用户名: 密码: 验证码:
后嫁接法制备Ag/SBA-15催化剂及其对甲醛催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛(formaldehyde)是一种重要的挥发性有机污染物(VOCs),作为主要的室内污染物之一,长期接触甲醛会严重损害人类健康,在众多甲醛去除技术中,催化氧化法由于不易产生二次污染物,在较低温度下可将甲醛彻底消除,因此成为了目前研究热点。本论文以SBA-15为载体,利用后嫁接法制备出粒径小且分布均一的Ag/SBA-15催化剂,并考察了其对甲醛吸-脱附性能及催化氧化活性。
     传统的制备负载型催化剂的方法有浸渍、金属有机物蒸汽沉积法及有机嫁接法。由于浸渍法难于控制金属粒子的大小及落位,所以金属粒子的粒径分布较宽且大部分粒子沉积在孔道外,而且催化剂的高温处理会使金属粒子进一步聚集增大。对于金属有机物沉积法,虽然其可以控制金属粒子的大小,但由于具有挥发性金属有机物难于得到且价格昂贵,所以其应用非常有限。由于在SBA-15的孔道表面覆盖着一层硅羟基,通过后嫁接的方法我们将还原基团铆钉在孔道内,利用原位还原方法和分子筛的孔道限域效应将银离子还原成孔道内的银粒子。通过后嫁接法我们得到了较小的银纳米粒子且抑制了其在高温下的烧结。同时,我们用传统的等体积浸渍的方法制备了Ag/SBA-15催化剂并考察了其对甲醛的催化活性。研究结果显明,利用后嫁接方法制备的银催化剂具有更小的粒子尺寸(2-3nm),甲醛完全转化的温度为100℃且没有副产物生成,而浸渍方法得到的催化剂粒子尺寸较大(7-8nm)且存在大量粒径为10-20nm的银粒子,甲醛完全转化的温度为150℃。
     程序升温脱附(TPD)及程序升温表面反应(TPSR)实验结果表明,在后嫁接催化剂上甲醛与活性位之间有适宜强度的吸附能力,而且催化反应有较低的活化温度。原位红外光谱(in-situ FT-IR)技术研究了甲醛在Ag/SBA-15催化剂上的吸附中间体,结合程序升温技术初步探索了甲醛在Ag/SBA-15上的催化氧化机理。研究发现,甲醛在纯载体及银催化剂上的吸附物种有明显差别。甲醛在纯载体上的吸附物种主要有分子吸附态甲醛,甲酸盐及亚甲二氧基,而在银催化剂上除了上述物种外,还可以看到CO与C02的吸收峰。这说明CO与CO2只有在金属银上产生,而甲醛盐及二氧亚甲基的形成不需要金属银的存在。虽然载体也能产生甲酸盐和二氧亚甲基等吸附中间体,但程序升温实验显示,产生的吸附中间体不能进一步被氧化而是转化为甲醛脱附,同时还发现,随着温度升高吸附在后嫁接催化剂上的甲醛更容易与氧气发生氧化反应。
Formaldehyde (HCHO) is regarded as an important volatile organic compound (VOCs). Long-term exposure to indoor air containing even a few ppm of HCHO may cause adverse effects on human health. So, the removal of formaldehyde is very important for the environmental protection and human health. Among all the HCHO removal methods, catalytic oxidation is recognized as a good method to completely remove HCHO. In order to improve the performance of the catalysts, we synthesized Ag/SBA-15catalyst using post-grafting method, which exhibited small particle size and high metal dispersion. Furthermore, we also investigated the adsorption/desorption properties and catalytic activities of the post-grafting catalyst.
     Metal-organic chemical vapor deposition (MOCVD), conventional incipient wetness impregnation and schemes making use of the silanols on the interval channels are the main methodologies for the assembly of metal nanoparticles inside the channels of the mesoporous silica. We cannot control the dispersion and particle size using impregnation method. For MOCVD method, the precursors are limited in terms of their high volatility and thermal stability. There are a large amount of silanols inside the channels and we can anchor reducing species in the channel, then the Ag ions will be reduced in the channel. In order to show the performance of the catalysts clearly, impregnation catalyst was used for comparision. The results showed that the mesoporous structure of post-grafting catalyst remained stable, and the silver nanoparticles with an average size of2.83nm were highly dispersed and confined in the channels of SBA-15. Activity test showed that formaldehyde was completely oxidized to H2O and CO2at100℃and no by-products were detected in our experiment. In contrast, for the impregnation catalyst, many large particles with size of10-20nm deposited on the external surface of SBA-15could be observed after high temperature treatment at500℃. HCHO was completely oxidized to H2O and CO2at150℃, higher than that of the post-grafting sample.
     Temperature Programmed Desorption (TPD) and Temperature Programmed Surface Reaction (TPSR) experiment exhibited that there was the proper adsorption intensity between HCHO and post-grafting catalyst and the suface reaction was activated at90℃, lower than that of the impregnation catalyst. Due to the stronger adsorption of HCHO on silver species by chemical adsorption, the desorption peak obviously moved to higher temperature when silver was loaded.
     Intermediates adsorbed on Ag/SBA-15catalysts were investigated using in-situ FT-IR technology. Rudimentary catalytic mechanism was studied combining with temperature programmed method. The results showed that the dioxymethylene (DOM), formate and adsorbed CO species were the main reaction intermediates for HCHO oxidation, which was consistent with the previous research. It also exhibited that formate and DOM species could be formed on the samples without the help of silver sites but the CO and CO2species can be formed only on silver sites. Although the formate and DOM species could be formed on SBA-15, they could not be further oxidized to H2O and CO2, as shown in the activity and TPSR results. Moreover, with temperature increasing, the main characteristic peaks for formate and DOM species on post-grafting sample disappeared faster than impregnation sample, which illustrated that the post-grafting catalyst exhibited higher catalytic activity.
引文
[1]王文超,周仕学,姜瑶瑶,等.室内甲醛污染治理技术的研究进展[J].环境科学与技术,2006,29(9):106-109.
    [2]陈丹.银催化剂表面甲醛吸附-脱附及其反应性能研究[D].大连理工大学硕士学位论文,2011
    [3]LOU Y C, WANG H C, ZHANG Q H, et al. SBA-15-supported molybdenum oxides as efficient catalysts for selective oxidation of ethane to formaldehyde and acetaldehyde by oxygen [J]. Journal of Catalysis,2007,247(2):245-255.
    [4]苗娟,魏学锋.甲醛对人体健康影响及其暴露水平的调查[J].环境科学与技术,2008,31(10):79-81.
    [5]KIM M G, WAN H, NO B Y, et al. Examination of selected synthesis and room-temperature storage parameters for wood adhesive-type urea-formaldehyde resins by C-13-NMR spectroscopy. IV [J]. Journal of Applied Polymer Science,2001,82(5):1155-1169.
    [6]王芳,钟伟雄.新装修后的公共场所甲醛浓度调查[J].环境与健康,2000,17(2):86.
    [7]赵淑雅,王宇敏,梁莉,等.新型燃料对居室空气污染的检测与评价[J].环境健康与杂志,1995.
    [8]袭著革.室内空气污染与健康[M].北京:化学工业出版社,2003.
    [9]梁宝生.我国甲醛室内空气质量标准建议值的探讨[J].重庆环境科学,2003,12:193-194.
    [10]牛长青.试析甲醛对机体毒害病理及其防范[J].运城学院学报,2003,5:40-41.
    [11]SHAHAM J, BOMSTEIN Y, MELTZER A, et al. DNA-protein crosslinks, a biomarker of exosure to formaldehyde-in vitro and in vivo studies [J]. Carcinogenesis,1996,17 (1):121-125.
    [12]PERON V J, ARTS J H, et al. Health risks associated with inhaled nasal toxicants [J]. Critical Reviews Toxicology,2001,31 (3):313-347.
    [13]WALRATH J, FRAUMENI J F. Cancer and other causes of death among Embalmers [J]. Cancer Research,1984,44(10):4638-4641.
    [14]GODISH T, ROUCH J, GUINDON C. Control of residential formaldehyde levels by source treatment [J]. Environment Inter Press Service,1989,15:609-619.
    [15]ROFFAEL E, DIX B, KEHR E. Moisture and hydrolysis resistence of particleboards, bonded with unmodified and modified low formaldehyde UF-resins using different catalyst system.4. Some chemical-properties of particleboards bonded with unmodified and modified UF-resins [J]. Holzals Roh-und werkst.1995,52(4):315-320.
    [16]SHERMAN M H, HODGSON A T. Formaldehyde as a basis for residential ventilation rates [J]. Indoor Air,2004,14(1):2-9.
    [17]KONDO T, MORIKAWA Y, HAYASHI N, et al. Purification and characterization of formate oxidation from a formaldehyde resistant fungus [J]. FEMS Microbiology Letters,2002,214(1): 137-142.
    [18]SAWADA A, OYABU T, YOSHIDA T, ct al. Effect of soil-kind and room temperature on purification capability of foliage plant for atmospheric formaldehyde [J]. Transaction of the IEE Japan, 2002,12:300-305.
    [19]OYABU T, ONODERA T, SAWADA A, et al. Wolverton. purification capability of potted plants for removing atmospheric formaldehyde [J]. Electrochemistry,2003,71(6):463-467
    [20]ERIK R J. Compiler:US,5379681 [P/OL].1995-01-10[1993-09-16]. http://www.google.com/patents/ US5379681
    [21]TAO W H, YANG T C K, HANG C Y N. Effect of moisture on the adsorption of volatile organic compounds by zeolite 13X [J]. Journal of Environmental Engineering,2004,130(10):1210-1216.
    [22]YEN S H, JENG F T, TSAI J H. Adsorption of methyl-ethyl ketone vapor onto zeolites [J]. Journal of Environmental of Science and Health, Part A,1997,32(8):2087-2100.
    [23]GUPA A, GAUR V, VERMA N. Breakthrough analysis for adsorption of sulfur-dioxide over zeolites [J]. Chemical Engineering Progress,2004,43(1):9-22.
    [24]ERIKSSON B, JOHANSSIN L, SVEDUNG I. Filtration of formaldehyde contaminated indoor air, The Nordest Symposium on Air Pollution Abatement by Filtration and Respiratory Protection [C]. Copenhagen,1980.
    [25]杜前明,徐倩,高灿柱,等.室内空气中低浓度甲醛的化学吸收去除法[J].环境与健康杂志,2008,1:42-44.
    [26]邵宇,张子重,王绪绪.室内空气中甲醛的去除[M].暖通空调,2005,35:36-39.
    [27]TOSHIO Y. Compiler:JP48093580 [P/OL].1973-12-02
    [28]YAMAMOTO T, RAMANATHAN K, LAWLESS P A, et al. Control of volatile organic compounds by an AC energized ferroelectric pellet reactor and a pulsed corona reactor [J]. IEEE Transaction on Industry Application,1992,28(3):528-534.
    [29]缪劲松,徐红丽,欧阳吉庭.利用低温等离子体技术脱除甲醛的研究[J].北京理工大学学报,2005,25:189-192.
    [30]胡将军,李英柳,彭卫华.吸附-光催化氧化净化甲醛废气的实验研究[J].化学与生物工程,2004,1:39-41.
    [31]IMAMURA S, UEMATSU Y, UTANI K, et al. Combustion of formaldehyde on Ruthenium/Cerium (Ⅳ) oxide catalyst [J]. Industrial & Engineering Chemistry Research,1991,30(1):18-21.
    [32]IMAMURA S, UCHIHORI D, UTANI K. Oxidative decomposition of formaldehyde on silver-cerium composite oxide catalyst [J]. Catalysis Letters,1994,24(3-4):377-384.
    [33]MAO C F, VANNICE M A. Formaldehyde oxidation over Ag catalysts [J]. Journal of Catalysis,1995, 154(2):230-244.
    [34]TANG X F, CHEN J L, LI Y G, et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts [J]. Chemical Engineering Journal,2006,118(1-2):119-125.
    [35]LI C Y, SHEN Y N, JIA M L, et al. Catalytic combustion of formaldehyde on gold/iron-oxide catalysts [J]. Catalysis Communications,2008,9(3):355-361.
    [36]SHEN Y N, YANG X Z, WANG Y Z, et al. The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation [J]. Applied Catalysis B:Environmental,2008,79(2):142-148.
    [37]MA C Y, WANG D H, XUE W J, et al. Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co304-Ce02 catalysts at room temperature:effective removal and determination of reaction mechanism [J]. Environmental Science & Technology,2011,45(8):3628-3634.
    [38]ZHANG C B, HE H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature [J]. Catalysis Today,2007,126(3-4):345-350.
    [39]ZHANG C B, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature [J]. Applied Catalysis B:Environmental,2006, 65(1-2):37-43.
    [40]PENG J X, WANG S D. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures [J]. Applied Catalysts B:Environmental,2007,73(3-4): 282-291.
    [41]PENG J X, WANG S D. Correlation between the microstructure and performance of Pt/TiO2 catalysts for formaldehyde oxidation at ambient temperature:Effect of hydrogen pretreatment [J]. The Journal of Physical Chemistry C,2007,111(27):9897-9904.
    [42]FOSTER J J, MASEL R I. Formaldehyde oxidation on nickel oxide [J]. Industrial & Engineering Chemistry Product Research and Development,1986,25(4):563-568.
    [43]SEKINE Y, NISHIMURA A. Removal of formaldehyde from indoor air by passive type air cleaning materials [J]. Atmospheric Environment,2001,35(11):2001-2007.
    [44]SEKINE Y. Oxidation decomposition of formaldehyde by metal oxides at room temperature [J]. Atmospheric Environment,2002,36(35):5543-5547.
    [45]TANG X F, LI Y G, HUANG X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature [J]. Applied Catalysis B: Environmental,2006,62(3-4):265-273.
    [46]TORRES J Q, GIRAUDON J M, LAMONIER J F. Formaldehyde total oxidation over mesoporous MnOx catalysts [J]. Catalysis Today,2011,176(1):277-280.
    [47]唐幸福.锰-铈固溶体催化剂上甲醛完全氧化反应的研究[D].大连:中国科学院大连化学物理研究所博士论文,2006.
    [48]ZHANG Y B, SHEN Y N, YANG X Z, et al. Gold catalysts supported on the mesoporous nanoparticles composited of zirconia and silicate for oxidation of formaldehyde [J]. Journal of Molecular Catalysis A:Chemical,2010,316(1-2):100-105.
    [49]LI H F, ZHANG N, CHEN P, et al. High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation [J]. Applied Catalysis B:Environmental,2011,110(2):279-285.
    [50]CHUANG K T, ZHOU B, TONG S M. Kinetics and mechanism of catalytic oxidation of formaldehyde over hydrophobic catalysts [J]. Industrial & Engineering Chemistry Research,1994, 33(7):1680-1686.
    [51]XU J, WHITE T, LI P, et al. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature [J]. Journal of American Chemistry Society,2010,132(38):13172-13173.
    [52]Kecskes T, RaskoJ, KISS J. FTIR and mass spectrometric studies on the interaction of formaldehyde with TiO2 supported Pt and Au catalysts [J]. Applied Catalysis A:Chemical,2004,273(1-2):55-62.
    [53]Rasko J, Kecskes T, KISS J. Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry [J]. Journal of Catalysis,2004,226(1):183-191.
    [54]DATYE A K, SMITH D J. The study of heterogeneous catalysts by High-Resolution Transmission Electron-Microscopy [J]. Catalysis Reviews-Science and Engincering,1992,34(1-2):129-178.
    [55]GANG L, ANDERSON B G, GRONDELLE J VAN. Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts [J]. Applied Catalysis B:Environmental,2003,40(2): 101-110.
    [56]ZHANG L, ZHANG C B, HE H. The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen [J]. Journal of Catalysis,2009,261(1):101-109.
    [57]DAI W L, CAO Y, REN L P, et al. Ag-SiO2-Al2O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol [J]. Journal of Catalysis,2004, 228(1):80-91.
    [58]LIU H Y, MA D, BLACKLEY R A, et al. Highly active mesostructured silica hosted silver catalysts for CO oxidation using the one-pot synthesis approach [J]. Chemical Communications,2008 (23): 2677-2679.
    [59]QU Z P, CHENG M J, HUANG W X, et al. Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts [J]. Journal of Catalysis,2005,229(2):446-458.
    [60]ZHANG X D, QU Z P, LI X Y, et al. Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts [J]. Separation and Purification Technology,2010,72(3):95-400.
    [61]BORE M T, PHAM H N, SWITZER E E, et al. The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica [J]. The Journal of Physical Chemistry B, 2005,109(7):2873-2880.
    [62]SERRANO D P, CALLEJA G, BOTAS J A, et al. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatiles organic compound removal [J]. Industrial & Engineering Chemistry Research,2004,43(22):7010-7018.
    [63]KOSUGE K, KUBO S, KIKUKAWA N, et al. Effect of pore structure in mesoporous silicas on VOC dynamic Adsorption/Desorption Performance [J]. Langmuir,2007,23(6):3095-3102.
    [64]CHEN D, QU Z P, ZHANG W W, et al. TPD and TPSR studies of formaldehyde adsorption and surface reaction activity over Ag/MCM-41 catalysts, Colloids and Surfaces A:Physicochemical and Engineering Aspects [J].2011,379(1-3):136-142.
    [65]BELL A T. The impact of nanoscience on heterogeneous catalysis [J]. Science,2003,299(5613): 1688-1691.
    [66]ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-552.
    [67]VAN Veen A C, HINRICHSEN O, MUHLER M. Mechanistic studies on the oxidative dehydrogenation of methanol over polycrystalline silver using the Temporal-Analysis-of-Products approach [J]. Journal of Catalysis,2002,210(1):53-66.
    [68]TU C H, WANG A Q, ZHENG M Y, et al. Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation [J]. Applied Catalysis A:General,2006, 297(1):40-47.
    [69]LIU X Y, WANG A Q, WANG X D, et al. Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation [J]. Chemical Communications,2008(27):3187-3189.
    [70]CHIANG C W, WANG A Q, MOU C Y. CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15:Pretreatment methods [J]. Catalysis Today,2006,117(1-3): 220-227.
    [71]SOMORJAI G A. Introduction to surface chemistry and catalysis [M]. New York, Wiley,1994.
    [72]ERTL G. Reactions at solid surface [M]. Berlin, Wiley,2009, pp.21-47.
    [73]WU J C, HARRIOTT P. The effect of crystallite size on the activity and selectivity of silver catalysts [J]. Journal of Catalysis,1975,39(3):395-402.
    [74]LI Z, CHOU A, TAO F M, et al. An initio study of the intermolecular potential surface of He-NH3 [J]. Chemical Physics Letters,1999,313(1):313-320.
    [75]KESHAVARAJA A, SHE X. Selective catalytic reduction of NO with methane over Ag-alumina catalysts [J]. Applied Catalysis B:Environmental,2000,27(1):L1-L9.
    [76]SHIMIZU K I, SHIBATA J, YOSHIDA H, et al. Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons:structure of active sites and reaction mechanism [J]. Applied Catalysis B: Environmental,2001,30(1-2):151-162.
    [77]KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Deep oxidation of methane over zirconia supported Ag catalysts [J]. Applied Catalysis A:General,1999,183(1):35-51.
    [78]FURUSAWA T, SESHAN K, LERCHER J A, et al. Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts [J]. Applied Catalysis B:Environmental,2002,37(3): 205-216.
    [79]SHI C, CHENG M J, QU Z P, et al. On the correlation between microstructural changes of Ag-H-ZSM-5 catalysts and their catalytic performances in the selective catalytic reduction of NOX by methane [J]. Journal of Molecular Catalysis A:Chemical,2005,235(1-2):35-43.
    [80]BAO X H, MUHLER M, SCHLOGL R, et al. Oxidation coupling of methane on silver catalysts [J]. Catalysis letters,1995,32(1-2):185-194.
    [81]KONDARIDSE D I, VERYKIOS X E. Interaction of oxygen with supported Ag-Au alloy catalysts [J]. Journal of Catalysis,1996,158(2):363-377.
    [82]BAO X H, MUHLER M, SCHEDEL-NIEDRIG T, et al. Interaction of oxygen with silver at high temperature and atmospheric pressure:A spectroscopic and structural analysis of a strongly bound surface species [J]. Physical Review B,1996,54(3):2249.
    [83]BACKX C, MOOLHUYSEN J, GEENEN P, et al. Reactivity of oxygen adsorbed on silver powder in the epoxidation of ethylene [J]. Journal of Catalysis,1981,72(2):364-368.
    [84]BAO X H, BARTH J, LEMPFUHL G, et al. Oxygen-induced restructuring of Ag (111) [J]. Surface Science,1993,284(1-2):14-22.
    [85]BUSCA G, LAMOTTE J, LA VALLEY J C, et al. FT-IR study of the adsorption and transformation of formaldehyde on oxides surfaces [J]. Journal of the America Chemical Society,1987,109(17): 5197-5202.
    [86]POPOVA G Y, ANDRUSHKEVICH T V, CHESALOV Y A, et al. In situ FTIR study of the adsorption of fomaldehyde, formic acid and methyl form iate at the surface of TiO2 (anatase) [J]. Kinetics and Catalysis,2000,41(6):805-811.
    [87]MILLAR G J, ROCHESTER C H, WAUGH K C. An FTIR study of the adsorption of formic acid and formaldehyde on potassium-promoted Cu/SiO2 catalysts [J]. Journal of Catalysis,1995,155(1):52-58.
    [88]YEOM Y H, ULAGAPPAN N, FREI H. Chemical reactivity of formaldehyde in a FeAIPO4 sieve [J]. Journal of Physical Chemistry A,2002,106(14):3345-3349.
    [89]SENANAYAKE S D, CHONG S V,IDRISS H. The reaction of formaldehyde over the surface of uranium oxides:a comparative study between polycrystalline and single crystal materials[J]. Catalysis Today,2003,85(2-4):311-320.
    [90]ZHOU J, MULLINS D R. Adsorption and reaction of formaldehyde on thin-film cerium oxide [J]. Surface Science,2006,600(7):1540-1546.
    [91]PENG X D, BARTEAU M A. Adsorption of formaldehyde on model magnesia surface:evidence for the Cannizzaro reaction [J]. Langmuir,1989,5(4):1051-1056.
    [92]HOUTMAN C, BARTEAU M A. Reactions of formic-acid and formaldehyde on Rh (111) and Rh (111)-(2×2)O surfaces [J]. Surface Science,1991,248(1-2):57-76.
    [93]RASKO J, KECSKES T, KISS J. Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry [J]. Journal of Catalysis,2004,226(1):183-191.
    [94]BUSCA G, LORENZELLI V. Infrared study of methanol, formaldehyde, and formic-acid adsorbed on hematite [J]. Journal of Catalysis,1980,66(1):155-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700