用户名: 密码: 验证码:
非均质粒子及其团聚物的辐射特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非均质粒子及其团聚物的辐射特性在燃烧系统、航空航天和大气环境等工程应用中有着广泛深入的研究。在燃烧系统中,煤灰辐射特性的相关实验测量过程繁琐且耗资费时,以及航天器喷射出的相变液滴和多层粒子的辐射特性获得困难。气溶胶中包覆水层和灰尘掺杂的碳黑团聚物辐射特性,以及碳黑团聚物辐射特性的等效计算方法也有待进一步的研究。因而有必要从理论上进一步深入研究非均质粒子及其团聚物的辐射特性。
     本文结合有效介质理论与Mie理论研究多组分煤灰粒子、水及氧化铝相变粒子和多层球形粒子的辐射特性,利用有效介质理论结合T矩阵方法,研究大气中碳黑团聚物的辐射特性。主要工作包括以下五个方面:
     1.采用有效介质理论和Mie理论研究了多组分人工合成灰渣和天然煤灰粒子的辐射特性,分析了有效介质理论的适用范围。由于煤灰实际组分不同于其相应的工业分析成分,基于工业分析成分有效介质理论结合Mie理论不适用于燃烧生成煤灰的辐射特性计算,但适用于人工合成灰渣。
     2.发展了计算多层球粒辐射特性的蒙特卡罗光线踪迹法。对比光线踪迹法和包覆层粒子电磁理论,分析了有效介质理论计算相变粒子辐射特性的适用性,以及有效介质理论计算多层球形粒子辐射特性的适用范围。研究结果表明,有效介质理论结合Mie理论适用于水和氧化铝相变粒子辐射特性的计算。对于多层非均质大粒子,层间折射率和消光系数偏差较小时,有效介质理论结合Mie理论可用来近似估算多层粒子的辐射特性。
     3.建立了液滴、液滴层辐射相变模型,分析了液滴温度随时间的变化关系,研究了空间液滴辐射散热器中液滴层流速、粒径分布、液滴相变、液滴层厚、液滴浓度和工质种类对液滴层辐射换热的影响。结果表明在单个液滴相变换热过程中,水滴的蒸发和太阳辐射对液滴温度的影响显著。液滴层内的相变区域和温度分布表明,相变对换热过程的影响不可忽略。
     4.采用T矩阵方法研究了炉内不同形态碳黑团聚物的辐射特性,评估了基于体积、投影面积、回转半径及体积和投影面积比等效的球形近似方法计算碳黑团聚物辐射特性的适用性。结果表明:炉内团聚物的辐射特性随形态参数变化较小。四种等效近似法中,对于吸收截面,基于体积和投影面积比等效的近似方法较其它方法偏差小;而对于散射相函数,投影面积近似法的偏差较其它近似法小。
     5.利用有效介质理论结和T矩阵法,研究了气溶胶中相对湿度变化时两种形态(枝节状与密实状)团聚物的辐射特性,并分析了包覆水层厚度、灰尘混合结构和掺杂体积分数以及粒径分布对团聚物辐射特性的影响。相对湿度从10%增加到100%时,密实状团聚物的散射截面相对于枝节状散射截面的最大偏差为48.8%,水的包覆导致粒径增加是改变团聚物辐射特性的主要因素。另外,灰尘与碳黑混合结构对团聚辐射特性影响很小。
Research on the radiative properties of inhomogeneous particle and soot aggregate is wide and deep in many engineering applications, especial in the aerospace and atmosphere. However, the radiative properties of coal ash in the furnace are hard to determine from the experimental. The multilayer code of electromagnetism theory always appears overflow when the size parameter becomes larger. The radiative properties of the inhomogeneous coal ash, phase-changing droplets and multilayer particle are also hard to determine in practice. Furthermore, the estimation of the radiative properties of soot aggregate coated with water and adulterated with dust in atmosphere. Approximation methods also need further investigated. Therefore, it is necessary to employ the theoretical model to these inhomogeneous particles for calculating their radiative properties.
     In the present thesis, the radiative properties of inhomogeneous particles, including coal ash, phase-change particles for water, silica, and alumina, as well as multilayer particles, are investigated by effective medium theory in combination with Mie theory. On the other hands, the radiative property of soot aggregate in atmosphere is studied by effective medium theory in combination with T-matrix method. In summary, the scope covered in this dissertation consists of the following five parts:
     1. The radiative properties of multi-component synthetic ash and crude ash were investigated by effective medium theory (EMT) in combination with Mie theory, and the applicability of this approach is subsequently analyzed. In principle, the effective medium theory based on industrial analytical species can not be applied to coal ash produced in combustion. While it can be used to analyze synthetic ash slag.
     2. Monte-Carlo ray-tracing method (MCRTM) is developed for calculating the radiative properties of multilayer sphere. The applicability of effective medium theory for phase-change particle and multilayer sphere were analyzed in comparison with the BHCOAT code and the MCRTM. And the applicable range of EMT is subsequently analyzed. The results reveal that it is capable of calculating the effective radiative properties of water and alumina by EMT in combination of Mie theory. For the multilayer spherical particle, where each layer has different optical constant, the MCRTM is approximately applicable to calculate the radiative property of multilayer spherical particle by combining EMT with Mie theory, in the case of the deviation between refractive index and extinction coefficient is small.
     3. For phase-change particle, phase-change models for droplet and droplet layer are constructed. The corresponding phase process for droplet and droplet layer is then analyzed, respectively. The results reveal that the method of combined effective medium theory and Mie theory is applicable for calculating the radiative properties of phase-change particles. In radiation phase-change process of heat transfer, the evaporation of water droplet in amount and energy irradiated by sun can not be ignored. On the other hand, phase zone and temperature distribution in droplet layer show that the effect of phase-change of droplet on the heat transfer process can not be ignored.
     4. Radiative properties of soot aggregate with different morphologies are studied. The applicability of spherical approximation method for computing radiative properties of soot aggregate is estimated and compared with that of T-matrix method, where the spherical approximation method is based on equal volume, equal project area, the radius of gyration, and volume and volume-to-projected area ratio. The computation results show that the radiative properties of soot aggregates vary only slightly with morphologies. For absorption cross section, the values of approximation method based on the volume-to-projected area ratio have the smallest deviation in comparison with that of T-matrix method. Meanwhile, for the scattering phase function, the values from approximation method have the smallest deviation in comparison with that of T-matrix method.
     5. By combining effective medium theory with T-matrix method, the effects of two typically morphological structures, water coating, dust mixing and primary particle size distribution on the radiative properties of soot fractal aggregates in atmosphere are investigated using T-matrix method. The results show that the effect of morphological changes on the radiative properties of soot aggregates can not be neglected in wet air, and the largest relative deviation of their scattering cross section is found to be 48.8%. Furthermore, the radiative properties of soot aggregates coated with water increase notably with an increase in the thickness of water shell. On the other hand, the mixing structures of dust are found to have slightly effect on radiative properties of aggregates.
引文
1郑楚光,柳朝晖.弥散介质的光学特性及辐射传热.武汉:华中理工大学出版社, 1996.
    2 S. A. Self. Optical properties of flyash. Standford University: High Temperature Gasdynamic Lab, 1990.
    3郑楚光,周英彪,李剑云.煤燃烧中飞灰的光学特性和辐射传热.工程热物理学报. 1994, 15(3): 331-335
    4王飞,严建华, Garo A, Girasole T,岑可法.多重散射对含有气体和颗粒的燃烧介质中的辐射传热的影响.中国电机工程学报. 2005, 25(3): 135-140
    5王飞,严建华,马增益,李宁,岑可法.运用激光诱导发光法测量碳黑粒子浓度的模拟计算.中国电机工程学报. 2006, 26(7): 6-11
    6石广玉.大气辐射学.北京:科学出版社. 2007: 119-141
    7霍光,谢明,陈力,陈江,邓德国.雾化合金液滴的凝固动力学分析与计算.精密成型工程. 2003, 21(6): 103-105
    8 L. A. Dombrovsky. Heat transfer by radiation from a hot particle to ambient water through the vapor layer. International Journal of Heat and Mass Transfer. 2000, 43(13): 2405-2414
    9 L. Dombrovsky. Large-cell model of radiation heat transfer in multiphase flows typical for fuel-coolant interaction. International Journal of Heat and Mass Transfer. 2007, 50(17-18): 3401-3410
    10阮立明,谈和平,王平阳,刘林华,夏新林.空间辐射散热器含液滴介质的辐射特性和辐射传热.宇航学报. 1999, 20(4): 32-38
    11张小英,朱定强,蔡国飙.固体火箭羽流中Al2O3粒子的辐射特性.固体火箭技术. 2006, 29(4): 247-250
    12郑楚光,周英彪,李剑云.煤燃烧中飞灰的光学特性和辐射传热.工程热物理学报. 1994, 15(3): 331-335
    13阮立明,余其铮,刘林华,谈和平,唐明.煤及灰辐射特性参数的研究.热能工程. 1995, 10(5): 297-301
    14 D. G. Goodwin. Infrared optical constants of coal slags[R]. Standford University,Standford, CA, 1986.
    15 D. G. Goodwin, M. Mitchner. Flyash radiative properties and effects on radiative heat transfer in coal-fired systems. International Journal of Heat and Mass Transfer. 1989, 32(4): 627-638
    16霍光,谢明,陈力,陈江,邓德国,施红宇.合金液滴雾化凝固过程分析与计算模型.云南冶金. 2003, 32(3): 29-42
    17 P. Yang, B. C. Gao. Radiative properties of cirrus clouds in the infrared (8-13μm) spectral region. Journal of Quantitative Spectroscopy and Radiative Transfer. 2001, 70(4-6): 473-504
    18 K. N. Liou, Y. Gu, W. L. Lee, Y. Chen, P. Yang. Some unsolved problems in atmospheric radiative transfer: implication for climate research in the asia–pacific region. Recent Progress in Atmospheric Sciences. 2009: 307-325
    19 M. Z. Jacobson. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature. 2001, 409(6821): 695-697
    20 S. Menon, J. Hansen, L. Nazarenko, Y. F. Luo. Climate effects of black carbon aerosols in China and India. Science. 2002, 297(5590): 2250-2253
    21 A. Ben-David, J. F. Embury, C. E. Davidson. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications. Applied Optics. 2006, 45(26): 6860-6875
    22余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社, 2000.
    23 Y. L. Xu. Electromagnetic scattering by an aggregate of spheres. Applied Optics. 1995, 34 (21): 4573-4588
    24 Y. L. Xu. Electromagnetic Sscattering by an aggregate of spheres: far field. Applied Optics. 1997, 36(36): 9496-9508
    25 C. Hafner. The Generalized multipole technique for computational electromagnetics. Boston: Artech House. 1990: 168-175
    26 A. Doicu, T. Wriedt, Y. A. Eremin. Light scattering by systems of particles. Berlin Heidelberg: Springer-Verlag, 2006.
    27 M. I. Mishchenko, L. D. Travis, A. A. Lacis. Scattering, absorption, and emission of light by small particles. Cambridge: Cambridge University Press, 2002.
    28 E. M. Purcell, C. R. Pennypacker. Scattering and absorption of light by nonspherical dielectric grains. The Astrophysical Journal. 1973, 186: 705-714
    29 B. T. Draine, A. Li. Infrared emission from interstellar dust. IV. TheSilicate-Graphite-PAH model in post-spitzer era. The Astrophysical Journal. 2007, 657(2): 810-837
    30何国瑜,卢才成,红家才,邓辉.电磁散射的计算和测量.北京:北京航空航天大学出版社, 2006.
    31金建铭著,王建国译.电磁场有限元方法.西安:西安电子科技大学出版社, 1998.
    32 H. C. van de Hulst. Light scattering by small particles. New York: Dover Publications, 1981.
    33 C. F. Bohren, D. R. Huffman. Absorption and scattering of light by small Particles. New York: Wiley-Interscience. 1998, 10: 485-493
    34 D. W. Mackowski, R. A. Altenkirch, M. P. Menguc. Internal absorption cross section in a stratified sphere. Applied Optics. 1990, 29(10): 1551-1559
    35 Z. S. Wu, Y. P. Wang. Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Science. 1991, 26(6): 1393-1401
    36 W. Yang. Improved recursive algorithm for light scattering by a multilayered sphere. Applied Optics. 2003, 42(9): 1710-1720
    37 V. V. Nikolai, B. I. Vladimir. Comparative analysis of different solutions of light scattering problem for non-spherical particles. Proceedings of SPIE. 1994, 2309(89): 196665
    38 P. C. Waterman. Matrix formulation of electromagnetic scattering. Proceedings of the IEEE. 1965, 53(8): 805-812
    39 V. Eymet, A. M. Brasil, M. El. Hafi, T. L. Farias, P. J. Coelho. Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer. Journal of Quantitative Spectroscopy and Radiative Transfer. 2002, 74(6): 697-718
    40 C. Alicia, Garcia-Lopez , Arthur David Snider. Rayleigh-Debye-Gans as a model for continuous monitoring of biological particles: Part I, assessment of theoretical limits and approximations. Optics Express. 2006, 14(19): 8849-8865
    41 T. L. Farias, U. O. Koylu, M. G. Carvalho. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics. 1996, 35(33): 6560-6567
    42 F. S. Liu, D. R. Snelling. Evaluation of the accuracy of the RDG approximation for the absorption and scattering properties of fractal aggregates of flame-generated soot. 40th Thermophysics Conference, 23-26 June, Seattle,Washington. 2008: AIAA-2008-4362
    43 Y. S. Yang, J. R. Howell, D. E. Klein. Radiative heat transfer through a randomly packed bed of sphere by Monte Carlo Method. Journal of Heat Transfer. 1983, 105(2): 325-332
    44 C. K. Chan, C. L. Tien. Radiative transfer in packed sphere. Journal of Heat Transfer. 1974, 96: 52-58
    45 R. Coquard, D. Baillis. Radiative characteristics of beds of large spheres containing an absorbing and scattering medium. International Journal of Thermal Science. 2005, 44(10): 926-932
    46 C. C. Tseng, R. Viskanta. Heating/melting of a fused silica particle by convection and radiation. International Journal of Heat and Mass Transfer. 2006, 49(17-18): 2995-3003
    47 A. H. Sihvola. Electromagnetic mixing formulas and applications. London: The institution of Electrical Engineers. 1999, 6: 154-162
    48柳朝晖,刘迎晖,周英彪,刘朝辉.多孔炭粒的等效光学常数及辐射特性.工程热物理学报. 1997, 18(2): 251-255
    49刑华伟,邓先和,郑楚光,柳朝辉.煤粉炉内颗粒光学特性实验与数值模型.燃烧科学与技术. 2002, 8(1): 34-37
    50 C. Erlick. Effective refractive indices of water and sulfate drops containing absorbing inclusions. Journal of the Atmospheric Science. 2006, 63(2): 754-763
    51 N. V. Voshchinnikov, V. B. II’in, Th. Henning, D. N. Dubkova. Dust extinction and absorption: the challenge of porous grains. Astronomy & Astrophysics. 2006, 445(1): 167-177
    52 Y. Shen, B. T. Draine, E. T. Johnson. Modeling porous dust grains with ballistic aggregates. I. Geometry and optical properties. The Astrophysical Journal. 2008, 689(1): 260-275
    53李佳玉.相变过程中的高温粒子辐射特性.哈尔滨工业大学博士论文. 2009.
    54 L. Liu, M. I. Mishchenko, W. P. Arnott. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer. 2008, 109(15): 2656-2663
    55 L. Liu, M. I. Mishchenko. Effects of aggregation on scattering and radiative properties of soot aerosols. Journal of Geophysical Research. 2005, 110: D11211
    56 F. S. Liu, D. R. Snelling, G. J. Smallwood. Effects of fractal prefactor on the optical properties of fractal soot aggregates. 2009 Proceeding of the ASME 2ndMicro/Nanoscale Heat and Transfer International Conference. Shanghai, China. 2009: 1-9
    57 D. W. Mackowski. Calculation of total cross sections of multiple-sphere clusters. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 1994, 11(11): 2851-2861
    58 F. S. Liu, B. J. Stagg, D. R. Snelling, G. J. Smallwood. Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond laser in an atmospheric laminar diffusion flame. International Journal of Heat and Mass Transfer. 2006, 49(3-4): 777-788
    59 F. Liu, M. Yang, F. A. Hill, D. R. Snelling, G. J. Smallwood. Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII. Applied Physics. B, Laser and Optics. 2006, 83(3): 383-395
    60 T. C. Grenfell, S. G. Warren. Representation of nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. Journal of Geophysical Research. 1999, 104(d24): 31697-31709
    61 S. P. Neshyba, T. C. Grenfell, S. G. Warren. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates. Journal of Geophysical Research. 2003, 108(D15): AAC6.1-AAC6.18
    62 T. C. Grenfell, S. P. Neshyba, S. G. Warren. Representation of nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates. Journal of Geophysical Research. 2005, 110: D17203
    63 A. F. Khalizov, H. Xue, L. Wang, J. Zheng, R. Zhang. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. Journal of Physical Chemistry A. 2009, 113(6): 1066-1074
    64 G. Hanel. The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advances in Geophysics. 1976, 19: 74-83
    65 M. Kocifaj, F. Kundracik, G. Videen. Optical properties of single mixed-phase aerosol particles. Journal of Quantitative Spectroscopy & Radiative Transfer. 2008, 109(11): 2108-2123
    66 A. D. Clarke, Y. Shinozuka, V. N. Kapustin, S. Howell, B. Huebert, S. Doherty,T. Anderson, D. Convert, J. Anderson, X. Hua, K. G. Moore, C. McNaughton, G. Carmichael, R. Weber. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical properties. Journal of Geophysical Research. 2004, 109(D15): D15S09.1- D15S09.20
    67 M. I. Mishchenko, L. Liu, L. D. Travis, A. A. Lacis. Scattering and radiative properties of semi-external versus external mixtures of different aerosol types. Journal of Quantitative Spectroscopy & Radiative Transfer. 2004, 88(1-3): 139-147
    68 L. Liu, M. I. Mishchenko. Scattering and radiative properties of complex soot and soot-containing aggregate particles. Journal of Quantitative Spectroscopy & Radiative Transfer. 2007, 106(1-3): 262-273
    69 Y. Hirooka, J. Won, R. Boivin, D. Sze, V. Neumoin, M. Dubois-Violette, T. Masson, T. L. Farias, U. O. Koylu, M. G. Carvalho. Effects of polydispersity of aggregates and primary particles on radiative properties of simulated soot. Journal of Quantitative Spectroscopy & Radiative Transfer. 1996, 55(3): 357-371
    70方容川.固体光谱学.合肥:中国科学技术大学出版社, 2001.
    71殷之文.电介质物理学.北京:科学出版社, 2003.
    72 E. D. Palik. Handbook of optical constant of solids. New York: Academic Press. 1985: 753-765
    73 T. C. Choy. Effective medium theory-principle and applications. Oxford University Press. 1999: 7-15
    74 M I. Mishchenko. Light scattering by randomly oriented axially symmetric particles. Journal of the Optical Society of America. A, Optics, Image Science, and Vision. 1991, 8: 871-882
    75 E. D. Palik. Handbook of Optical Constant of Solids. 2nd edition. New York: Academic Press. 1991: 765-775
    76 S. Onari, T. Arai, K. Kudo. Infrared lattice vibration and dielectric dispersion inα-Fe2O3. Physical Review B. 1977, 16(4): 1717-1721
    77 S. A. Self. Optical properties of flyash. Standford University. 1989: 1-29
    78 A. G.. Blokh. Heat transfer in stream boiler furnaces. Berlin: Springer Verlag, 1988.
    79吴淑岱.工业企业环境保护手册.北京:中国环境科学出版社, 1990.
    80郑大伟,翁祖炘,朱瑾,曾锦清,杜志谦.焚化灰渣电浆熔融之熔渣资源化技术与特性研究.第十八届废弃物处理技术研讨会议文集.中国台中, 2003.
    81黄明政,郑大伟,曾锦清,邱文通,杨升府.电浆熔融焚化灰渣的著色处理及资源化研究.第二届资源工程研讨会议论文集.中国台南, 2005.
    82 M. Harald. Database of optical constants for cosmic dust: optical constants of silicates. Laboratory Astrophysics Group of the AIU Jena. 2004.
    83 L. H. Liu, H. P. Tan, T. W. Tong. Internal distribution of radiation absorption in a semitransparent spherical particle. Journal of Quantitative Spectroscopy & Radiative Transfer. 2002, 72(6): 747-756
    84 R. Siegel. Transient radiative cooling of a layer filled with solidifying drops. Journal of Heat Transfer. 1987, 109(4): 977-982
    85周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社. 1994: 76-80
    86王补宣.工程传热传质学.北京:科学出版社. 2002: 401-405
    87 G. M. Hale, M. R. Querry. Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics. 1973, 12(3): 555-563
    88 S. G. Warren. Optical constants of ice from the ultraviolet to the microwave. Applied Optics. 1984, 23(5): 1206-1225
    89 M. L. Lang, W. L. Wolfe. Optical constants of fused and sapphire from 0.3 to 25μm. Applied Optics. 1983, 22(9): 1267-1268
    90 D. L. Parry, M. Q. Brewster. Optical constant of Al2O3 smoke in propellant flames. Journal of thermophysics and Heat Transfer. 1991, 5(2): 142-149
    91 L. H. Liu. Multiple size group analysis for transient radiative heating of particle polydispersions. Journal of Quantitative Spectroscopy & Radiative Transfer. 2003, 76(2): 225-234
    92 L. H. Liu. A concept of multi-scale modeling for radiative heat transfer in particle polydispersions. Journal of Quantitative Spectroscopy & Radiative Transfer. 2003, 78(2): 227-233
    93 M. Q. Brewster. Thermal radiative transfer and properties. New York: Wiley. 1992.
    94 T. A. Witten, L. M. Sander. Diffusion-limited aggregation. Physics Review B. 1983, 27(9): 5686-5697
    95 A. V. Filippov, M. Zurita, D. E. Rosner. Fractal-like aggregates: relation between morphology and physical properties. Journal of Colloid and Interface Science. 2000, 229(1): 261-273
    96 U. O. Koylu, G. M. Faeth. Structure of overfire soot in buoyant turbulent diffusion flamed at long residence times. Combustion and Flame. 1992, 89(2): 140-156
    97 A. M. Brasil, T. L. Farias, M. G. Carvalho. A recipe for image characterization of fractal-like aggregates. Journal Aerosol Science. 1999, 30(10): 1379-1389
    98 K. Tian, F. S. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, D. S. Wang. Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar flame. Combustion and Flame. 2004, 138(1-2): 195-198
    99 E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, C. E. Corrigan. Optical properties of soot-water drop agglomerates: an experimental study. Journal of Geophysical Research. 2006, 111: D07209
    100 M. I. Mishchenko. Light scattering by randomly oriented axially symmetric particles. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 1991, 8(6): 871-882
    101 D. W. Mackowski, M. I. Mishchenko. Calculation of the T matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 1996, 13: 2266-2278
    102 F. S. Liu, G. J. Smallwood. Radiative properties of numerically generated fractal soot aggregates: the importance of configuration averaging. Journal of Heat Transfer. 2010, 132(2): 023308
    103 G. A. d'Almeida, P. Koepke, E.P. Shettle. Atmospheric aerosols: global climatology and radiative characteristics. Hanpton: VA Deepak, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700