of stainless steel drills using plasma-immersion nitrogen ion implantation. Vacuum.2007,81:1385-1388
    [29]陈畅子,冷永祥,孙鸿等,工业纯铁等离子体注入与氮化工艺及其性能研究.材料工程.2008,3:67-71
    [30]M.K. Lei, X.M. Zhu. Plasma-based low-energy ion implantation of austenitic stainless steel for improvement in wear and corrosion resistance. Surface and Coatings Technology. 2005,193:22-28
    [31]M.K. Lei, Z.L. Zhang, T.C. Ma. Plasma-based low-energy ion implantation for low-temperatrue surface engineering. Surface and Coatings Technology.2000,131:317-325
    [32]X.B.Tian, S.C.H. Kwok, L.P. Wang. Corrosion resistance of AISI304 stainless steel treated by hybrid elevated-temperature, low-votage/high-votage nitrogen plasma immersion ion implantation. Materials Science and Engineering A.2002,326:348-354
    [33]X.B. Tian, Y.X. Leng, T.K. Kwok, L.P. Wang. Hybrid elevated-temperature, low/high-voltage plasma immersion ion implantation of AISI304 stainless steel. Surface and Coating Technology.2001,135:178-183
    [34]K. Ram Mohan Rao, S. Mukherjee, P.M. Raole, I. Manna. Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion implanted 304L austenitic stainless steel. Surface and Coating Technology.2005,200:2049-2057
    [35]S. Mukherjee, P. M. Raole, P.I. John. Effect of applied pulse voltage on nitrogen plasma immersion ion implantation of AISI 316 austenitic stainless steel. Surface and Coatings Technology.2002,157:111-117
    [36]S. Mukherjee, J.Chakraborty, S. Gupta, P.M. Raole, P.I. John, K.R.M. Rao, I. Manna. Low-and high-energy plasma immersion ion implantation for modification of material surfaces. Surface and Coatings Technology.2001,156:103-109
    [37]Yamashita M, Shimizu T, Konishi H, Mizuki J, Uchida H. Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mossbauer spectroscopy and with synchrotron radiation X-rays. Advances in applied plasma science.1991,2:381-394
    [38]Uchida H, Inoue s, Koterazawa K, Electrochemical evaluation of pinhole defects in TiN films prepared by r.f. reactive sputtering. Materials Science and Engineering A. 1997,234-236:649-652
    [39]Erdemir A, Carter W B, Hochman F F, Meletis E E, A study of the corrosion behavior of TiN films. Materials Science and Engineering.1985,69:89-93
    [40]Celis J P, Drees D, Maesen E, Roos J R, Quantitative determination of through-coating porosity in thin ceramic physically vapour-deposited coatings. Thin Solid Films,1993,224: 58-62
    [41]F.Sittner, W. Ensinger. Electrochemical investigation and characterization of thin-film porosity. Thin Solid Films,2007(518):4559-4564
    [42]Chen Y M, Yu G P, Huang J H, Comparison of electrochemical porosity test methods for TiN-caoted stainless steel. Surface and Coating Technology.2002,150:309-318
    [43]曾荣昌,韩恩厚等.材料的腐蚀与防护.化学工业出版社.2006
    [44]X. Wang, W.T. Zheng, H.W. Tian, S.S. Yu, W. Xu, S.H. Meng, X.D. He, J.C. Han, C.Q. Sun, B.K. Tay, Growth, structural, and magnetic properties of iron nitride thin films deposited by dc magnetron sputtering. Applied Surface Science.2003,220:30-39
    [45]Mukul Gupta, Ajay Gupta, S.M. Chaudhari, D.M. Phase, V. Ganesan, M.V. Rama Rao, T. Shripathi, B.A. Dasammacharya, Microstructural study of iron nitride thin films deposited by ion beam sputtering. Vacuum.2001,60:395-399
    [46]T. Chujo, K. Hiroe, Y. Matsumura, H. Uchida, H.H. Uchida. Reactivity of N2 with Fe in FeNx formation by activated reactive evaporation process. Journal of Alloys and Compounds. 1995,222:193-196
    [47]朱生发,徐莉,黄楠,石志峰,刘恒全,张勇.氮离子注入纯铁在人工模拟体液中的腐蚀性能研究.功能材料,2007,9(38):1540-1542
    [48]朱生发,徐莉,刘恒全,张瑜,孙鸿,黄楠.生物可降解Fe-O薄膜的制备及性能表征.真空科学与技术学报,2008,29(3):236-240
    [49]Eduardo J. Miola, Sylvio D. de Souza, Pedro A.P. Nascente, Maristela Olzon-Dionysio, Xarlos A. Olivieri, Dirceu Spinelli. Surface characterisation of plasma-nitrided iron by X-ray photoelectron spectroscopy. Applied Surface Science,1999,144-145:272-277
    [50]P.C.J. Graat, M.A.J. Somers, E.J. Mittemejier. The initial oxidation of ε-Fe2N1-x:an XPS investigation. Applied Surface Science,1998,136:238-259
    [51]Flavio Kieckow, C. Kwietniewski, Eduardo K. Tentardini, Afonso Reguly, Israel J.R. Baumvol. XPS and ion scattering studies on compound formation and interfacial mixing in TiN/Ti nanolayers on plasma nitrided tool steel. Surface and Coating Technology, 2006,201:3066-3073
    [52]C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg. Handbook of X-ray Photoelectron Spectroscopy. Perkin-dlmer corporation physical electronics division: 227
    [53]罗文华、倪然夫、武胜、柏朝茂.注铌法改善纯铁的抗腐蚀性研究.材料保护,2001,34(9): 12-13
    [54]C.Zhao, C.X. Li, H. Dong, T. Bell. Study on the active screen plasma nitriding and its nitriding mechanism. Surface and Coating Technology,2006,201:2320-2325
    [55]Santiago Corujeira Gallo, Hanshan Dong. Study of active screen plasma processing conditions for carburising and nitriding austenitic stainless steel. Surface and Coating Technology,2009,203:3669-3675
    [56]M. Keshavara Hedayati, F. Mahboubi, T. Nickchi. Comparison of conventional and active screen plasma nitriding of hard chromium electroplated steel. Vacuum, 2009,83:1123-1128
    [57]Santiago Corujeira Gallo, Hanshan Dong. On the fundamental mechanisms of active screen plasma nitriding. Vacuum,2010,84:321-325
    [58]Sh. Ahangarani, A.R. Sabour, F. Mahboubi, T. Shahrabi. The influence of active screen plasma nitriding parameters on corrosion behavior of a low-alloy steel. Journal of Alloys and Compounds,2009,184:222-229
    [59]Sh. Ahangarani, A.R. Sabour, F. Mahboubi. Surface modification of 30CrNiMo8 low-alloy steel by active screen setup and conventional plasma nitriding methods. Applied Surface Science,2007,254:1427-1435
    [60]Sh. Ahangarani, F. Mahboubi, A.R. Sabour. Effects of various nitriding parameters on active screen plasma nitriding behavior of a low-alloy steel. Vacuum,2006,80:1032-1037
    [61]Alan P.Kauling, Gabriel V.Soares, Carlos A.Figueroa, Ricardo V.B. de Oliveira, Esrael J.R. Baumvol, Cristiano Giacomelli, Leonardo Miotti. Polypropylene surface modification by active screen plasma nitriding. Materials Science and Engineering C,2009,29:363-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700