用户名: 密码: 验证码:
曲面金属—电介质多层复合结构超分辨特性及其光刻效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文推导了柱坐标系下曲面金属-电介质多层复合结构的等效介质理论和色散方程,分析了曲面金属-电介质多层复合结构实现超分辨效应的物理机理及其条件;研究了结构的几何参数、介电常数和结构所处的环境介质对其远场超分辨特性的影响,提出并数值验证了利用阻抗匹配方法增强曲面金属-电介质多层复合结构远场超分辨能力的技术方案;研究了曲面金属-电介质多层复合结构的近场光刻效应,提出利用阻抗匹配方法提高结构超衍射极限近场光刻质量的方法;研究了金属-电介质多层阵列结构和柱对称曲面金属-电介质多层阵列结构的聚焦效应,实现了焦点位置的动态调控,上述研究在近场光刻领域存在重要的潜在应用价值。
     本论文的研究工作和成果如下:
     1.研究了柱坐标系下曲面金属-电介质多层复合结构的等效介质理论和色散方程,讨论了该结构中电磁波的能流特性对结构色散的依赖关系,明晰了曲面金属-电介质多层复合结构实现超分辨效应的物理机理及其条件,为超分辨和近场光刻的曲面金属-电解质复合结构的结构设计及其性能优化做了理论铺垫。
     2.建立了色散时域有限差分方法(FDTD)和电磁场的有限元方法(FEM)的数值计算平台,通过理论分析和数值计算相结合的方法,研究了金属-电介质多层复合结构的几何参数、介电常数分布、光源位置、波长以及结构所处的环境介质等因素对其远场超分辨成像的影响。提出了一种利用阻抗匹配的方法提高结构超分辨成像质量的设计方案,结构的成像对比度提高为未采用阻抗匹配的方法条件下的4倍。
     3.利用电磁场的有限元方法(FEM),研究了金属-电介质多层复合结构的几何参数、介电常数分布、入射光波波长以及结构所处的环境介质等因素对于其近场光刻效应的影响。对用于近场光刻的金属-电介质多层复合结构的相关参数进行了优化设计;根据阻抗匹配原理,提出并数值验证了一种提高结构近场光刻质量的技术方案,得到了40nm的横向光刻分辨率和0.39的光场强度对比度,取得了很好的效果。
     4.研究了锥状金属-电介质多层阵列结构和柱对称曲面金属-电介质多层阵列结构的聚焦效应,着重讨论了几何参数(结构出射端锥角)、光波入射角度对其近场聚焦特性的影响,分析了聚焦效应产生的物理机理。研究了金属-电介质多层阵列结构的近场偏折聚焦效应,实现了聚焦焦斑的横向动态调控,横向调控的角度范围可达45°;研究了锥状曲面金属-电介质多层阵列结构对径向偏振光的聚焦效应,数值实现了较理想的调焦深度(>3.5μm)和聚焦焦斑半径(<170nm)。
In this dissertation, based on the derived effective media theory and dispersive equation in cylindrical coordinate, sub-diffraction-limit imaging mechanism and its conditions of the curved metal-dielectric-metal structure was analyzed. The dependence of sub-diffraction-limit imaging properties on dielectric constant, geometry and surrounding media of the curved metal-dielectric-metal structure was discussed. Impedance-matching method was used to improve the resolution of the curved metal-dielectric-metal structure. The near-field lithography method based on the curved metal-dielectric structure was designed and studied, and impedance-matching method was also adopted to increase the lithography resolution. The focusing of the tapered metal-dielectric-metal waveguide arrays was designed and investigated, the dynamic control of beam focusing was realized.
     The main research works and conclusions are as following:
     1. Based on the effective media theory in cylindrical coordinate, dispersive equation of the curved metal-dielectric-metal super-resolution structure was obtained. The dependence of the energy flux on dispersive relation of the structure was discussed, and sub-diffraction-limit imaging mechanism of the curved metal-dielectric-metal structure was demonstrated. Researches above will be of significance in parameter design of the super-resolution curved metal-dielectric-metal structure and its optimization.
     2. Dispersive FDTD and the finite element method (FEM) of the electromagnetic field simulation software was built, which can accurately simulate the optical phenomena related to metal-dielectric-metal multilayered structure. The dependence of sub-diffraction-limit imaging properties on dielectric constant, geometry, source position, wavelength and surrounding media of the structure was discussed. Impedance-matching was taken to improve the resolution of the curved metal-dielectric structure, and the contrast ratio of the image is enhanced to four times of the no impedance-matching circumstances.
     3. FEM numerical simulation was used to study the influence of the dielectric constant, wavelength of the incident light, and the surrounding media of the curved metal-dielectric-metal structure on nano-lithography effect. According to law of the impedance-matching, a new method using water as impedance-matching media was proposed to improve the near-filed lithography quality, and it has been verified by FEM numerical simulation. Taking use of this method,40nm photolithography resolution and 0.39 intensity contrast ratio was achieved.
     4. The focusing of the tapered metal-dielectric-metal waveguide arrays was designed and investigated. The dynamic control of beam deflection, focusing was studied by modulating angle of the incident light and the tapered angle of the structure. Large modulating ranges of deflection focusing angle (45°) was achieved; furthermore, focusing distance (>3.5μm), the facula radius (<170nm) was obtained by the cylindrical tapered multilayered metal-dielectric-metal waveguide arrays with the radial polarization illumination.
引文
1. Veselago VG. Electrodynamics of materials with negative index of refraction. Phys-Usp+. 2003 Jul;46(7):764-768.
    2. Veselago G Electrodynamics of substances with simultaneously negative values od sigma and mu. Soviet Physics USPEKHI-USSR 1968; 10:509.
    3. Veselago G electrodynamic properties of a mixture of electric and magnetic charges. soviet physics JETP-USSR 1967;25:680.
    4. Pendry JB, Holden AJ, Stewart WJ, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett.1996 Jun 17;76(25):4773-4776.
    5. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Low frequency plasmons in thin-wire structures. J Phys-Condens Mat.1998 Jun 8;10(22):4785-4809.
    6. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. Ieee T Microw Theory.1999 Nov;47(11):2075-2084.
    7. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett.2000 May;84(18):4184-4187.
    8. Smith DR, Kroll N. Negative refractive index in left-handed materials. Phys Rev Lett.2000 Oct;85(14):2933-2936.
    9. Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science.2001 Apr;292(5514):77-79.
    10. Shelby RA, Smith DR, Nemat-Nasser SC, Schultz S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl Phys Lett.2001 Jan;78(4):489-491.
    11. Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, et al. Terahertz magnetic response from artificial materials. Science.2004 Mar 5;303(5663):1494-1496.
    12. Pendry JB. A chiral route to negative refraction. Science.2004 Nov 19;306(5700):1353-1355.
    13. Tretyakov S, Sihvola A, Jylha L. Backward-wave regime and negative refraction in chiral composites. Photonics and Nanostructures-Fundamentals and Applications.2005;3(2-3):107-115.
    14. Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk TM, et al. Left-handed materials composed of only S-shaped resonators. Phys Rev E.2004;70(5):057605.
    15. Koray A, et al. Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions. New J Phys.2007;9(9):326.
    16. Zhang F, Houzet G, Lheurette E, Lippens D, Chaubet M, Zhao X. Negative-zero-positive metamaterial with omega-type metal inclusions. J Appl Phys.2008;103(8):084312.
    17. Zharov AA, Shadrivov IV, Kivshar YS. Nonlinear Properties of Left-Handed Metamaterials. Phys Rev Lett.2003;91(3):037401.
    18. Gorkunov M, Lapine M. Tuning of a nonlinear metamaterial band gap by an external magnetic field. Phys Rev B.2004;70(23):235109.
    19. Chen H-T, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature.2006;444(7119):597-600.
    20. Ruppin R. Intensity distribution inside scatterers with negative-real permittivity and permeability. Microw Opt Techn Let.2003;36(3):150-154.
    21. Ziolkowski RW, Heyman E. Wave propagation in media having negative permittivity and permeability. Phys Rev E.2001;64(5):056625.
    22. Halterman K, Elson J, Overfelt P. Characteristics of bound modes in coupled dielectric waveguides containing negative index media. Opt Express.2003;11(6):521-529.
    23. Hu L, Chui ST. Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials. Phys Rev B.2002;66(8):085108.
    24. Markos P, Soukoulis CM. Transmission studies of left-handed materials. Phys Rev B. 2001;65(3):033401.
    25. Smith DR, Schultz S, Markos P, Soukoulis CM. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002;65(19):195104.
    26. O'Brien S, Pendry JB. Photonic band-gap effects and magnetic activity in dielectric composites. J Phys-Condens Mat.2002 Apr 22;14(15):4035-4044.
    27. O'Brien S, Pendry JB. Magnetic activity at infrared frequencies in structured metallic photonic crystals. J Phys-Condens Mat.2002 Jul 1;14(25):6383-6394.
    28. Gay-Balmaz P, Maccio C, Martin OJF. Microwire arrays with plasmonic response at microwave frequencies. Appl Phys Lett.2002;81(15):2896-2898.
    29. Eleftheriades GV, Iyer AK, Kremer PC. Planar negative refractive index media using periodically L-C loaded transmission lines. Microwave Theory and Techniques, IEEE Transactions on.2002;50(12):2702-2712.
    30. Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett.2000 Oct 30;85(18):3966-3969.
    31. Pendry JB. Negative refraction. Contemp Phys.2009;50(1):363-374.
    32. Rao XS, Ong CK. Subwavelength imaging by a left-handed material superlens. Phys Rev E. 2003Dec;68(6):067601.
    33. Hu XH, Chan CT. Photonic crystals with silver nanowires as a near-infrared superlens (vol 85, pg 1520,2004). Appl Phys Lett.2004 Nov 29;85(22):5472-5472.
    34. Zhang XD. Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens. Phys Rev B.2004 Nov;70(19):195110.
    35. Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science.2005 Apr 22;308(5721):534-537.
    36. Smith D. Superlens breaks optical barrier. Phys World.2005 Aug;18(8):23-24.
    37. Liu ZW, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, et al. Far-field optical superlens. Nano Lett.2007 Feb;7(2):403-408.
    38. Smolyaninov II, Hung YJ, Davis CC. Magnifying superlens in the visible frequency range. Science.2007 Mar 23;315(5819):1699-1701.
    39. Xiong Y, Liu ZW, Durant S, Lee H, Sun C, Zhang X. Tuning the far-field superlens:from UV to visible. Opt Express.2007 Jun 11;15(12):7095-7102.
    40. Lee K, Park H, Kim J, Kang G, Kim K. Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption. Opt Express.2008 Feb 4; 16(3):1711-1718.
    41. Moore CP, Arnold MD, Bones PJ, Blaikie RJ. Image fidelity for single-layer and multi-layer silver superlenses. J Opt Soc Am A.2008;25(4):911-918.
    42. Engheta N. An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. Antennas and Wireless Propagation Letters, IEEE. 2002;1:10-13.
    43. J.N. Hodgson. Optical Absorption and Dispersion in Solids. London:Chapman and Hall Ltd.; 1970.
    44. S. Anantha Ramakrishna TMG. Physics and Applications of Negative Refractive Index Materials. CRC Press; 2008.
    45. Pendry JB, Holden AJ, Stewart WJ, Youngs I. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys Rev Lett.1996;76(25):4773.
    46. Born. M, Wolf E, editors. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light,4th ed. [M]. Cambridge:Cambridge University Press 2007.
    47. Abbe E. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung Arch Mikroskop Anat.1873;9:413-420.
    48. t Hooft GW. Comment on "Negative Refraction Makes a Perfect Lens". Phys Rev Lett. 2001;87(24):249701.
    49. Pendry J. Pendry Replies. Phys Rev Lett.2001;87(24):249702.
    50. Williams JM. Some Problems with Negative Refraction. Phys Rev Lett.2001;87(24):249703.
    51. Pendry J. Pendry Replies. Phys Rev Lett.2001;87(24):249704.
    52. Garcia N, Nieto-Vesperinas M. Left-Handed Materials Do Not Make a Perfect Lens. Phys Rev Lett.2002;88(20):207403.
    53. Podolskiy VA, Narimanov EE. Near-sighted superlens. Opt Lett.2005 Jan 1;30(1):75-77.
    54. Ye Z. Optical transmission and reflection of perfect lenses by left handed materials. Phys Rev B.2003;67(19):193106.
    55. Shen JT, Platzman PM. Near field imaging with negative dielectric constant lenses. Appl Phys Lett.2002;80(18):3286-3288.
    56. Webb KJ, Yang M, Ward DW, Nelson KA. Metrics for negative-refractive-index materials. Phys Rev E.2004;70(3):035602.
    57. Hu XH, Chan CT. Photonic crystals with silver nanowires as a near-infrared superlens. Appl Phys Lett.2004 Aug;85(9):1520-1522.
    58. Anon. Superlens overcomes diffraction limit. Anal Chem.2005 Jul 1; 77(13):239a-239a.
    59. Bratkovsky AM, Cano A, Levanyuk AP. Strong effect of surfaces on resolution limit of negative-index "superlens". Appl Phys Lett.2005 Sep 5;87(10):103507.
    60. Cai WS, Genov DA, Shalaev VM. Superlens based on metal-dielectric composites. Phys Rev B.2005Nov;72(19):193101.
    61. Dorey E. Superlens breaks optical resolution limits. Chem Ind-London.2005 May 2(9):10-10.
    62. Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, et al. Realization of optical superlens imaging below the diffraction limit. New J Phys.2005 Dec 19;7:255.
    63. Ruppin R, Kempa K. Nonlocal effects on the imaging properties of a silver superlens. Phys Rev B.2005 Oct;72(15):153105.
    64. Aydin K, Bulu I, Ozbay E. Subwavelength resolution with a negative-index metamaterial superlens. Appl Phys Lett.2007 Jun 18;90(25):254102.
    65. Battula A, Chen SC. Tunable plasmonic-crystal superlens for subwavelength imaging. Phys Rev B.2007 Nov;76(19):193408.
    66. Hogan H. An optical superlens that is easy on the eyes. Photonic Spectra. 2007 Mar;41(3):103-103.
    67. Li GX, Tam HL, Wang FY, Cheah KW. Superlens from complementary anisotropic metamaterials. J Appl Phys.2007 Dec 1;102(11):116101.
    68. Narimanov EE. Far-field superlens-Optical nanoscope. Nat Photonics.2007 May;1(5):260-261.
    69. Shi LH, Gao L, He SL, Li BW. Superlens from metal-dielectric composites of nonspherical particles. Phys Rev B.2007 Jul;76(4):045116.
    70. Yu GX, Cui TJ. Imaging and localization properties of LHM superlens excited by 3D horizontal electric dipoles. J Electromagnet Wave.2007;21(1):35-46.
    71. Lee H, Liu ZW, Xiong Y, Sun C, Zhang X. Design, fabrication and characterization of a Far-field Superlens. Solid State Commun.2008 May; 146(5-6):202-207.
    72. Yang XF, Liu Y, Ma JX, Cui JH, Xing H, Wang W, et al. Broadband super-resolution imaging by a superlens with unmatched dielectric medium. Opt Express.2008 Nov 24;16(24):19686-19694.
    73. Lee K, Jung Y, Kang G, Park H, Kim K. Active phase control of a Ag near-field superlens via the index mismatch approach. Appl Phys Lett.2009 Mar 9;94(10):101113.
    74. Liu ZT, Thoreson MD, Kildishev AV, Shalaev VM. Translation of nanoantenna hot spots by a metal-dielectric composite superlens. Appl Phys Lett.2009 Jul 20; 95(3):033114.
    75. Shen NH, Foteinopoulou S, Kafesaki M, Koschny T, Ozbay E, Economou EN, et al. Compact planar far-field superlens based on anisotropic left-handed metamaterials. Phys Rev B.2009 Sep;80(11):115123.
    76. Smolyaninov II, Davis CC. Magnifying Superlenses and other Applications of Plasmonic Metamaterials in Microscopy and Sensing. Chemphyschem.2009 Mar 9;10(4):625-628.
    77. Vincenti MA, D'Orazio A, Cappeddu MG, Akozbek N, Bloemer MJ, Scalora M. Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies. J Appl Phys.2009 May 15;105(10):103103.
    78. Chaturvedi P, Wu W, Logeeswaran VJ, Yu Z, Islam MS, Wang SY, et al. A smooth optical superlens. Appl Phys Lett.2010;96(4):043102.
    79. Cubukcu E, Aydin K, Ozbay E, Foteinopolou S, Soukoulis CM. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys Rev Lett.2003 Nov 14;91(20):207401.
    80. Wang X, Ren ZF, Kempa K. Improved superlensing in two-dimensional photonic crystals with a basis. Appl Phys Lett.2005;86(6):061105.
    81. Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis CM. Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens. Phys Rev Lett.2003;91(20):207401.
    82. Matsumoto T, Fujita S, Baba T. Wavelength demultiplexer consisting of Photonic crystal superprism and superlens. Opt Express.2005 Dec 22;13(26):10768-10776.
    83. Feng Z, Zhang X, Ren K, Feng S, Li Z-Y, Cheng B, et al. Experimental demonstration of non-near-field image formed by negative refraction. Phys Rev B.2006;73(7):075118.
    84. Lu Z, Murakowski J, Schuetz CA, Shi S, Schneider GJ, Samluk JP, et al. Perfect lens makes a perfect trap. Opt Express.2006;14(6):2228-2235.
    85. Xiong Y, Liu Z, Sun C, Zhang X. Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett.2007 Nov;7(11):3360-3365.
    86. Liu ZW, Durant S, Lee H, Pikus Y, Xiong Y, Sun C, et al. Experimental studies of Far-field SuperLens for sub-diffractional optical imaging. Opt Express.2007 May 28; 15(11):6947-6954.
    87. Durant S, Liu ZW, Steele JA, Zhang X. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J Opt Soc Am B.2006 Nov;23(11):2383-2392.
    88. Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens:Far-field imaging beyond the diffraction limit. Opt Express.2006 Sep 4;14(18):8247-8256.
    89. Jacob Z, Alekseyev LV, Narimanov E. Semiclassical theory of the hyperlens. J Opt Soc Am A. 2007 Oct;24(10):A54-A61.
    90. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science.2007 Mar 23;315(5819):1686-1686.
    91. Lee H, Liu Z, Xiong Y, Sun C, Zhang X. Development of optical hyperlens for imaging below the diffraction limit. Opt Express.2007 Nov 26;15(24):15886-15891.
    92. Li JS, Fok L, Yin XB, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater.2009 Dec;8(12):931-934.
    93. Alkaisi MM, Blaikie RJ, McNab SJ. Nanolithography in the evanescent near field. Adv Mater. 2001 Jul4;13(12-13):877-887.
    94. Blaikie RJ, McNab SJ. Evanescent interferometric lithography. Appl Optics.2001 Apr 1;40(10):1692-1698.
    95. Luo XG, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett.2004 Jun 7;84(23):4780-4782.
    96. Melville DOS, Blaikie RJ. Near-field optical lithography using a planar silver lens. J Vac Sci Technol B.2004 Nov-Dec;22(6):3470-3474.
    97. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X. Plasmonic Nanolithography. Nano Lett. 2004;4(6):1085-1088.
    98. Liu Z-W, Wei Q-H, Zhang X. Surface Plasmon Interference Nanolithography. Nano Lett. 2005;5(5):957-961.
    99. Srituravanich W, Durant S, Lee H, Sun C, Zhang X. Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask.2005:AVS; 2005. p.2636-2639.
    100. Blaikie RJ, Melville DOS, Alkalsi MM. Super-resolution near-field lithography using planar silver lenses:A review of recent developments. Microelectron Eng.2006 Apr-Sep;83(4-9):723-729.
    101. Xiong Y, Liu Z, Zhang X. Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers. Appl Phys Lett.2008;93(11):111116.
    102. Bulu I, Caglayan H, Ozbay E. Negative refraction and focusing of electromagnetic waves by metallodielectric photonic crystals. Phys Rev B.2005 Jul;72(4):045124.
    103. Fan X, Wang GP. Nanoscale metal waveguide arrays as plasmon lenses. Opt Lett. 2006;31(9):1322-1324.
    104. Fan X, Wang GP, Lee JCW, Chan CT. All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range:Theoretical Analysis and Numerical Demonstration. Phys Rev Lett.2006;97(7):073901.
    105. Bartal G, Lerosey G, Zhang X. Subwavelength dynamic focusing in plasmonic nanostructures using time reversal. Phys Rev B.2009;79(20):201103.
    106. Verslegers L, Catrysse PB, Yu Z, Fan S. Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array. Phys Rev Lett.2009;103(3):033902.
    107. Ma C, Liu Z. Focusing light into deep subwavelength using metamaterial immersion lenses. Opt Express.2010;18(5):4838-4844.
    108. Spadoti DH, Gabrielli LH, Poitras CB, Lipson M. Focusing light in a curved-space. Opt Express.2010;18(3):3181-3186.
    109. Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater.2010 Apr;9(4):193-204.
    110. Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics. 2010Feb;4(2):83-91.
    111. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater.2010 Mar;9(3):205-213.
    112. Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing. Nat Photonics.2009 Jul;3(7):388-394.
    113. Polman A. Applied Physics Plasmonics Applied. Science.2008 Nov 7;322(5903):868-869.
    114. Brongersma ML. Plasmonics-Engineering optical nanoantennas. Nat Photonics.2008 May;2(5):270-272.
    115. Geddes CD, Lakowicz JR. Plasmonics-A vision for the future. Plasmonics.2006 Mar;1(1):1-2.
    116. Pacifici D. Plasmonics-A shifting perspective. Nat Photonics.2007 Dec;1(12):689-690.
    117. Ozbay E. Plasmonics:Merging photonics and electronics at nanoscale dimensions. Science. 2006 Jan 13;311(5758):189-193.
    1. Taflove A. Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems. Electromagnetic Compatibility, IEEE Transactions on.1980;EMC-22(3):191-202.
    2. A.Taflove. The Finite Difference Time Domain Method. In:Computational Electromagnetics. Boston London:Artech House. Boston:Artech House; 1995.
    3.王长清,祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社;1994.
    4.葛德彪等.电磁场时域有限差分方法.西安:西安电子科技大学出版社;2002.
    5. Kane Y. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on.1966;14(3):302-307.
    6. J DA. The Finite Element Method Oxford:Clarendon Press; 1980.
    7. Grandin. H. Fundamentals of the Finite Element Method. New York:Macmillan; 1973.
    8. H.C.Martin GFC. Introduction to Finite Element Analysis:Theory and Application. New York:McGraw-Hill; 1973.
    9.曾余庚.电磁场有限单元法.北京:科学出版社;1982.
    10.金建铭.电磁场有限元方法.西安:西安电子科技大学出版社;2001.
    11. Moharam MG, Gaylord TK. Rigorous coupled-wave analysis of planar-grating diffraction. Journal of the Optical Society of America.1981 July;71(7):811-818.
    12. Moharam MG, Gaylord TK. Diffraction analysis of dielectric surface-relief gratings. Journal of the Optical Society of America.1982;72(10):1385-1392.
    13. Moharam MG, Gaylord TK. Rigorous coupled-wave analyiss of grating diffraction-E-mode polarization and losses. Journal of the Optical Society of America.1983;73(4):451-455.
    14. K. F. Riley MPH, S. J. Bence. Mathematical Methods of Physics and Engineering. London: Cambridge University Press; 2002.
    15. Krishna R, Standart GL. Multicomponent film model incorporating a general matrix-method of solution to maxwell-stefan equations. Aiche J.1976;22(2):383-389.
    16. Jepsen DW. New transfer-matrix methnod for low-energy-electron diffraction and other surface electronic-structure problems. Phys Rev B.1980;22(12):5701-5715.
    17. Fukutome H, Sasai M.Theory of electronic-structures and lattice-distortions in polyacetylene and itinerant peierls systems. I. UHF transfer-matrix method adapted to the long-range coulomb interaction and UHF states in regular bond alternated lattice. Progress of Theoretical Physics. 1982;67(1):41-67.
    18.曹庄琪.导波光学中的转移矩阵方法.上海:上海交通大学出版社;2000.
    19. Kreibig U. Optical Properties of Metal Clusters. Berlin:Springer; 1995.
    20.方容川.固体光谱学.合肥:中国科学技术大学出版社;2001.
    21. Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations. Communications on Pure and Applied Mathematics.1980;33(6):707-725.
    22. Lindman EL. "Free-space" boundary conditions for the time dependent wave equation. Journal of Computational Physics.1975;18(1):66-78.
    23. Berenger JP. Perfectly matched layer for the FDTD solution of wave-structureinteraction problems. Ieee T Antenn Propag.1996;44:110-117
    24. Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J Comp Phys.1994;114:185-200.
    25. Harrington RF. Time-Harmonic Electromagnetic Field. New York:McGraw-Hill; 1961.
    1. Fan X, Wang GP, Lee JCW, Chan CT. All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range:Theoretical Analysis and Numerical Demonstration. Phys Rev Lett.2006;97(7):073901.
    2. Bulu I, Caglayan H, Ozbay E. Negative refraction and focusing of electromagnetic waves by metallodielectric photonic crystals. Phys Rev B.2005 Jul;72(4):045124.
    3. Xiong Y, Liu ZW, Zhang X. A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett.2009 May 18;94(20):3141457.
    4. Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals:Theory and simulations. Phys Rev B.2006 Aug;74(7):075103.
    5. Jean-Pierre Fouque JG, et al. Wave Propagation and Time Reversal in Randomly Layered Media. Springer New York; 2007.
    6. Landau LD, Lifshits EM. The electrodynamics of continuous media [M]. Oxford-London; 1960.
    7. Hu JG, Wang-Pei, Lu YH, Ming H, Chen CC, Chen JX. Sub-diffraction-Limit Imaging in Optical Hyperlens. Chinese Phys Lett.2008 Dec;25(12):4439-4441.
    8. Lee H, Liu Z, Xiong Y, Sun C, Zhang X. Development of optical hyperlens for imaging below the diffraction limit. Opt Express.2007 Nov 26;15(24):15886-15891.
    9. Born. M, Wolf E, editors. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light,4th ed. [M]. Cambridge:Cambridge University Press 2007.
    10. Narimanov E, Alekseyev LV, Jacob Z. Optical hyperspace:negative refractive index and subwavelength imaging in anisotroptic dielectric metamaterials. In:Lakhtakia A, Maksimenko SA, editors.; 2006; San Diego, CA, USA:SPIE; 2006. p.632801-63283.
    11. Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens:Far-field imaging beyond the diffraction limit. Opt Express.2006 Sep 4;14(18):8247-8256.
    12.曹勇.2008.金属-电介质多层复合结构负折射及超分辨特性研究:[博士].合肥:中国科学技术大学.
    13. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science.2007 Mar 23;315(5819):1686-1686.
    14. Shenkenberg DL. Hyperlens achieves 130-nm resolution. Photonic Spectra.2007 Jun;41(6):92-93.
    15. Hu JG, Cao Y, Wang P, Lu YH, Ming H. Parameter Study on Far-Field Sub-Diffraction-Limited Hyperlens. Chinese Phys Lett.2008 Nov;25(11):4151-4153.
    16. Palik ED. Handbook of Optical Constants of Solids[M]. San Diego, Academic; 1998.
    17. Li JS, Fok L, Yin XB, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater.2009 Dec;8(12):931-934.
    1. Abbe E. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung ArchMikroskopAnat.1873;9:413-420.
    2. Born. M, Wolf E. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light,4th ed. [M]. Cambridge:Cambridge University Press,2007.
    3. Goodman. JW. Fourier transform optics[M]. San Francisco:McGraw-Hill,1968.
    4. Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett.2000 Oct 30;85(18):3966-3969.
    5. Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science.2005 Apr 22;308(5721):534-537.
    6. Podolskiy VA, Narimanov EE. Near-sighted superlens. Opt Lett.2005 Jan 1;30(1):75-77.
    7. Fan X, Wang GP, Lee JCW, Chan CT. All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range:Theoretical Analysis and Numerical Demonstration. Phys Rev Lett.2006;97(7):073901.
    8. Cai WS, Genov DA, Shalaev VM. Superlens based on metal-dielectric composites. Phys Rev B.2005Nov;72(19):193101.
    9. Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens:Far-field imaging beyond the diffraction limit. Opt Express.2006 Sep 4;14(18):8247-8256.
    10. Belov PA, Hao Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys Rev B.2006 Mar;73(11).
    11. Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals:Theory and simulations. Phys Rev B.2006 Aug;74(7):075103.
    12. Tsang M, Psaltis D. Magnifying perfect lens and superlens design by coordinate transformation. Phys Rev B.2008 Jan;77(3):035122.
    13. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science.2007 Mar23;315(5819):1686-1686.
    14. Landau LD, Lifshits EM. The electrodynamics of continuous media [M]. Oxford-London; 1960.
    15. Jacob Z, Alekseyev LV, Narimanov E. Semiclassical theory of hyperlensing and cloaking-art. no.66380L. In:Noginov MA, Zheludev N, Boardman AD, Engheta N, editors. Conference on Photonic Metamaterials; 2007 Aug 26-28; San Diego, CA:Spie-Int Soc Optical Engineering; 2007. p. L6380-L6380.
    16. Jacob Z, Alekseyev LV, Narimanov E. Semiclassical theory of the hyperlens. J Opt Soc Am A. 2007 Oct;24(10):A54-A61.
    17. Hu JG, Cao Y, Wang P, Lu YH, Ming H. Parameter Study on Far-Field Sub-Diffraction-Limited Hyperlens. Chinese Phys Lett.2008 Nov;25(11):4151-4153.
    18. Govyadinov AA, Podolskiy VA. Metamaterial photonic funnels for subdiffraction light compression and propagation. Phys RevB.2006 Apr;73(15):155108.
    19. Palik ED. Handbook of Optical Constants of Solids[M]. San Diego, Academic; 1998.
    20. Kildishev AV, Narimanov EE. Impedance-matched hyperlens. Opt Lett.2007 Dec 1;32(23):3432-3434.
    21. Smith EJ, Liu Z, Mei YF, Schmidt OG System investigation of a rolled-up metamaterial optical hyperlens structure. Appl Phys Lett.2009 Aug 24;95(8):083104.
    1. Born. M, Wolf E, editors. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light,4th ed. [M]. Cambridge:Cambridge University Press 2007.
    2. Abbe E. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung ArchMikroskopAnat.1873;9:413-420.
    3. Melngailis J, Mondelli AA, Berry Iii IL, Mohondro R. A review of ion projection lithography. Journal of Vacuum Science& Technology B:Microelectronics and Nanometer Structures. 1998;16(3):927-957.
    4. Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, et al. Electron beam lithography: resolution limits and applications. Appl Surf Sci.2000; 164(1-4):111-117.
    5. Silverman JP. Challenges and progress in x-ray lithography.1998; Chicago, Illinois (USA): AVS; 1998. p.3137-3141.
    6. Gwyn CW, Stulen R, Sweeney D, Attwood D. Extreme ultraviolet lithography.1998; Chicago, Illinois (USA):AVS; 1998. p.3142-3149.
    7. Chou SY, Krauss PR, Renstrom PJ. Imprint Lithography with 25-Nanometer Resolution. Science.1996 April 5,1996;272(5258):85-87.
    8. Schift H. Nanoimprint lithography:An old story in modern times? A review. Journal of Vacuum Science& Technology B:Microelectronics and Nanometer Structures. 2008;26(2):458-480.
    9. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature.2003 Aug 14;424(6950):824-830.
    10. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings Berlin Heidelberg:Springer-Verlag; 1988.
    11. Ritchie RH. Plasma Losses by Fast Electrons in Thin Films. Physical Review. 1957;106(5):874.
    12. Blaikie RJ, McNab SJ. Evanescent interferometric lithography. Appl Optics.2001 Apr 1;40(10):1692-1698.
    13. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X. Plasmonic Nanolithography. Nano Lett. 2004;4(6):1085-1088.
    14. Srituravanich W, Durant S, Lee H, Sun C, Zhang X. Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask.2005:AVS; 2005. p.2636-2639.
    15. Liu Z-W, Wei Q-H, Zhang X. Surface Plasmon Interference Nanolithography. Nano Lett. 2005;5(5):957-961.
    16. Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens:Far-field imaging beyond the diffraction limit. Opt Express.2006 Sep 4;14(18):8247-8256.
    17. Jacob Z, Alekseyev LV, Narimanov E. Semiclassical theory of the hyperlens. J Opt Soc Am A. 2007 Oct;24(10):A54-A61.
    18. Hu JG, Wang-Pei, Lu YH, Ming H, Chen CC, Chen JX. Sub-diffraction-Limit Imaging in Optical Hyperlens. Chinese Phys Lett.2008 Dec;25(12):4439-4441.
    19. Palik ED. Handbook of Optical Constants of Solids[M]. San Diego, Academic; 1998.
    20. Madou MJ. Fundamentals of Microfabrication [M]. CRC, Boca Raton; 2002.
    1. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M].. Berlin Heidelberg:Springer-Verlag; 1988.
    2. Ozbay E. Plasmonics:Merging photonics and electronics at nanoscale dimensions. Science. 2006 Jan 13;311(5758):189-193.
    3. Maier S. Plasmonics:Fundamentals and Applications. Bath. U.K.:Springer; 2007.
    4. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature.2003 Aug 14;424(6950):824-830.
    5. Bozhevolnyi SI, Volkov VS, Leosson K, Boltasseva A. Surface plasmon polariton waveguiding in random surface nanostructures. J Microsc-Oxford.2003 Mar;209:209-213.
    6. Bozhevolnyi SI, Erland J, Leosson K, Skovgaard PMW, Hvam JM. Waveguiding in surface plasmon polariton band gap structures. Phys Rev Lett.2001 Apr 2;86(14):3008-3011.
    7. Palik ED. Handbook of Optical Constants of Solids[M]. San Diego, Academic; 1998.
    8. Fan X, Wang GP, Lee JCW, Chan CT. All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range:Theoretical Analysis and Numerical Demonstration. Phys Rev Lett.2006;97(7):073901.
    9. Dionne JA, Sweatlock LA, Atwater HA, Polman A. Plasmon slot waveguides:Towards chip-scale propagation with subwavelength-scale localization. Phys Rev B.2006 Jan;73(3):035407.
    10. Ishimaru A. Electromagnetic wave propagation, radiation, and scattering Englewood Cliffs, New Jersey::Prentice Hall; 1991.
    11. U.A.Bakshi AVB. electromagnetic wave theory Pune:Technical Publications; 2009.
    12. Sun Z, Kim HK. Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett.2004;85(4):642-644.
    13. Shi H, Wang C, Du C, Luo X, Dong X, Gao H. Beam manipulating by metallic nano-slits with variant widths. Opt Express.2005;13(18):6815-6820.
    14. Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett.2005;30(22):3063-3065.
    15. Miklos E, Gabor G. Radial and azimuthal polarizer by means of a birefringent plate. Journal of Optics A:Pure and Applied Optics.2008; 10(5):055007.
    16. Bomzon Ze, Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett.2002;27(5):285-287.
    17. Zhan Q. Cylindrical vector beams:from mathematical concepts to applications. Adv Opt Photon.2009; 1(1):1-57.
    18. Zhan Q. Trapping metallic Rayleigh particles with radial polarization. Opt Express. 2004;12(15):3377-3382.
    19. Zhang YJ, Ding BF, Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam. Phys Rev A.2010 Feb;81(2):023831.
    20. Yan SH, Yao BL. Radiation forces of a highly focused radially polarized beam on spherical particles. Phys Rev A.2007 Nov;76(5):053836
    21. Blaikie RJ, McNab SJ. Simulation study of'perfect lenses'for near-field optical nanolithography. Microelectron Eng.2002 Jul;61-2:97-103.
    22. Luo XG, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett.2004 Jun 7;84(23):4780-4782.
    23. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X. Plasmonic Nanolithography. Nano Lett. 2004;4(6):1085-1088.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700