用户名: 密码: 验证码:
亚波长衍射微透镜的严格矢量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕亚波长衍射微透镜的严格矢量分析与设计展开。由于亚波长衍射微透镜的特征尺寸小于入射波长,因此不能采用标量衍射理论来分析,又由于它是有限非周期的结构,严格的耦合波方法对它也不适用。本论文把电磁场的数值计算方法作为分析亚波长衍射微透镜的严格的矢量衍射理论,给出了亚波长衍射微透镜的设计方法,对具体的设计实例做了分析。
     第一部分为理论分析方法。论文中将旋转体时域有限差分法(BOR FDFD)作为分析具有轴对称结构的亚波长衍射微透镜的理论模型。论文中将相关的光学知识融入到BOR FDTD算法中,给出了它所包含的主要子算法的内容及公式。作为BOR FDTD中的一个最重要的子算法,首次提出了非分劈场量的完全匹配层吸收边界条件(PML ABCs),大大简化了计算过程。改进了平面波谱传播算法(VPWS),推导出的公式可以由BORFDTD计算空间内的近场输出数据直接计算出远场的电磁场分布。给出了应用BOR FDTD与VPWS算法分析亚波长衍射微透镜的分析过程和程序流程图。成功地完成了整套BOR FDTD与VPWS算法程序的编制与调试,在使用Matlab语言编程过程中通过矩阵赋值代替循环赋值,极大的提高了计算速度。
     第二部分为衍射微透镜的设计。本论文给出了多台阶衍射微透镜和二台阶亚波长衍射微透镜的设计方法、面形公式、设计实例。重点说明了二台阶亚波长衍射微透镜的两种设计方法,并对两种方法作了比较,得出了亚波长结构的脉冲宽度调制法优于连续位相的线性进似法的结论。讨论了深度误差和宽度误差对衍射微透镜的影响,发现相对误差不大时制作误差对衍射微透镜的影响不大。
     第三部分是对衍射微透镜光学特性的分析。首先研究了设计参数变化对衍射微透镜的影响,给出了设计焦距和透镜材料折射率变化对衍射微透镜衍射效率、爱里斑半径等的影响,并对分析结果作了定性讨论。然后研究了亚波长衍射微透镜的色散特性,表明亚波长衍射微透镜的焦距随着波长变短而增加,但是波长与焦距之间并非简单的完全反比例关系,而是随着波长的减小焦距增加得更快,同时指出标量理论已不能准确分析亚波长衍射微透镜的色散特性。
This dissertation is about the rigorous vector analysis and design of subwavelength diffractive microlenes. Because the feature size of subwavelength diffractive microlens is smaller than the incident wavelength, scalar diffractive theory cannot be used to the analysis. It also precludes rigorous vector coupled-wave theory for its finite and aperiod structure. In this dissertation an electromagnetic computational method is employed as rigorous vector diffractive theory for the analysis of subwavelength diffractive microlens. The design methods of subwavelength diffractive microlens are presented. The design examples are analyzed by the theory in the dissertation.
    In the first section, analysis methods are developed. In the dissertation body-of-revolution finite-difference time-domain method (BOR FDTD) is employed as the theory mode for the analysis of axially symmetric subwavelength diffractive microlens. Relative optical theory is considered in BOR FDTD algorithm. The major sub-algorithms in BOR FDTD are explained, the formulas in each sub-algorithm are given. As one important sub-algorithm of BOR FDTD, Perfect matched layer absorbing boundary conditions (PML ABCs) algorithm with split field components is presented for the first time, which greatly simplified computational process. The vector-based plane-wave spectrum method (VPWS) is improved, which can directly obtain the far field diffractive pattern depending on the output near field data in the BOR FDTD meshes by use of the deduced formulas in this dissertation. The above two algorithms of BOR FDTD and VPWS are used to the analysis of subwavelength diffractive microlenses, the analysis process and program flow
    chart are shown. The editing and debugging of the whole program of BOR FDTD and VPWS algorithms by Matlab code are finished successfully, in the program I used matrix to put values for variables instead of using cycle, which significantly increase the computing speed.
    
    
    The second section is to design diffractive microlenses. In the dissertation multilevel microlenses and binary subwavelength diffractive microlenses are designed, design methods and configuring formulas and design examples are illustrated. Two kinds method of design binary subwavelength diffractive microlenses are illustrated with emphasis. I obtained the result that the method of subwavelength pulse-width modulation is better than the method of linear approximation for continuous phase piece in designing binary subwavelength diffractive microlenses by comparing them. The effects of depth error and width error on diffractive microlenses are discussed. I find that there are little influences on diffractive microlenses when the relative fabrication error is small.
    The third section is to analyze the optical characteristic of diffractive microlenses. The influence of changing design parameters on diffractive microlens is investigated. The effects of changing design focal length and microlens material refractive index on diffractive efficiency and airy diffraction disc radius are presented. The numerical results are discussed by qualitative analysis. The dispersion property of subwavelength diffractive microlens is investigated. Numerical result illustrates that focal length becomes longer when incident wavelength becomes shorter, however the relationship between focal length and incident wavelength isn't absolute inverse ratio, it is that the increasing of focal length is faster than the decreasing of incident wavelength. At the same time the numerical result also show that scalar theory can't be used in the rigorous analysis of the dispersion property of subwavelength diffractive microlens.
引文
1. Velskamp W B, McHugh T J, Binary optics. Scientific American, 1992, 266 (5), 92-97
    2. Lcgcr J, Holz M, Swanson G, et al, Coherent laser beam addition: An application of binary optics technology. Lincoln Lab. J. 1998, 1(2), 225-246
    3. Ono Y, Kimura Y, Ohta Y and Nishada N, Antireflection effect in ultrahigh spatial-frequency holographic relief gratings, Appl. Opt., 1987, 26, 1142-1146
    4. Glytsis E N and Gaylord T K, High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surface, Appl. Opt., 1992, 31 4459-4470
    5. Norton S, Raguin D HM, and Morris G M, Effective medium theory approach to guided-mode resonances, Optical Design for Photonics OSA Palm Springs, CA, 1993, 10, 143-146
    6. Charles W, Haggans, Lifeng Li and Ramond K K, Effective-medium theory of zero-order lamellar gratings in conical mountings, J. Opt. Soc. Am. A, 1993, 10, 2217-2225
    7. Kipfer P, Collischon M, Haidner H, Sheridan J T, Schwider J, Streibl N, and Lindolf, Infraded optical components based on a microrelief structure, Opt. Eng. 1994, 33, 79-84
    8. Chen F T and Craighhead H G, Diffractive lens fabricated with mostly zeroth-order gratings, Opt. Lett., 1996, 21, 177-179
    9. Lalanne Ph, Astilean S, Chavel P, Cambril, and Launois H, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff, J. Opt. Soc. Am. A, 1999, 16, 1143
    10. Joseph N M, Axel S, Oliver D, Dennis W P and Gao X, Diffractive lens
    
    fabricated with binary features less than 60nm., Opt. Lett., 2000, 25, 381-383
    11. Du Chun-lei. Application of microlens array in shack-hartmann wavefront sensor ACTA PHOTONICA SINICA, 1996, 25(8), 732-735.
    12. Luo Fengguang, Cao Mingcui, Zhao Xiangjun, et al, Fbrication and application of phase Fresnel microlens arrays in module of optical interconnection, Guangdianzi Jiguang, 1994, 5 (4), 82-86
    13. Prather D W, Design and application of subwavelength diffractive lenses for integration with infrared photodetectors, Opt. Eng., 1999, 38(5), 870-878
    14. Li Yi, Hu Taoyuan, Yi Xinjian, et al, 256×290 diffractive microlens array monolithic integration with PtSi focal plane array, SPIE, 2000, 4130, 45-51
    15. Yang Rong, Pang Lin, Wu Minxian, et al, Optimization and fabrication of micro diffractive lens arrays for biochip application, SPIE, 2000, 4093, 461-463
    16. Li Yi, Yi Xinjian, Cai Liping, et al. Design and fabrication of 128×128 diffractive microlens arrays on Si Substrates, Chinese Journal of Laser, 2000, 27(6), 510-514
    17. Born M, Wolf E. Principles of Optics, 7th ed. Cambridge: Cambridge University Press, 1999, 417-430
    18. Gremaux D A and Gallagher N C, Limits of scalar diffraction theory for conducting gratings, Appl. Opt. 1993, 32, 1948-1953
    19. Pommet D A, Moharam M G, and Grann E B, Limits of scalar diffraction theory for diffractive phase elements, J. Opt. Soc. Am. A 1994,11, 1827-1834
    20. Moharam M G and Gaylord T K, Rigorous coupled-wave analysis of planargrating diffraction, J. Opt. Soc. Am. A, 1981, 71, 811-818
    21. Ralf Bruer and Olof Braungdahl, Electromagnetic diffraction analysis
    
    of two-dimensional gratings, Optics Communications, 1993, 100, 1-5
    22. Lifeng Li, Use of Fourier series in the analysis of discontinuous periodic structures, J. Opt. Soc. Am. A, 1996, 13(9), 1870-1876
    23. R. S. Chu and T. Tamir, Guide-wave theory of light diffraction by acoustic microwaves, IEEE Trans. Microwave Theory Tech., MTT-18, 1970, 486-504
    24. L.C. Botten and M.S. Craig, The dielectric lamellar diffraction grating, Opt. Acta, 1981, 28(3), 413-428
    25. S .T. peng, Rigorous formulation of scattering and guidance by dielectric grating wave-guide: general case of oblique incidence, 1989, J. Opt. Soc. Am.A, 6(12), 1869-1883
    26. Lifeng Li, A modal analysis of lamellar diffraction gratings in conical mountings, Opt. Acta, 40(4), 553-573(1993)
    27. Lifeng Li, Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity, J. Opt. Soc. Am. A, 1993, 10(12), 2581-2591
    28. Lifeng Li, Bremmer series, R-matrix propagation algorithm and numerical modeling of diffraction gratings, J. Opt. Soc. Am. A. 1994, 11(11), 2829-2836
    29. Prather D W, Mirotznik M S and Malt J N, Boundary element method for vector modeling diffractive optical elements, SPIE, 1995, 2404, 28-39
    30. Hirayama K, Glytsis E N, Gaylord T K, et, al, Rigorous electromagnetic analysis of diffractive cylindrical lenses, J. Opt. Soc. Am. A., 1996, 13, 2219-2231
    31. Lichtenberg B and Gallagher N C, Numerical modeling of diffractive devices using the finite element method, Opt. Eng., 1994, 33, 3518-3526
    32. Mirotznik M S, Prather D W and Mait J N, A hybrid finite-boundary
    
    element method for the analysis of diffractive elements, J. Mod. Opt. 1996, 43, 1309-1322
    33. Koppelmann G and Totzeck M, Diffractive near field of small phase object: comparison of 3-cm wave measurements with moment-method calculations, J. Opt. Soc. Am. A., 1991, 8, 554-558
    34. Wang A and Prata A, Lenslet analysis by rigorous vector diffraction theory, J. Opt. Soc. Am. A., 1995, 12, 1161-1169
    35. Maker P D, Wilson D W and Muller R E, Fabrication and performance of optical interconnect analog phase holograms made by electron beam lithography, SPIE, 1996, 415-430
    36. Hadley G R, Numerical simulation of reflecting structures by solution of the two-dimensional Helmeholtz equation, Opt. Lett., 1994, 19, 84-86
    37. Mirotznik M S, Prather D W, Mait J N, et al, Three - dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method, Applied Optics, 2000, 39(6), 2871-2880
    38. Shi S Y, Tao X D, Yang L Q, et al, Analysis of diffractive optical elements using a nonuniform finite-difference time-domain method, Opt. Eng., 2001, 40(4) 503-510
    39. Juan Liu, Ben-Yuan Gu, Bi-Zhen Bong, et al, Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory, J. Opt. Am. A, 2001, 18(3), 526-536
    40.赵安平,于荣金,有耗介质中非线性光波导的数值模拟,光学学报,1995,15(10),1432-1436
    41.刘立杰,于荣金,洪佩智,用有限元法分析多波导耦合系统本征模的模式特性,光子学报,1996,25(4),347-353
    42.陈旻,刘旭,李海峰,微机构可调谐阵列滤光片的有限元分析,光学学报,2002,22(3),344-346
    
    
    43. Stupfel B and Mittra R, A theoretical study of numerical absorbing boundary conditions, IEEE Trans. Antennas Propagat., 1995, AP-43, 478-486
    44. Yee K S, Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagat., 1966, AP-14, 302-307
    45. Kunz K S, Luebbers R, The finite difference time domain method for electromagnetics, CRC Press, 1993
    46. Allen Taflove, Computational electromagnetics: The finite-difference time domain method, Artech House, 1995
    47. Allen T, Hagness S C, Computational electromagnetics: The finite-difference time domain method, Artech House, 2000, 529-568
    48.王长清,祝西里,电磁场计算中的时域有限差分法,第一版,北京大学出版社,1994
    49.高本庆,时域有限差分法FDTD Method,第一版,国防工业出版社,1995
    50. Hochmuth D H, Johnson E G, Finite difference time domain analysis of chirped dielectric gratings, Conf. On binary optics Huntsville, Alabama, 1993, 107-110
    51. Judkins J B, Ziokowski, Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings, J. Opt. Soc. Am. A, 1995, 2, 1974-1983
    52. Davidson D and Ziolkowski R W, Body- of- revolution FDTD modeling of space-time focusing by a three-dimensional lenses, J. Opt. Soc. Am. A, 1994, 11(4), 1471-1490
    53. Prather D W and Shi Shouyuan, Formulation and application of the FDTD method for the analysis of axially symmetric diffractive optical elements, J. Opt. Soc. Am. A, 1999, 16(5), 1131-1143
    54. Ziolkowski R W, Pulsed andCWGaussian beam interactions with
    
    double negative metamaterial slabs, Optics Express, 2003, 11(7), 662-681
    55.陈海燕,刘永智,平面光波导发放大器中广场分布的一种计算方法,计算物理,2002,19(3),221-223
    56.刘靖,张国屏,黄重庆,渐变折射率光波导模场分布的矢量FD-TD发分析,光电工程,2002,29(3),31-35
    57.卞军峰,余春,钟顺时,采用PML吸收边界条件的FDTD法在分析波导不连续性中的应用,上海大学学报(自然科学版),2002,8(1),7-11
    58.谈春雷,易永祥,汪国平,一维金属光栅的透射光学特性,物理学报,2002,51(5),1063-1067
    59.庞云波,高葆新,一种新型的光子带隙结构单元,微波学报,2001,17(2),77-80
    60.张国华,袁乃昌,付云起,FDTD方法分析光子带隙微带结构,微波学报,2001,17(4),14-17
    61.庄飞,肖三水,何江平,何赛灵,二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计,物理学报,2002,51(9),2167-2172
    62.庄飞,何赛灵,何江平,冯尚申,大带隙的二维各向异性椭圆介质柱光子晶体,物理学报,2002,51(2),355-361
    63. Gale M T, Rossi M., Pedersen J., et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. Opt. Eng., 1994, 33(11), 3556-3566
    64. Yuan X C, Yu W X, et al, Cost-effective fabrication of microlenses on hybrid sol-gel with a high-energy beam-sensitive gray-scale mask, Optics Express, 2002, 10(7), 303-308
    65.杜春雷,周礼书等,衍射微透镜阵列的研究与应用,光学技术,1998,5,17-22
    66. Ferstl M, Kuhlow B., Pawlowski E.. Effect of fabrication errors on multilevel fresnel zone lenses. Opt. Eng., 1994, 33(04), 1229-1235
    
    
    67. Prather D W, Analysis and synthesis of finite aperiodic diffractive optical elements using rigorous electromagnetic models, PhD thesis, 1997
    68. Farn M W, Binary grating with increased efficiency, Appl. Opt., 1992, 31, 4453-4458
    69. Prather D W, Mait J N, Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements, J. Opt. Soc. Am. A, 1998, 15 (6), 1599-1607
    70. Mait J N, Prather D W, Binary subwavelength diffractive-lens design, Optics Letters, 1998, 23(17), 1343-1345
    71. Kirkpatrick S, Gelatt C D, et al, Optimization by simulated annealing, Science ,1983, 220, 671-681
    72. Turunen J, Vasara, A, Kinform phase relief synthesis: A stochastic method, Opt. Eng., 1989, 28, 629-637
    73. Holland JH, Adaptation in Natural and Artificial System, University of Michigan Press, Michigan, 1975
    74. Johnson E G, Abushagur M A G, Microgenetic-algorithm optimization method applied to dielectric gratings, J. Opt. Soc. Am. A, 1995, 2, 1152-1160
    75. Jiang J H and Nordin Gregory P, A rigorous unidirectional method for designing finite aperture diffractive optical elements, Optics Express, 2000, 7(6), 237-242
    76. Jiang JianHua, Rigorous analysis and design of diffractive optical elements, PhD dissertation, Huntsville Alabama, 2000
    77.杨李茗,虞淑环,任意点阵衍射图形的DOE优化设计,光子学报,1998,27(8),739-743
    78.谢敬辉,刘锡宇,基于DPDV算法的二元光学元件设计,光学技术,2000,26(3),225-227
    79.鲁建业,李琦等,采用混合遗传-模拟退火算法对DOE的直接设计,光电子激
    
    光,2001,12(4),365-367
    80.刘玉玲,卢振武,任智斌,李凤有,曹召良,旋转体时域有限差分法对轴对称亚波长衍射光学元件的分析,光子学报,2003,32(10),1259-1263
    81. Allen T, Hagness S C, Computational electromagnetics: The finite-difference time domain method, Artech House, 2000, 194-201
    82. Taylor C D, Lam D H and Shumpert T H, Electromagnetic pulse scattering in time-varying inhomogeneous media, IEEE Trans. Antennas Propagat., 1969, AP-17(5), 585-589.
    83. Taflove A and Brodwin M E, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell equations, IEEE Trans. On Microwave Theory tech., 1975, MTT-23, 623-630.
    84. Taflove A, Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems, IEEE Trans. Electromagnetic Compatibility, 1980, EMC-22(3), 191-202.
    85. Kriegsman G A and Morawetz C S, Numerical SAOLUTION OF Exterior problems with the reduces equation, J Compt. Physics, 1979, 28, 181-197.
    86. Bliss A and Turkel E, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math, 1980, 23, 707-725
    87. Engquist B and Majda A, Absorbing boundary conditions for the numerical simulation of waves, Mathematics of the Computation, 1977, 31, 629-651.
    88. Mur G, The modeling of singularities in the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Microwave Theory., 1981, MTT-29(lO), 1073-1077.
    89. Fang J Y and Mei K K, A super-absorbing boundary algorithm for numerical solving electromagnetic problems by time-domain finite-difference method, IEEE International symposiun, Syracuse, NY,
    
    USA, 1988, June 6-10, 427-475
    90. Mei K K and Fang J K, Superabsorption-A method to improve absorbing boundary conditions, IEEE Trans. Antennas Propagat., 1992, AP-40(9), 1001-1010.
    91. Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics. 1994, 114(3), 185-200.
    92. Liu YuLing, Lu Zhengwu, et al, Perfectly matched layer absorbing boundary conditions in rigorous vector analysis of axially symmetric diffractive optical elements, Optics Communications, 2003, 223(8), 39-45
    93. Stratton J A, Electromagnetic Theory, McGraw-Hill New York, 1941.
    94. Shouyuan Shi and Dennis W. Prather. Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields, Optics Letters, 1999, 24(21), 1445-1447
    95.刘玉玲,卢振武,亚波长衍射微透镜色散的数值分析,物理学报,2004,53(6),页码待定,已录用。
    96. TeixeiraF L, Chew W C, PML-FDTD in cylindrical and spherical grids, IEEE Microwave Guided Wave Lett., 1997, 7,285-287
    97. Gale M T., Rossi M., Pedersen J., et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. Opt. Eng., 1994, 33(11), 3556-3566
    98. Ferstl M, Kuhlow B., Pawlowski E.. Effect of fabrication errors on multilevel fresnel zone lenses. Opt. Eng., 1994, 33(04), 1229-1235
    99.杜春雷,周礼书,邱传凯等。衍射微透镜列阵的研究与应用.光学技术,1998,131(3),17-19
    100. Mait J. N., Prather D. W., Mirotznik M. S., Design of binary
    
    subwavelength diffractive lenses by use of zeroth-order effective-medium theory. J. Opt. Soc. Am. A, 1999, 16(5), 1157-1167
    101. Hisao Kikuta, Yasushi Ohira, Hayao Kubo, and Koichi Iwata, Effective Medium theory of two-dimensional subwavelength gratings in the non-quasi-static limit, J. Opt. Soc. Am. A, 1998,15(6), 1577-1585
    102. Max Born and Email Wolf, Principle of Optics, Cambridge University Press, 1999, 837-840
    103.刘玉玲,卢振武,任智斌,李凤有,曹召良,孙强,亚波长衍射微透镜的设计,光子学报,2004,33(1),页码待定,已录用
    104.刘玉玲,卢振武,孙强,设计参数变化对衍射微透镜的影响,红外与激光工程,2004,33(4),页码待定,已录用
    105. Dennis W Prather, David Pustai, and Shouyuan Shi, Performance of multilevel diffractive lenses as a function of f-number, APPLIED OPTICS, 2001, 40(2), 207-210
    106.金国藩,严瑛百,邬敏贤 等著,二元光学,第一版,国防工业出版社,1999,188-192
    107. Morris G M, Diffractive theory for an achromatic Fourier transform. Appl. Opt. 1981, 20, 2017-2025
    108. Stone T, George N. Hybrid diffractive-refractive lenses and achromats. Appl. Opt., 1988, 27(14), 2960-2971

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700