用户名: 密码: 验证码:
两亲性共聚物的分子设计、合成及其共混改性疏水聚合物多孔膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PVC、PVDF及PSF是最常用的微滤、超滤膜材料,但在实际应用中,面临通量小、易污染、选择性和功能单一等问题,因此,对其进行亲水化和功能化改性以提高综合性能,具有重要意义。近年,研究发现,将两亲性共聚物与膜材料共混并通过相转化法制膜,则两亲性共聚物发生表面迁移而富集在共混膜的表面,亲水链段的表面富集使共混膜的亲水性得以改善,而疏水链段可与膜材料分子链发生链缠结、对亲水链段起到“锚定”的作用,使亲水改性效果持久、稳定。其中,两亲性共聚物的疏水链段与膜材料的相容性对共混膜性能有着重要影响,因而两亲性共聚物的分子设计与合成是关键、也是难点。在本研究中,设计并合成了多种不同化学组成和分子结构的两亲性共聚物,然后将之与PVC、PVDF及PSF共混制备了多孔膜,考察了两亲性共聚物对共混膜结构及性能的影响。具体研究内容和主要结论概述如下:
     通过ATRP法合成了PVC-g-P(PEGMA)。该共聚物在水中溶胀而不溶解,数均分子量为5.5×10~5g/mol,P(PEGMA)链段含量为82.6wt%。将PVC-g-P(PEGMA)与PVC共混并通过浸没沉淀法制备了PVC-g-P(PEGMA)/PVC多孔膜,研究发现:PVC-g-P(PEGMA)主要分布在共混膜的表面,当两亲性共聚物添加量为15wt%时,共混膜表面P(PEGMA)的摩尔百分数达到43%;两亲性共聚物的引入,提高了共混膜的孔隙率和平均孔径;其初始纯水接触角为52.2°,15s后下降到0°;0.1MPa、25℃下共混膜的纯水通量为584.4 L/m~2·h,对BSA的截留率大于92%,水通量恢复率为84.7%。
     通过RAFT法合成了具有“梳子-链段-梳子”结构的ABA型两亲性共聚物P(PEGMA)-PMMA-P(PEGMA),其数均分子量为1.9×10~4g/mol。以PVDF为大分子引发剂,通过ATRP法合成了两亲性共聚物PVDF-g-PMAG,其数均分子量为3.12×10~5g/mol,PMAG含量为65.7wt%。分别将P(PEGMA)-PMMA-P(PEGMA)和PVDF-g-PMAG与PVDF共混并制备多孔膜。研究发现,两亲性共聚物的引入,增加了膜的孔隙率;引入少量的共聚物之后(~5wt%),PVDF膜的纯水接触角从110°降至50~56°,降幅超过50%;此外,共混膜的抗蛋白质吸附能力也得到了显著的提高。
     以PSF-CH_2Cl为大分子引发剂,通过ATRP法合成了PSF-g-P(PEGMA),其数均分子量为6.34×10~4g/mol,P(PEGMA)的摩尔百分含量为71.1%,质量百分含量为39.6 wt%。该共聚物在水中溶胀而不溶解,将它与PSF共混并制备PSF-g-P(PEGMA)/PSF共混膜。研究结果显示,PSF-g-P(PEGMA)的引入,改善了共混膜的孔结构、提高了孔隙率和平均孔径;PSF-g-P(PEGMA)主要分布在共混膜的表面;将共混膜置于90℃热水中浸泡24h进行热处理后,膜表面富集的PSF-g-P(PEGMA)量明显增加;对于PSF-g-P(PEGMA)含量为20wt%的共混膜,初始纯水接触角为43.5°,50s后下降到0°;对BSA吸附量接近0。
     以Br-PSF-Br为引发剂,通过ATRP法合成了以PSF为疏水链段(B段)、分别以P(PEGMA)和PMAG为亲水链段(A段)的ABA型两亲性共聚物;P(PEGMA)-PSF-P(PEGMA)和PMAG-PSF-PMAG,所合成的共聚物在水中溶胀而不溶解。将这两种共聚物分别与PSF共混制备共混膜,研究发现,由于两亲性共聚物的引入,PSF膜表面由致密、无孔变为多孔(孔径小于50 nm且分布均匀),且膜皮层变薄、指状孔亚层结构变得更加规整、均一,整个膜的孔隙率变大:随着共混膜中两亲性共聚物含量的增加,其水接触角和BSA吸附量逐渐下降,当共聚物添加量为10 wt%时,BSA的吸附量接近于0。
     通过ATRP法合成了PSF-g-PtBA和PSF-g-PNIPAAm,然后在酸性条件下对PSF-g-PtBA进行水解,得到PSF-g-PAA。PSF-g-PAA和PSF-g-PNIPAAm的数均分子量分别为5.04×10~4g/mol和5.58×10~4g/mol。将PSF-g-PAA或(和)PSF-g-PNIPAAm与PSF共混,通过浸没沉淀法制备了20wt%PSF-g-PAA/PSF(A)、20wt%PSF-g-PNIPAAm/PSF(B)及10wt%PSF-g-PAA/10wt%PSF-g-PNIPAAm/PSF(C)三种共混膜。研究发现,引入共聚物后,共混膜的孔隙率和平均孔径有所提高;两亲性共聚物主要分布在共混膜的表面;A、B、C三种共混膜可分别在35s、90s及120s内被H_2O完全浸润:不同pH值和温度下的水通量测量发现,A膜具有pH响应性,B膜具有温度响应性,C膜则具有pH/温度双重响应功能。
PVC,PVDF,and PSF have been widely used to fabricate polymeric Microfiltration and Ultrafiltration membranes for decades.However,their hydrophobic character makes them highly susceptible to fouling.A second problem limiting the applications of PVC,PVDF,and PSF membranes is their poor flux,selectivity,and functions.An obvious approach to solving the problems of fouling and selectivity is the surface modification of these hydrophobic membranes to impart engineered surface chemistries.Compared to the conventional surface modification methods such as coating and grafting,blending is a facile and efficient method to prepared hydrophilic membranes.Over the past decades,many studies have been devoted toward the development of methods to modify the surfaces of polymeric membranes through the surface segregation of amphiphilic polymer additives.When an amphiphilic copolymer is blended with the hydrophobic membrane materials and prepared a blend membrane via immersion-precipitation process,the amphiphilic copolymer can preferentially segregated to the surfaces of blend membranes,and the location of amphiphilic copolymer at membrane surface results in the formation of a hydrophilic "brush" of the hydrophilic chains,while the hydrophobic segments intermixes with the membrane base component,serving as an anchor for the additives.In this method, the performances of blend membranes are depend to a large extent on the compatibility between the membrane base component and the hydrophobic segments of the amphiphilic copolymers,thus,the molecular design and synthesis of the amphiphilic copolymer additives is very important.With this in mind,in this thesis, we designed and synthesized a series of amphiphilic copolymers with various chemical composition and molecular structures,the using those copolymers as additives to prepared hydrophilic and anti-fouling PVC,PVDF,and PSF blend membranes were also studied.
     An amphiphilic graft copolymer which having PVC as the hydrophobic chains and P(PEGMA) as the hydrophilic chains,i.e.PVC-g-P(PEGMA),have been synthesized via ATRP.The molecular weight of PVC-g-P(PEGMA) which calculated based on ~1H-NMR was 5.5×10~5 g/mol,the weight fraction of P(PEGMA) was 82.6wt%.PVC-g-P(PEGMA) was used as an additives to modified PVC membranes, the investigation results demonstrated that PVC-g-P(PEGMA) were mainly located on the membrane surfaces and impart the blend membranes with excellent hydrophilicity and anti-fouling properties.For instance,when the weight fraction of PVC-g-P(PEGMA) in blend membrane was 15wt%,the initial water contact angle of the blend membrane was 52.2°,and the water contact angle decreased to 0°within 15s, the pure water flux of 15wt%PVC-g-P(PEGMA)/PVC membrane was 584.4 L/m~2·h, the BSA rejection ratio was higher than 92%,the water flux recovery was 84.7%.
     An ABA type amphiphilic copolymer with "comb-block-comb" structure,i.e. P(PEGMA)-PMMA-P(PEGMA),was synthesized via two steps RAFT.On the other hand,a amphiphilic graft copolymer which containing PVDF as hydrophobic backbone and having an sugar-carrying polymer as the hydrophilic side chains,i.e. PVDF-g-PMAG,was synthesized via ATRP using PVDF as macroinitiator.The GPC molecular weights of P(PEGMA)-PMMA-P(PEGMA) and PVDF-g-PMAG was 1.9×104 g/mol and 3.12×105 g/mol,respectively.When small amounts(less than 5wt%) of P(PEGMA)-PMMA-P(PEGMA) or PVDF-g-PMAG was blend with PVDF to prepare PVDF blend membranes,the water contact angle of PVDF membranes decreased from 110°to 50~56°.Beside this,the protein-resistance properties of PVDF blend membranes were also enhanced greatly.
     Using PSF-CH_2Cl as macroinitiator,an amphiphilic copolymer which having PSF as the hydrophobic backbone and with P(PEGMA) as the hydrophilic side chains, i.e.PSF-g-P(PEGMA),was synthesized via ATRP.The molecular weight of PSF-g-P(PEGMA) was calculated as 6.34×10~4 g/mol based on IH-NMR results,the molar fraction and weight fraction of P(PEGMA) in the copolymer was 71.1%and 39.6 wt%,respectively.PSF-g-P(PEGMA) can be swollen but were not soluble in H20.A series of blend membranes containing various amounts of PSF-g-P(PEGMA) were prepared via phase inversion process.The investigation results showed that the introduction of PSF-g-P(PEGMA) can obviously improved the hydrophilicity and anti-fouling property of PSF blend.For example,the initial water contact angle of 20wt%PSF-g-P(PEGMA)/PSF membrane was 43.5°,after 50s,the blend membrane was completely wetted by water.The apparent BSA adsorption amount of the 20wt%PSF-g-P(PEGMA)/PSF membrane was extreme low compared to that of the pure PSF membrane.
     Two kind of ABA type amphiphilic copolymer having PSF segment as the hydrophobic composition,i.e.P(PEGMA)-PSF-P(PEGMA) and PMAG-PSF-PMAG, respectively,were synthesized via ATRP,using a difunctional PSF as macroinitiator. The molecular weights and molecular weights distributions of these copolymers were determined by GPC.P(PEGMA)-PSF-P(PEGMA) and PMAG-PSF-PMAG were not soluble in water but they can be swollen by water.The porous membranes prepared from the blends of P(PEGMA)-PSF-P(PEGMA) or PMAG-PSF-PMAG with PSF exhibited higher porosity and average pore diameters.Moreover,when the contents of the amphiphilic copolymer in the blend membranes was 10wt%,the apparent BSA adsorption of blend membrane were neared to zero.
     PSF-g-PtBA and PSF-g-PNIPAAm were synthesized by ATRP,using PSF-CHECI as macroinitiator.After acidolysis treatment,the tert-butyl groups on PSF-g-PtBA were completely removed,thus an amphiphilic copolymer,i.e.PSF-g-PAA,was obtained.The molecular weights of them were determined by GPC(5.04×10~4 g/mol for PSF-g-PAA and 5.58×10~4 g/mol for PSF-g-PNIPAAm,respectively).Three kinds of blend membranes were prepared from the blends of PSF-g-PAA or/and PSF-g-PNIPAAm,i.e.20wt%PSF-g-PAA/PSF(A),20wt%PSF-g-PNIPAAm/PSF(B), and 10wt%PSF-g-PAA/10 wt%PSF-g-PNIPAAm/PSF(C),respectively.Water contact angle measurement result demonstrated that A,B,and C membrane can be wetted by water within 35s,90s,and 120s,respectively.Moreover,the water flux of A was pH-dependent,the water flux of B was temperature-dependent,and the water flux of C was pH and temperature dual- dependent.
引文
[1]大矢,晴彦,张瑾著,分离的科学与技术,北京:中国轻工业出版社,1999.
    [2]刘国信,刘录声 编著,膜法分离技术及其应用,北京:中国环境科学出版社,1991.
    [3]安树林 主编,膜科学技术实用教程,北京:化学工业出版社,2005.
    [4]朱长乐 主编,膜科学技术,北京:高等教育出版社,2004.
    [5]王学松,膜分离技术及其应用,北京:科学出版社,1994.
    [6]徐又一,徐志康等编著,高分子膜材料,北京:化学工业出版社,2005.
    [7]高以烜,叶凌碧编著,膜分离技术基础,北京:科学出版社,1989.
    [8]Mulder M.著,李琳译,膜技术基础原理,北京:清华大学出版社,1999.
    [9]约瑟G桑切斯·马可,西奥多T.托迪斯著,催化膜及膜反应器,北京:化学工业出版社,2004.
    [10]Richard W.Baker,Membrane Technology and Applications,Second Edition.John Wiley &Sons,Ltd.,2004.
    [11]Nunes S.P.and Peinemann K.-V.,Membrane Technology in the Chemical Industry.Wiley-VCH Verlag GmbH,2001
    [12]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001.
    [13]俞三传,高从增,浸入沉淀相转化法制膜,膜科学与技术,2000,20(5):36-41.
    [14]Loeb G.S.,Sourirajian S.,Sea water demineralization by means of an osmotic membrane,Adv.Chem.Ser.,1963,38:117-132.
    [15]Witte P.van de,Dijkstra P.J.,Berg J.W.A.van den,Feijen J.,Phase separation processes in polymer solutions in relation to membrane formation,J.Membr.Sci.,1996,117:1-31.
    [16]Kim J.Y.,Kim Y.D.,Kanamorl T.,Lee H.K.,Baik K.J.,Kim S.C.,Vitrification Phenomena in polysulfone/NMP/Water system,J.Appl.Polym.Sci.,1999,71:431-438.
    [17]Kima J.H.,Mina B.R.,Park J.Won,H.C.,Kang Y.S.,Phase behavior and mechanism of membrane formation for polyimide/DMSO/water system,J.Membr.Sci.,2001,187:47-55.
    [18]Young T.H.,Cheng L.P.,You W.M.,Chen L.Y.,Prediction of EVAL membrane morphologies using the phase diagram of water-DMSO-EVAL at different temperatures.Polymer,1999,40:2189-2195.
    [19]Young T.H.,Cheng L.P.,You W.M.,Chen L.Y.,Prediction of EVAL membrane morphologies using the phase diagram of water-DMSO-EVAL at different temperatures.Polymer,1999,40:2189-2195.
    [20]Strathmann H.,Kock K.,The formation mechanism of phase inversion membranes,Desalination,1977,21:241-249.
    [21]Strathmann H.,Kock K.,Amar P.,The formation mechanism of asymmetrical membranes,Desalination,1975,16:179-203.
    [22]赵晓勇,曾一鸣,施艳荞,陈观文,相转化法制备超滤和微滤膜的孔结构控制.功能高分子学报,2002,15(4):487_495.
    [23]Lee H.K.,Kim J.Y.,Kim Y.D.,Shin J.Y.,Kim S.C.,Liquid-liquid phase separation in a ternary system of segmented polyetherurethane /dimethylformamide/ water:effect of hard segment content,Polymer,2001,42:3893-3900.
    [24]Li Z.S.,Jiang C.Z.,Zhang Y.Q.,The investigation of solution thermodynamics for the polysulfone-DMAC-water system,Desalination,1987,62:79-88.
    [25]Suzana P.N.,Takashi I.,Evidence for spinodal decomposition and nucleation and growth mechanism during membrane formation,J.Membr,Sci.,1996,111:93-103.
    [26]Strathmann H.,Scheible P.,Baker R.W.,A rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes,J.Appl.Polym.Sci.,1971,15:811-828.
    [27]Young T.H.,Cheng L.P.,Lin D.J.,Fane L.,Chuang W.Y.,Mechanisms of PVDF membrane formation by immersion-precipitation in soft(1-octanol) and harsh(water) nonsolvents,Polymer 1999,40:5315-5323.
    [28]Yilmaz L.,McHugh A.,Analysis of nonsolvent-solvent-polymer phase diagrams and their relevance to membrane formation modeling,J.Appl.Polym.Sci.,1986,31:997-1018.
    [29]Wang D.L.,Teo K.Li,W.K.,Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives,J.Membr.Sci.,2000,178:13-23.
    [30]Boom R.M.,Wienk L.M.,Boomgaard Th.Van den,Smolders C.A.,Microstructures in phase inversion membranes.Part 2.the role of a polymeric additive,J.Membr.Sci.,1992,73:277-292.
    [31]Wang D.L.,Li K.,Teo W.K.,Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive,J.Membr.Sci.,2000,176:147-158.
    [32]Loeb S.andSourirajan S.,Sea Water Demineralization by Means of an Osmotic Membrane,in Saline Water Conversion-II,Advances in Chemistry Series Number 28,American Chemical Society,Washington,DC,pp.117-132(1963).
    [33]刘茉娥 等,膜分离技术应用手册,北京:化学工业出版社,2001.
    [34]华耀祖 编著,超滤技术与应用,北京:化学工业出版社,2004.
    [35]Market Report:Membrane Separation Filtration Industry Analyst,2002(8),14.
    [36]US membrane separation technology markets analyzed,Membrane Technology,2002(9),1.
    [37]Focus on the US microfiltration membrane market,Filtration & Separation,2002,39(2),26-27.
    [38]UF market worth US$725 million in 2007,Membrane Technology,2003(1),4.
    [39]Membrane market put at US$4.5 billion,Filtration Industry Analyst,2003(11),12.
    [40]US biotech separations market set to grow,Membrane Technology,2003(12),4.
    [41]US demand grows for consumer purification,Membrane Technology,2005(8),6.
    [42]US membrane market grows 6.6%per year,Membrane Technology,2005(10),4.
    [43]Strong growth forecast for membrane technology,Membrane Technology,2007(2),5.
    [44]US UF membrane market to reach US$908mn by 2011,Filtration Industry Analyst,2007(3),4.
    [45]Strong growth forecast for US UF membrane markets,Membrane Technology,2007(6),2.
    [46]Strong growth forecast for US protein separation systems market,Membrane Technology,2007(7),5.
    [47]中国膜工业协会(北京),膜分离技术及其在水资源再利用中应用的发展战略研究报告(节选),2006.11.
    [48]Jima K.J.,Fanea A.G,Fella C.J.D.and Joyc D.C.,Fouling mechanisms of membranes during protein ultrafiltration,J.Membr.Sci.,1992,68(1-2):79-91.
    [49]Georges B.,Robert H.D.,Andrew L.Z.,The behavior of suspensions and macromolecular solutions in crossflow microfiltration,J.Membr.Sci.,1994,96(1-2):1-58.
    [50]Gaeta,S.N.In Membrane Technology:Application to Industrial Wastewater Treatment,Caetano,A.,de Pirtho,M.N.,Drioli,E.,Muntau,H.,Eds.,Kluwer Academic Publishers,Dordrecht,The Netherlands,1995,25-45.
    [51]Koehler,J.A.,Ulbricht,M.,Belfort,G,Langmuir,1997,13:4162-4171.
    [52]Aptel,P.In Membrane Processes in Separation and Purification,Crespo,J.G,Boddeker,K.W.,Eds.,Kluwer Academic Publishers,Dordrecht,The Netherlands,1992,263-281.
    [53]Missimer,T.M.Water Supply Development for Membrane Water Treatment Facilities,Lewis Publishers,Boca Raton,FL,1994,31.
    [54]Eisenberg,T.N.,Middlebrooks,E.J.Reverse Osmosis Treatment of Drinking Water,Butterworth,Stoneham,MA,1986,189.
    [55]Andrea Sehifer,Andreas Broeckmann,Bryce Riehards,Membranes and renewable energy--a new era of sustainable development for developing countries,Membrane Technology,2005(11):6-10.
    [56]Drioli E.,and Fontananova E.,Membrane Technology and Sustainable Growth,Chemical Engineering Research and Design,2004,82(A12):1557-1562.
    [57]Bottino A.,Capannelli G,Toechi G,Mareucci M.and,Ciardelli G,Membrane separation processes tackle textile waste-water treatment,Membrane Technology,2001(130):9-11.
    [58]TorOve Leiknes,Membrane technology in environmental engineering-meeting future demands and challenges of the water and sanitation sector,Desalination,2006,199(1-3):12-14.
    [59]Smith A.R.,Klosek J.,A review of air separation technologies and their integration with energy conversion processes Fuel Processing Technology,2001,70(2):115-134.
    [60]Steven Schulz,Jim Miller,Bayard Yang,Microfiltration meets town's challenge of water contamination,Membrane Technology,2003(10):1-16.
    [61]RO system selected for municipal wastewater reuse in Australia,Membrane Technology,2007(9):10-11.
    [62]Andrea I.Schifer,Bryce S.Richards;Testing of a hybrid membrane system for groundwater desalination in an Australian national park,Desalination,2005,183(1-3),55-62.
    [63]Drinking water membranes for rural communities,Filtration and Separation,January/February 2008.
    [64]Hal Walker,Filtration technique removes freshwater algae toxins,Membrane Technology,2007(9),9.
    [65]刘茉娥 等 编著,膜分离技术,北京:化学工业出版社,2000.
    [66]Sablani S.S.,Goosen MFA.,R AI-Belushi and Wilf M.,Concentration polarization in ultrafiltration and reverse osmosis-a critical review,Desalination,2001,141(3):269-289.
    [67]张志国,陈锦屏,浅析UF膜分离过程中的浓差极化问题及其控制方法,食品工业科技,2005.3:186-187.
    [68]Jan L.Nilsson,Protein fouling of UF membranes:Causes and Consequences,J.Membr.Sci.,1990,52:121-142.
    [69]Oh Hyeong Kwonl,Akihiko Kikuchi,Masayuki Yamato,Teruo Okano,Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes,Biomaterials 24(2003) 1223-1232.
    [70]Kazuhiko Ishihara,Shinobu Tanaka,Naoya Furukawa,Nobuo Nakabayashi,Kimio Kurita,Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups.I.Molecular design of polymeric additives and their functions,J.Biomed.Mater.Res.,1996,32(3):391-399.
    [71]Kazuhiko Ishihara,Naoya Shibata,Shinobu Tanaka,Yasuhiko Iwasaki,Nobuo Nakabayashi,Toshikazu Kurosaki,Improved blood compatibility of segmented polyurethane by polymeric additives having phospholipid polar group.II.Dispersion state of the polymeric additive and protein adsorption on the surface,J.Biomed.Mater.Res.,1996,32(3):401-408.
    [72]Park K.D.,Okano T.,Nojiri C.,and Kim S.W.,Heparin immobilized onto segmented polyurethane effect ofhydrophilic spacers,J.Biomed.Mater.Res.,1988,22:977-992.
    [73]Okkema A.Z.,Yu X.H.,and Cooper S.L.,Physical and blood contacting characteristics of propyl sulphonate grafted Biomer,Biomaterials,1990,12:3-12.
    [74]Nojiri C.,Okano T.,Jacobs H.A.,Park K.D.,Mohammad E,Olsen D.B.,and Kim S.W.,Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces,J.Biomed.Mater.Res.,1990,24:1151-1171.
    [75]Ueda T.,Oshida H.,Kurita K.,Ishihara K.,and Nakabayashi N.,Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility,Polym.J.,1992,24:1259-1269.
    [76]Hideo K,Hiroshi O.,Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions,J.Polym.Sci.Polym.Chem.,1983,21(12):3443-3451.
    [77]邵平海,孙国庆,聚偏氟乙烯微滤膜亲水化处理,木处理技术,1995,21(1):26-29.
    [78]吕小龙,赵卫光,胡成松,胡新萍,聚偏氟乙烯中空纤维表面化学改性,天津纺织工学院学报,1999,18(4):8-11.
    [79]Shoichet M S,McCarthy T J.Convinent synthesis of carboxylic acid functionalized fluoropolymer surfaces,Macromolecules,1991,24:982-986.
    [80]Mohammed A.Mohammed,Volker Rossbach,Surface activation of polytetrafluoroethylene by bonding of polymeric silicic ac_id,J.of App.Polym.Sci.,1993,50(6):929-939.
    [81]孙剑,黄健,王晓琳,聚乙二醇重氮树脂在聚乙烯膜材料表面的自组装及亲水改性,南京工业大学学报,2007,29(2):1-5.
    [82]陈杰镕,低温等离子体化学及其应用,北京:科学出版社,2001.
    [83]黄健,王晓琳,低温等离子体对聚合物多孔膜的亲水化改性,高分子通报,2005,6:16-26.
    [84]Wavhal,D.S,Fisher,E.L.J.,Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization,Membr.Sci.,2002,209:255-269.
    [85]Wavhal,D.S.,Fisher,E.R.,Modification of porous poly(ether sulfone) membranes by low-temperature CO2-plasma treatment,J Polym.Sci.,Part B:Polym.Phys,2002,40:2473-2488.
    [86]Gancarz I,Pozniak G,Bryjak M.,Modification of polysulfone membranes:3.Effect of nitrogen plasma,Eur.Polym.J.,2000,36:1563-1569.
    [87]Paynter R.W.,XPS studies of the modification of polystyrene and polyethyleneterephthalate surfaces by oxygen and nitrogen plasmas,Surf.Interf.Anal.,1998,26:674-681.
    [88]Idage S.B.,Badrinarayanan S.,Surface Modification of Polystyrene Using Nitrogen Plasma.An X-ray Photoelectron Spectroscopy Study,Langmuir,1998,14:2780-2785.
    [89]Kayirhan N.,Denizli A.,Hasirci N.,Adsorption of blood proteins on glow-discharge-modified polyurethane membranes,J Appl.Polym.Sci.,2001,81:1322-1332.
    [90]Kim K.S.,Lee K H.,Cho K.,Park C.E.,Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment,J Membr.Sci,2002,199:135-145.
    [91]刑丹敏,改性聚氯乙烯超滤膜的研究(I)-等离子改性膜结构和性能的研究,膜科学与技术,1996,16:49-55.
    [92]Nojiri C.,Park K.D.,Okaao T.,and Kim S.W.,In vivo protein adsorption onto polymers:A transmission electron microscopic study,Trans.Am.Soc.Artif.Intern.Organs,1989,35:357-361.
    [93]Ishihara K.,Hanyuda H.,and Nakabayashi N.,Synthesis ofphospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion resistant properties,Biomaterials,1995,16:873-879.
    [94]Sakakida M.,Nishida K.,Shichiri M.,Ishihara K.,and Nakabayashi N.,Ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane,Sensors Actuators B,1993,13-14:319-322.
    [95]DeFife K.M.,Yun J.K.,Azeez A.,Stack S.,Ishihara K.,Nakabayashi N.,Colton E.,and.Anderson J.M,Adhesion and cytokine production by monocytes on poly(2-methacryloyloxyethyl phosphorylcholine-co-alkyl methacrylate)-coated polymers,1.Biomed.Mater.Res.,1995,29:431-439.
    [96]Stengaard,F.E,Preparation of asymmetric microfiltration membranes and modification of their properties by chemical treatment,J.Membr.Sci.1988,36:257-275.
    [97]Brink,L.E.S.,Elbers,S.J.Ct,Robbertsen,T.,Both,P.,The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes,J.Membr.Sci.1993,76:281-291.
    [98]Kim,K.J.,Fane,A.G.,Fell,C.J.D.,The performance of ultrafiltration membranes pretreated by polymers,Desalination,1988,70:229-249.
    [99]Dickson J M,Childs R F,McCarry B E,et al.Development of a coating technique for the internal structure ofpolypropylene microfiltration membranes,J Membr Sci.,1998,148:25-36.
    [100]Nunes,S.P.,Sforcua,M.L.,Peinemann,K.V.,Dense hydrophilic composite membranes for Ultrafiltration,J.Membr.Sci.,1995,106:49-56.
    [101]Kasai M.,Koyama,Noriyuki,Hydrophilic porous membranes,Patent,JP 61161103,1986.
    [102]Ariya Akthakul,Richard E Salinaro,and Anne M.Mayes,Antifouling Polymer Membranes with Subnanometer Size Selectivity,Macromolecules,2004,37:7663-7668.
    [103]Maartens A.,Swart P.,Jacobs E.P.,Membrane pretreatment:a method for reducing fouling by natural organic matter,J.Colloid & Interf.Sci.2000,221:137-142.
    [104]Kim,K.J.,Fane,A.G,and Fell,C.J.D.,The performance of Ultrafiltration membranes pretreated by polymers,Desalination,1998,70:229-249.
    [105]Nykanen,A.,Nuopponen,M.,Laukkanen,A.,Hirvonen,S.-P.,Rytela,M.,Turunen,O.,Tenhu,H.,Mezzenga,R.,Ikkala,O.,Ruokolainen,J.Macromolecules,Phase Behavior and Temperature-Responsive Molecular Filters Based on Self-Assembly of Polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene,Macromolecules,2007,40(16):5827-5834.
    [106]Wang Y,Kim J H,Choo K H,et al.Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization.J Membr.Sci.,2000,169:269-276.
    [107]Yung Chang,Yu-Ju Shih,Ruoh-Chyu Ruaan,Akon Higuchi,Wen-Yih Chen,Juin-Yih Lai,Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility,J Membr.Sci.,2008,309:165-174.
    [108]Xu Z K,Dai Q W,Liu Z M,et al.Microporous polypropylene hollow fiber membranes,Part II.Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grained membranes,J Membr.Sci.,2003,214:71-81.
    [109]Belfer S.,Fainshtain R.,Purinson Y.,Gilron J.,Nystrom M.,.M/inttari M,Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers,J.Membr.Sci.,2004,239:55-64.
    [110]Belfer S.,M odification of ultrafiltration polyacrylonitrile membranes by sequential grafting of oppositely charged monomers:pH-dependent behavior of the modified membranes,React.&Funct.Polym.,2003,54:155-165.
    [111]董春华 齐崴 何志敏,接枝丙烯酸亲水化改性聚砜超滤膜及其在多肽分离中的应用,化工学报,2007,58(6):1501-1506.
    [112]Gancarz I,Pozniak G,Bryjak M,et a l.,Modification of polysulfone membranes.2.Plasma grafting and plasma polymerization of acrylic acid,Acta Polym,1999,50:317-326.
    [113]Wavhal D S,Fisher E L.,Membrane Surface Modification by Plasma-Induced Polymerization of Acrylamide for Improved Surface Properties and Reduced Protein Fouling,Langmuir,2003,19:79-85.
    [114]Chen H,Belfort,Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization,J.appl.Polym.Sci.,1999,72:1699-1711.
    [115]Li Y,Liu L,Fang Y.,Plasma-induced grafting of hydroxyethyl methacrylate(HEMA) onto chitosan membranes by a swelling method,Polym.Int,,2003,52:285-290.
    [116]Kou R,Xu Z,Deng H,et al.,Surface Modification of Microporous Polypropylene Membranes by Plasma-Induced Graft Polymerization of a-Allyl Glucoside,Langrnuir,2003,19:6869-6875.
    [117]Yamagishi H.,Crivello J.V.,Belfort G.,Evaluation of photochemically modified poly(arylsulfone) ultrafiltration membranes,J.Membr.Sci.,1995,105:249-259.
    [118]Kilduff J.E.,Mattaraj S.,Pieracci J.P.,Belfort G,Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter,Desalination,2000,132:133-142.
    [119]Pieracci J.,Wood D.W.,Crivello J.V.,Belfort G.,UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes:comparison of dip versus immersion modification techniques,Chem.Mater.,2000,12:2123-2133.
    [120]Taniguchi M.,Pieracci J.,Samsonoff W.A.,Belfort G.,UV-assisted graft polymerization of synthetic membranes:mechanistic studies,Chem.Mater.,2003,15:3805-3812.
    [121]Taniguchi M.,Kilduff J.E.,Belfort G.,Low fouling synthetic membranes by UV-assisted graft polymerization:monomer selection to mitigate fouling by natural organic matter,J.Membr.Sci.,2003,222:59-70.
    [122]Taniguchi M.,Belfort G.,Low fouling synthetic membranes by UV-assisted graft modification:varying monomer type,J.Membr.Sci.,2004,231:147-157.
    [123]Pieracci J.,Crivello J.V.,Belfort G.,UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes using selective UV wavelengths,Chem.Mater.,2002,14:256-265.
    [124]Chen H.,Belfort G.,Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization,J.Appl.Polym.Sci.,1999,72:1699-1711.
    [125]Wilson J.,Solvent effects on the rate of radiation-induced grafting of vinyl monomers on polymeric films,J.Macromol.Sci.Chem.1974,8:733-51.
    [126]陆晓峰,汪庚华,梁国明,刘光全,王彬芳,膜科学与技术,1998,18(6):54-57.
    [127]Ostrovskii D.I.,Torell L.M.,Paronen M.,Hietala S.,Sundholm E,Water sorption properties of and the state water in PVDF-based proton conducting membranes,Solid State Ionics,1997,97:315-321.
    [128]Chen Y.W.,Sun W.,Deng Q.L.,Chen L.,Controlled grafting from poly(vinylidene fluoride)films by surface-initiated reversible addition-fragmentation chain transfer polymerization,J.Polym.Sci.Part A:Polym.Chem.,2006,44:3071-3082.
    [129]Chen Y.W.,Liu D.M.,Deng Q.L.,He X.H.,Wang X.E,Atom transfer radical polymerization directly from poly(vinylidene fluoride):surface and antifouling properties,J.Polym.Sci.Part A:Polym.Chem.,2006,44:3434-3443.
    [130]Xu,Z.K.,Kou,R.Q.,Liu,Z.M.,Nie,E Q.,Xu,Y.Y.,Incorporating-Allyl Glucoside into Polyacrylonitrile by Water-Phase Precipitation Copolymerization To Reduce Protein Adsorption and Cell Adhesion,Macromolecules,2003,36(7):2441-2447.
    [131]Fu-Qiang Nie,Zhi-Kang Xu,Ling-Shu Wan,Peng Ye,Wu Jian,Acrylonitrile-based copolymers containing reactive groups:synthesis and preparation of Ultrafiltration membranes,J Membr.Sci.,2004,230:1-11.
    [132]Shi,Z.,Holderoft,S.,Synthesis and Proton Conductivity of Partially Sulfonated Poly([vinylidene difluoride-eo-hexafluoropropylene]-b-styrene) Block Copolymers,Macromolecules,2005,38(10):4193-4201.
    [133]Yiwang Chen,Lie Chen,Huarong Nie,E.T.Kang,R.H.Vor,Fluorinated polyimides grafted with poly(ethylene glycol) side chains by the RAFT-mediated process and their membranes,Mater.Chem.and Phys.,2005,94:195-201.
    [134]Yiwang Chen,Lei Ying,Weihong Yu,E.T.Kang and K.G.Neoh,Poly(vinylidene fluoride)with Grafted Poly(ethylene glycol) Side Chains via the RAFT-Mediated Process and Pore Size Control of the Copolymer Membranes,Macromolecules,2003,36:9451-9457.
    [135]Lei Yfng,Peng Wang,E.T.Kang and K.G Neoh,Synthesis and Characterization of Poly(acrylic acid)-graft-poly(vinylidene fluoride) Copolymers and pH-Sensitive Membranes,Macromolecules,2002,35:673-679.
    [136]Guangqun Zhai,Lei Ying,E.T.Kang and K.G Neoh,Poly(vinylidene fluoride) with grafted 4-vinylpyridine polymer side chains for pH-sensitive microfiltration membranes,J.Mater.Chem.,2002,12:3508-3515.
    [137]Guangqun Zhai,E.T.Kang,K.G.Neoh,Poly(2-vinylpyridine)-and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) copolymers and their pH-sensitive microfiltration membranes,J.Membr.Sci.,2003,217:243-259.
    [138]Lei Ying,E.T.Kang and K.G.Neoh,Synthesis and Characterization of Poly(N-isopropylacrylamide)-graft-Poly(vinylidene fluoride) Copolymers and Temperature-Sensitive Membranes,Langmuir,2002,18:6416-6423.
    [139]Guangqun Zhai,E.T.Kang and K.G Neoh,Inimer Graft-Copolymerized Poly(vinylidene fluoride) for the Preparation of Arborescent Copolymers and "Surface-Active" Copolymer Membranes,Macromolecules,2004,37:7240-7249.
    [140]Kim I.C.,Choi J.G,Tak T.M.,Sulfonated polyethersulfone by heterogeneous method and its membrane performance,J.Appl.Polym.Sci.,1999,74:2046-2055.
    [141]Jane Y.Park,Metin H.Acar,Ariya Akthakul,William Kuhlman,Anne M.Mayes,Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes,Biomaterials,2006,27:856-865.
    [142]江明 著,高分子合金的物理化学,成都:四川教育出版社,1988.
    [143]李健生,梁祎,王慧雅,TiO_2/PVDF复合中空纤维膜的制备和表征,高分子学报,2004,(5):709.
    [144]Yan L.,Li Y.S.,Xiang C.B.,Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina(A1203) and its antifouling research,Polymer,2005,46:7701-7706.
    [145]王湛,吕亚文,王淑梅等,膜科学与技术,2002,22(6):4-8.
    [146]Bousquet A.,Ibarboure E.,Drummond C.,Labruge're C.,Papon E.,and Rodriguez-Hernandez J.,Design of Stimuli-Responsive Surfaces Prepared by Surface Segregation of Polypeptide-b-polystyrene Diblock Copolymers,Macromolecules,2008,41(4):1053-1056.
    [147]Walton D.G.,Mayes A.M.,Entropically driven segregation in blends of branched and linear polymers,Physical review E,1996,54(3):2811-2815.
    [148]Narrainen,A.P.,Hutchings,L.R.,Ansari,I.,Thompson,R.L.,Clarke,N.,Multi-End-Functionalized Polymers:Additives to Modify Polymer Properties at Surfaces and Interfaces,Macromolecules,2007,40(6):1969-1980.
    [149]Walton D.G.,Soo P.P.,Mayes A.M.,Sofia Allgor S.J.,Fujii J.T.,Griffith L.G.,Ankner J.F.,Kaiser H.,Johansson J.,Smith G.D.,Barker J.G,andSatija S.K.,Creation of Stable Poly(ethylene oxide) Surfaces on Poly(methyl methacrylate) Using Blends of Branched and Linear Polymers,Macromolecules,1997,30(22):6947-6956.
    [150]Hester J.F.,Banerjee P.,andMayes A.M.,Preparation of Protein-Resistant Surfaces on Poly(vinylidene fluoride) Membranes via Surface Segregation,Macromolecules,1999,32:1643-1650.
    [151].Kim J.H.,Kim C.K.,Ultrafiltration membranes prepared from blends of polyethersulfone and poly(1-vinylpyrrolidone-co-styrene) copolymers,J.Membr.Sci.,2005,262:60-68.
    [152]Rana D.,Matsuura T.,Narbaitz R.M.,Feng C.,Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes,J.Membr.Sci.,2005,249:103-112.
    [153]Suk D.E.,Pleizier G.,Deslandcs Y.,Matsuura T.,Effects of surface modifying macromolecules(SMM) on the properties of polyethersulfone membranes,Desalination,2002,149:303-307.
    [154]Hamza A.,Pham V.A.,Matsuura T.,Santerre J.P.,Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications,J.Membr.Sci.,1997,131:217-227.
    [155]Wang Y.Q.,Wang T.,Su Y.L.,Peng EB.,Wu H.,Jiang Z.Y.,Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone)ultra filtration membranes by blending with Pluronic F 127,Langrnuir,2005,21:11856-11862.
    [156]Wang T.,Wang Y.Q.,Su Y.L.,Jiang Z.Y.,Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer,J.Membr.Sci.,2006,280:343-350.
    [157]Wang T.,Wang Y.Q.,Su Y.L.,Jiang Z.Y.,Improved protein-adsorption-resistant property of PES/SPC blend membrane by adjustment of coagulation bath composition,Colloids & Surf.B:Biointerf.,2005,46:99-105.
    [158]Wang M.,Wu L.G;,Mo J.X.,Gao C.J.,The preparation and characterization of novel charged polyacrylonitrile,tPES-C blend membranes used for ultrafiltration,J.Membr.Sci.2006,274:200-208.
    [159]邱广明,苯乙烯和马来酸酐共聚物的合成及其功能化膜与微球的研究,[浙江大学博士 学位论文],杭州,2006.1.
    [160]朱利平,聚醚砜、聚醚砜酮多孔膜的结构可控制备及其表面改性,[浙江大学博士学位论文],杭州,2007.3.
    [161]Hester J.E,Banerjee E,Won Y.Y.,Akthakul A.,Acar M.H.,and Mayes A.M.,ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives,Macromolecules,2002,35:7652-7661.
    [162]Seoktae Kang,Ayse Asatekin,Anne M.Mayes,Menachem Elimelech,Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive,J.Memb.Sci.,2007,296:42-50.
    [163]Bumsuk Jung,Preparation of hydrophilic polyacrylonitrile blend membranes for Ultrafiltration,J.Membr.Sci.,2004,296:129-136.
    [164]Yuan-Ping R.Ting and Lawrence E Hancock,Preparation of Polysulfone/Poly(ethylene oxide) block copolymers,Macromolecules,1996,29:7619-7621.
    [165]Lawrence E Hancock,Stephen M.Fagan,Melissa S.Ziolo,Hydrophilic,semipermeable membranes fabricated with Poly(ethylene oxide)-Polysulfone block copolymer,Biomaterials,2000,21:725-733.
    [166]Lawrence E Hancock,Phase Inversion Membrane with an Organized Surface Structure from Mixtures of Polysulfone and Polysulfone-Poly(ethylene oxide) block copolymers,J.Appl.Polym.Sci.,1997,66:1353-1358.
    [167]Alexandridis,P.,Lindman,B.,Eds.Amphiphilic Block Copolymers;Elsevier:Amsterdam,2000.
    [168]Hawmleg,I.W.,Ed.The Physics of Block Copolymers;Oxford Science:Oxford,U.K.,1998.
    [169]童身毅,万敏,张良均,两亲性高聚物及其应用,材料导报,1999,13(5):64-68.
    [170]Lu Y,Hu Y,Wang Z.M.et al.,Synthesis of new amphiphilic diblock copolymers containing poly(ethylene oxide) and poly(a-olefm),J.Polym.Sci.,Part A:Polym Chem,2002,40:3416-3425.
    [171]Yamada K,Yamaoka K,Minoda M,et al.,Controlled synthesis of amphiphilic block copolymers with pendant glucose residues by living cationic polymerization,J.Polym.Sci.,Part A:Polym Chem,1997,35:255-261.
    [172]Costas S,Patrickios C.E,et al.,Synthesis and characterization of amphiphilic diblock copolymers of methyl tri(ethylene glycol) vinyl ether and isobutyl vinyl ether,J.Polym.Sci.,Part A:Polym Chem,1996,34:1529-1541.
    [173]Matyjaszewski,K.,J.H.Xia.Atom transfer radical polymerization.Chem.Rev.,2001,101:2921-2990.
    [174]T P Le,G Moad,E Rizzardo et al.PCT Int Appl.WO:9801478 A1.980115,1998.
    [175]洪春雁,潘才元,用稳定自由基聚合及光引发聚合制备嵌段共聚物,化学通报,2003,12:807-814.
    [176]Wenna Chen,Weijun Luo,Shenguo Wang and Jianzhong Bei,Synthesis and properties of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers by coupling triblock copolymers,Polym.Adv.Technol.2003,14,245-253.
    [177]Jankova,K.,Chen,X.,Kops,J.,Batsberg,W.,Synthesis of Amphiphilic PS-b-PEG-b-PS by Atom Transfer Radical Polymerization,Macromolecules,1998,31(2):538-541.
    [178]Xiao yi Sun,Hailiang Zhang,Lingjun Zhang,Xiaoyu Wang,and Qi-Feng Zhou,Synthesis of amphiphilic poly(ethylene oxide)-b-poly(methyl methacrylate) diblock copolymers via atom transfer radical polymerization utilizing halide exchange technique, Polym. J., 2005, 37(2): 102-108.
    
    [179] Zhenping Cheng, Xiulin Zhu, E. T. Kang, and K. G. Neoh, Brush-Type Amphiphilic Diblock Copolymers from"Living"/Controlled Radical Polymerizations and Their Aggregation Behavior, Langmuir, 2005,21: 7180-7185.
    
    [180] Jian Xu, Zhishen Ge, Zhiyuan Zhu, Shizhong Luo, Hewen Liu, and Shiyong Liu, Synthesis and Micellization Properties of Double Hydrophilic A_2BA_2 and A_4BA_4 Non-Linear Block Copolymers, Macromolecules, 2006, 39 (23): 8178 -8185.
    
    [181] MARC R. LEDUC, WAYNE HAYES, JEAN M. J. FRE'CHET, Controlling Surfaces and Interfaces with Functional Polymers: Preparation and Functionalization of Dendritic-Linear Block Copolymers via Metal Catalyzed "Living" Free Radical Polymerization, Journal of Polymer Science: Part A: Polymer Chemistry, 1998, 36: 1-10.
    
    [182] Boris Lesjean, Sandra Rosenberger, Jean-Christophe Schrotter, Anjou Recherche, Membrane-aided biological wastewater treatment - an overview of applied systems, 2004(8), 5-10.
    
    [183] Clara M., Strenn B., Gans O., Martinez E., Kreuzinger N., Kroiss H., Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Research, 2005, 39(19), 4797-4807.
    
    [184] Robert van Reis and Andrew Zydney, Membrane separations in biotechnology, Current Opinion in Biotechnology, 2001, 12: 208-211.
    
    [185] F. Petrus Cuperus , Membrane processes in agro-food State-of-the-art and new opportunities, Separation and Purification Technology, 1998, 14: 233-239.
    
    [186] R. Rautenbach, K. Vossenkaul, T. Linn, T. Katz, Waste water treatment by membrane processes - New development in ultrafiltration, nanofiltration and reverse osmosis, Desalination, 1997, 108(1-3): 247-253.
    
    [187] Shaoyuan Zhang, Renze van Houten, Dick H. Eikelboom, Hans Doddema, Zhaochun Jiang, Yaobo Fan, Jusi Wang, Sewage treatment by a low energy membrane bioreactor Bioresource Technology, 2003, 90(2): 185-192.
    
    [188] Joseph G. Jacangelo, R. Rhodes Trussell, Montgomery Watson, Role of membrane technology in drinking water treatment in the United States, Desalination, 1997,113: 119-127.
    
    [189] Simon Atkinson, UF membranes produce drinking water for US communities, Membrane Technology, 2004(10), 10-11.
    
    [190] James R. Couper, W. Roy Penney, James R. Fair, Stanley M. Walas, Membrane Separations: Chemical Process Equipment (Second Edition), 2005, 665-692.
    
    [191] Membranes clean up Lake Zurich for drinking water, Membrane Technology, 2004(2), 3.
    
    [192] Zhiwei Wang, Zhichao Wu, Suihai Mai, Caifeng Yang, Xinhua Wang, Ying An, Zhen Zhou, Research and applications of membrane bioreactors in China: Progress and prospect, Separation and Purification Technology, 2008, 62(2): 249-263.
    
    [193] Zhiqiang Liu, Miao Qun, Wenchao An, Zhenai Sun, An application of membrane bio-reactor process for the wastewater treatment of Qingdao International Airport, Desalination, 2007, 202(1-3): 144-149.
    
    [194] Braun D., Poly(vinyl chloride) on the way from the 19th century to the 21st century, J. Polym. Sci. A: Polym. Chem., 2004,42: 578-586.
    [195]Kim D.S.,Kang J.S.,Kim K.Y.,Lee Y.M.,Surface modification of a poly(vinyl chloride)membrane by UV irradiation for reduction in sludge adsorption,Desalination,2002,146:301-305.
    [196]Vigo F.,Uliana C.,Traverso M.,Poly(vinyl chloride) ultrafiltration membranes modified by glow discharge gaffing ofpoly(acrylic acid),Eur.Polym.J.,1991,27(8):779-783.
    [197]Fu Liu,Bao-Ku Zhu and You-Yi Xu,Preparation and characterization of poly(vinyl chloride)-grafted-acrylic acid membrane by electron beam,Journal of Applied Polymer Science,2007,105:291-296.
    [198]Ji J.,Feng L.X.,Shen J.C.,Barbosa M.A.,Preparathion of albumin preferential surfaces on poly(vinyl chloride) membranes via surface self-segregation,J.Biomed.Mater.Res.,2002,61:252-259.
    [199]陈良刚,聚氯乙烯中空过滤膜及其制备方法,国际申请号:PCT/CN2004/000887,国际公布号:WO 2005/014150.
    [200]Paik,H.-J.,Gaynor,S.G.,Synthesis and characterization of graft copolymers of poly(vinyl chloride) with styrene and(meth)acrylates by atom transfer radical polymerization,Matyjaszewski,K.Macromol.Rapid Commun.1998,19:47-52.
    [201]Jin Kyu Choi,Yong Woo Kim,Joo Hwan Koh and Jong Hak Kim,Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes,Polym.Adv.Technol.(2008)(www.interscience.wiley.com) DOI:10.1002/pat.1060.
    [202]KYUNG JU LEE,JUNG TAE PARK,JOO HWAN GOH,JONG HAK KIM,Synthesis of Amphiphilic Graft Copolymer Brush and Its Use as Template Film for the Preparation of Silver Nanoparticles,Journal of Polymer Science:Part A:Polymer Chemistry,2008,46:3911-3918.
    [203]Yun Y.B.,Liu L.Y.,Ma R.Y.,Development of polyvinylidene fluoride(PVDF) membranes,Mem.Sci.and Tech.,2003,23(2):57-61.
    [204]王庐岩,钱英,刘淑秀,叶晓,聚偏氟乙烯分离膜改性研究进展,膜科学与技术,2002,22(5):52-57.
    [205]唐广军,孙本惠,聚偏氟乙烯膜的亲水化改性研究进展,化工进展,2004,23(5):480-485.
    [206]Golander C-G,Herron JN,Lim K,Claesson P,Stenius P,Andrade JD.Properties of immobilized PEG "lms and the interaction with proteins,experiments and modeling.In:Harris JM,editor.Poly(ethylene glycol) chemistry;biotechnical and biomedical applications.New York:Plenum Press,1992.p 221-245.
    [207]Amiji M,Park K.Surface modi"cation of polymeric biomaterials with poly(ethylene oxide).In:Shalaby SW,Ikada Y,Langer R,Williams J,editors.Polymers of biological and biomedical signi"-cance.ACS Symposium Series 540.Washington,DC:American Chemical Society,1994.p 135-146.
    [208]P.M.Wassarman.The biology and chemistry of fertilization.Science,1987,235:553-560.
    [209]Vimary Va'zquez-Dorbatt and Heather D.Maynard,Biotinylated Glycopolymers Synthesized by Atom Transfer Radical Polymerization,Biomacromolecules,2006,7:2297-2302.
    [210]Zhu,J.M.;Marchant,R.E.,Dendritic Saccharide Surfactant Polymers as Antifouling Interface Materials to Reduce Platelet Adhesion,Biomacromolecules,2006,17:1036-1041.
    [211]Lai,J.T.;Filla,D.;Shea,R.Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents,Macromolecules,2002,35(18):6754-6756.
    [212]Ohno K,Tsui Y,Fukuda T.,Synthesis of a well-defined glycopolymer by atom transfer radical polymerization,J Polym.Sci.Part A:Polym Chem 1998,36:2473-2481.
    [213]Bowry SK.Dialysis membranes today.Intl J Artif Organs 2002,25:447-460.
    [214] Higuchi A, Sugiyama K, Yoon BO, Sakurai M, Hara M, Sumita M, et al. Serum protein adsorption and platelet adhesion on pluronic-adsorbed polysulfone membranes. Biomaterials, 2003,24:3235-45.
    
    [215] Ulbricht M, Belfort G. Surface modification of Ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J Membr Sci 1996,111:193-215.
    
    [216] Song YQ, Sheng J, Wei M, Yuan XB. Surface modification of polysulfone membranes by low-temperature plasma-graft poly (ethylene glycol) onto polysulfone membranes. J Appl. Polym. Sci., 2000, 78: 979-85.
    
    [217] Iwata H, Ivanchenko MI, Miyaki Y. Preparation of anti-oil stained membrane by grafting polyethylene-glycol macromer onto polysulfone membrane. J Appl. Polym. Sci. 1994, 54: 125-128.
    
    [218] Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N. Modification of polysulfone with Phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials 1999,20: 1545-1551.
    
    [219] Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N. Modification of polysulfone with Phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials 1999,20: 1553-1559.
    
    [220] Hasegawa T, Iwasaki Y, Ishihara K. Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials 2001,22: 243-251.
    
    [221] Higuchi A, Mishima S, Nakagawa T. Separation of proteins by surface modified polysulfone membranes. J Membr Sci 1991, 57: 175-185.
    
    [222] Guiver MD, Black P, Tam CM, Deslandes Y. Functionalized polysulfone membranes by heterogeneous lithiation, J Appl. Polym. Sci., 1993,48: 1597-606.
    
    [223] Beers, K. L., Gaynor, S. G., Matyjaszewski, K. Macromolecules, 1998, 31: 9413-9415.
    
    [224] Gu, L.; Zhu, S.; Hrymak, A. N., Modeling molecular weight distribution of comb-branched graft copolymers, J. Polym. Sci., Part B-Polym. Phys. 1998, 36, 705-714.
    
    [225] Dattatray S. Wavhal, Ellen R. Fisher, Modification of polysulfone ultrafiltration membranes by CO_2 plasma treatment, Desalination, 2005, 172: 189-205.
    
    [226] Wu D. T., Fredrickson G. H., Effect of architecture in the surface segregation of polymer blends, Macromolecules, 1996,29: 7919-7930.
    
    [227] Hong P. P., Boerio F. J. and Smith S. D., Effect of annealing time, film thickness, and molecular weight on surface enrichment in blends of polystyrene and deuterated polystyrene, Macromolecules, 1994,27: 596-605.
    
    [228] Musale D. A., Kulkarni S.S., Relative rates of protein transmission through poly(acrylonitrile) based ultrafiltration membranes, J. Membr. Sci., 1997,136: 13-23.
    
    [229] Lu C. H., Luo C. Q., Cao W. X., Fabrication of ultrathin film based on chitosan and bovine serum albumin and their stability studied with the radio-labeled method, Coll. Surf., B: Biointerfaces, 2002,25: 19-27.
    
    [230] Gaynor S. G., Matyjaszewski K., Step-growth polymers as macroinitiators for "living" radical polymerization: synthesis of ABA block copolymers, Macromolecules, 1997, 30: 4241-4243.
    
    [231] 姚康德,成国祥,智能膜材料,北京:化学工业出版社,2002,129-145.
    [232]方东宇,李伟,陈欢林,敏感性高分子功能膜的研究进展,功能高分子学报,2000,13(4):442-446.
    [233]曾振辉,董声雄,龚琦,环境敏感性聚合物膜的制备及应用进展,2004,4:89-95.
    [234]李斌,陈文广,王晓工,周其庠,聚丙烯表面接枝PNIPAAm 膜I.光接枝反应和表面形态结构研究,高分子学报,2002,6:780-785.
    [235]Halima Alem,Anne-Sophie Duwez,Perrine Lussis,Pascale Lipnik,Alain M.Jonas,Sophie Demoustier-Champagne,Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes graited in nanopores of a'ack-etched membranes,J.Membr.Sci.,2008,308:75-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700