用户名: 密码: 验证码:
地黄基于HPLC指纹图谱的质量评价及种质资源利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要目的是建立和完善地黄三种常用的药用形式—鲜地黄、生地黄和熟地黄的高效液相色谱(HPLC)指纹图谱技术,并利用建立的指纹图谱技术评价和控制地黄药材的质量,对地黄的属内近缘种的药用价值等可利用性进行评价,同时利用指纹图谱技术进行地黄新品种的选育。
     主要研究内容包括地黄指纹图谱方法探索及鲜地黄、生地黄和熟地黄指纹图谱的建立,鲜地黄、生地黄和熟地黄的质量评价,鲜地黄、生地黄和熟地黄HPLC指纹差异及熟地黄炮制质量控制和炮制新方法探讨,地黄属内近缘种化学指纹特征、可利用性和生物学特征研究,地黄新材料选育等。
     为了建立和完善地黄指纹图谱技术,采用单因素分析方法,对地黄HPLC指纹图谱建立中的样品溶液制备方法,色谱条件进行研究,逐渐建立了用甲醇冷浸后超声波提取,蒸干后用少量低浓度甲醇溶解获得浓缩样品溶液。采用乙腈-磷酸溶液线性梯度洗脱方法,建立了鲜地黄、生地黄205nm HPLC指纹图谱和205nm单波长或205nm和284nm双波长熟地黄指纹图谱。同时建立了地黄中主要检测成分梓醇、5-羟甲基糠醛(5-HMF)和麦角甾苷含量随指纹图谱同时检测的单波长和多波长方法。鲜地黄HPLC指纹图谱可精确的反映地黄的品种特征,生地黄指纹图谱除呈现品种的信息外,还带有产地气候特征、栽培方式以及加工、贮存等信息,而熟地黄指纹图谱主要呈现加工信息,反映熟地的炮制熟化程度。
     为了评价地黄品质,采用已建立的地黄指纹图谱技术和主成分分析中的综合主成分值对生地黄、熟地黄和鲜地黄进行质量评价,研究显示生地黄和鲜地黄主成分分析中主成分类型主要以色谱峰的化学性质划分,而熟地黄主成分划分主要与熟地炮制过程中色谱峰的变化规律有关。生地主成分分析中综合主成分值高的,即质量好的生地黄是来自地黄主产区河南、山西的材料和新制材料,综合主成分值与梓醇含量相关。熟地综合主成分值与5-羟甲基糠醛含量有关,而鲜地黄综合主成分值与麦角甾苷含量相关。同时简化了地黄综合质量评价方法,仅利用包括检测成分在内的少数色谱峰就可对地黄综合质量进行评价。
     鲜地黄、生地黄和熟地黄药性不同,为揭开药性差异的本质,对鲜地黄、生地黄和熟地黄的指纹图谱进行了比较,研究了熟地炮制过程中指纹的变化。结果显示鲜地黄和生地黄指纹差异主要在色谱图后半部,即苯乙醇苷所在的区域,鲜地黄在干制成生地黄过程中苯乙醇苷类明显降低。其他次生成分大多降低,少数衍生物质峰出现并升高。而生地和熟地指纹图谱在前半部明显不同,炮制成熟地过程中梓醇等环烯醚萜苷类以及多种次生成分降低或消失,衍生物质5-羟甲基糠醛等含量上升。这些变化可能是从鲜地黄到熟地黄药性由寒性变为温性的原因之一。
     为了充分利用地黄属种质资源,利用建立的鲜地黄指纹图谱技术研究了地黄属内部分近缘种的化学指纹特征(除天目地黄外),并利用普通杂交技术研究近缘种之间传粉特性和杂交亲和性。结果显示由于地黄属种间亲缘关系较近,从其化学指纹特征上很难判定亲缘关系特征。地黄的三个近缘种根部梓醇含量低于地黄,而裂叶地黄和茄叶地黄麦角甾苷含量较高,但地黄的这些近缘种不具备代替地黄药用的潜力。杂交结果显示地黄属均为虫媒植物。茄叶地黄为不育种,并对其起源和分类地位进行推测。部分地黄属近缘种之间正反交显示,裂叶地黄和湖北地黄之间杂交可获得有发芽力的种子,其他组合仅获得极少种子或种子不能发芽。
     为了充分利用地黄种质资源,培育适应本地气候特征的药用、食用地黄新材料,利用不同品种等自然杂交种子进行新材料选育,利用建立的鲜地黄指纹图谱技术和主成分分析综合主成分值的大小初步选择21个药用地黄材料。对二甲氨基苯甲醛显色方法测定总环烯醚萜苷的相对含量,根据材料间总环烯醚萜苷相对含量大小初步选出10个食用材料。
The purpose of the research is to establish and improve HPLC fingerprint technology ofthree kind of rehmannias, i.e. fresh rehmannia, dry rehmannia and prepared rehmannia, and toassess and control the quality of the crude medicine, as well as to assess the value of the closerelative species of Rehmannia glutinosa for medicine and to breed new varieties with thefingerprint technology.
     The contents of the research include method exploring of rehmannia HPLC fingerprints,establishing the HPLC fingerprints for fresh, dry and prepared rehmannia. Quality assessmentof the three types of rehmannia, the difference of fingerprint among them, quality control andnew ways to processing prepared rehmannia are also concerned. Chemical fingerprint,usability and biologic characters of close relative species of Rehmannia glutinosa andbreeding new materials are discussed in the end.
     In order to establish and improve HPLC fingerprint method, single-factor analysis wasadopted. Preparation methods of sample solution and HPLC condition for fingerprint werestudied. The methods were gradually set up. After being soaked in methanol, the sample wasabstracted by ultrasonic. The solution was dried. Residues were dissolved with a little lowconcentration methanol solution and the concentrated sample solution resulted. Acetonitrileand phosphoric acid solution was used as mobile phase for linear gradient elution. HPLCfingerprints at205nm for fresh rehmannia and dry rehmannia, fingerprints at205nm ordouble wavelength fingerprints at205nm and284nm for prepared rehmannia were acquired.At the same time, methods for content determination of catalpol,5-hydroxymethyl furfural(5-HMF) and acteoside, the major constituents in criteria, at single or multiple wavelengthswith fingerprint determination were established. HPLC fingerprints of fresh rehmannia canaccurately reflect species characters. Besides species characters, dry remannia fingerprint canalso show information of climate of producing areas, cultivation mode and storage status etc.But prepared rehmannia fingerprints mainly carry processing information. They reflect theprepared degree of processing.
     To assess the quality of rehmannia, Well-established HPLC fingerprint technology andsynthesis value of major components in principal component analysis (PCA) were applied toevaluate the quality of dry rehmannia, prepared rehmannia and fresh rehmannia. The resultindicated that the principal components type in PCA of fresh rehmannia and dry rehmanniawas classified on chemical property of chromatographic peaks. While in prepared rehmannia,it was related to the variation characters of peaks in processing. In PCA, dry rehmanniasscored high in synthesis value, i.e. with high quality, were almost from the major producing areas of rehmannia, Henan and Shanxi, or the materials freshly processed. And the synthesisvalue of major components was related to content of catalpol. But it was related to5-HMFand acteoside in prepared rehmannia and fresh rehmannia respectively. And also the methodfor assessing integrated quality of rehmannia was simplified. Only a few of peaks includingprescriptive constituents in criteria were needed to assess integrated quality of rehmannia.
     The medical nature is different among fresh rehmannia, dry rehmannia and preparedrehmannia. To unveil the essence of the difference, the HPLC fingerprints of three typerehmannia were compared and variation of fingerprint in processing prepared rehmannia wasstudied. The results showed that fingerprint differences between fresh rehmannia and dryrehmannia were mainly in posterior part. It was the area of phenethanol glycosides. Thecontents of phenethanol glycosides were signaficantly decreased from fresh rehmannia to dryrehmannia. Meanwhile, most other secondary components also declined and a few ofderivative peaks appeared and increased. Fingerprint differences between dry rehmannia andprepared rehmannia were almost in forepart. During processing prepared rehmannia, catalpoland some other iridoid glycosides declined or disappeared, while the derivatives such as5-HMF increased. These changes might be one of the reasons for that the medical natureshifted from cold of fresh rehmannia to warm of prepared rehmannia.
     In order to make the best use of germplasm resource of genus Rehmannia, chemicalfingerprint characters of a part of close relatives of R. glutinosa in the genus, exceptR.chingii, was studied with fresh rehmannia fingerprint technology, as well as pollinationcharacter of species and cross compatibility between them with common cross method. Theresult indicated that it was difficult to determine the relationship in the genus by chemicalfingerprint for their intimate relations. The content of catalpol in the root of three relatives islower than that in Rehmannia glutinosa. But acteoside in R.piasezkii and R.solanifolia arehigher. Even though, the relatives have little possibility to take the place of R. glutinosa inmedicine. Cross results showed that the species were all entomophilous pollination plants.R.solanifolia was infertility species and its origination and classification position wasdiscussed. Reciprocal crosses between the species showed that the cross between R.henryiand R.piasezkii could give germinative seeds. The other cross pairs gave few germinativeseeds.
     In order to make the best use of germplasm resource of R. glutinosa and to breed newmedical or food materials adapting to local climate, breeding was conducted with naturalcross seeds of varieties and special materials.21materials were selected for medical use byfresh rehmannia fingerprint method and on synthesis value of major components in PCA.10materials were chosen for food use on relative content of total iridoid glycoside which wasdetermined by colorimetry with paradime thylaminobenzaldehyde to present color.
引文
白雁,樊克锋,李军,王东,朱凤云,陈志红.2005.不同方法加工生地黄的2D-IR和HPLC检测.中国中药杂志,30(7):504~507
    曹建军,梁宗锁,杨东风,刘永红,段琦梅.2010.应用HPLC指纹图谱技术确定熟地黄炮制终点.中国中药杂志,35(19):2556~2560
    陈京荔,黄璐琦,邵爱娟,林淑芳.2002.地黄不同品种的RAPD分析.中国中药杂志,27(7):505~508
    陈敏艳,梁宗锁,王喆之,闫金婷.2004.地黄组织培养及植株再生的研究.西北植物学报,24(6):1083~1087
    崔瑛,丁岗,孙曙光,侯士良,朱凤云.2003.地黄不同提取部位HPLC指纹图谱实验研究.河南中医学院学报,18(4):18~19
    邓寒霜,王新军.2005.熟地黄加工炮制方法研究.商洛师范专科学校学报,19(3):116~118
    丁岗,崔瑛,盛龙生,相秉仁,安登魁.2003.地黄血清药物化学的初步研究.中国天然药物,1(2):85~88
    董娟娥,马柏林,贾二红.2001.杜仲叶中桃叶珊瑚甙测定方法的研究.西北林学院学报,16(1):53~55
    国家药典委员会.2005.中华人民共和国药典:一部.2005年版.北京:化学工业出版社:83
    何作民,吴子超,钟向红,霍永昌.2002.六味地黄丸薄层色谱指纹图谱研究.中国药业,11(9):36~37
    贾玉梅,段红福,崔瑛,丁岗.2011.怀鲜地黄HPLC指纹图谱研究.中成药,31(5):729~733
    解红娥,王娇娟,解晓红,李江辉,陈丽,武宗信.2007.地黄土壤中主要病原真菌的鉴定及致病性研究.山西农业科学,35(2):59~63
    李更生,王慧森.2003. HPLC法测定地黄中地黄苷D含量.中草药,34(8):752~754
    李惠,侴桂新,王峥涛,胡之璧.2006. HPLC测定地黄中麦角甾苷的含量.中国中药杂志,3l(l0):822~824
    李军,张丽萍,刘伟,张振凌,刘丽娟.2005.地黄清蒸不同时间5-羟甲基糠醛含量变化研究.中国中药杂志,30(18):1438~1440
    李军,张丽萍,张振凌,白雁,王磊,王晓阁.2006.熟地黄清蒸和酒炖不同时间还原糖含量测定.中成药,28(4):513~515
    李军,俞桂新,张丽萍,王晓阁.2011.不同产地清蒸熟地黄饮片高效液相指纹图谱研究.中医学报,26(11):1338~1340
    李茂星,贾正平,沈涛,张汝学,葛欣,王娟.2006.分光光度法测定藏药独一味及其制剂中总环烯醚萜苷的含量.中药新药与临床药理,17(1):45~47
    李先恩,陈士林,魏淑秋,魏建和,兰进,赵润怀.2006.地黄适生地分析及等级划分.中国中药杂志,31(4):344~346
    李晓东,李建强.2006.地黄属(Rehmannia)和崖白菜属(Triaenophora)植物的叶表皮形态特征.武汉植物学研究,24(6):559~564
    李晓东,李建强,昝艳燕.2007.地黄属和崖白菜属等位酶的变异研究.植物分类学报,45(4):561~569
    刘彦飞,赵宇,武卫红,温学森.2007.地黄的化学成分及其在加工炮制过程中的变化.国外医药·植物药分册,22(3):102~108
    马柏林,梁淑芳,张康健.2000.薄层色谱分离和分光光度法测定桃叶珊瑚甙.分析化学,28(3):346~348
    秦向阳,周军,李晓晔,孙晓莉.2006. RP-HPLC法测定熟地黄中5-羟甲基糠醛的含量.第四军医大学学报,27(6):510~511
    宋昱,谢三刚,王玉香,闫建德,吉贞芳.2006.地黄根腐病的诊断及科农牌1号生物制剂对地黄根腐病的防治效果.山西农业科学,34(1):73~75
    孙国祥,张静娴.2009.基于三波长融合谱的系统指纹定量法鉴定龙胆泻肝丸的真实质量.色谱,27(3):318~322
    孙国祥,王玲娇.2010.指纹谱的一级系统指纹定量法鉴定木香顺气丸质量.化学学报,68(18):1903~1908
    孙国祥,车磊,李闫飞.2011.一种评价多波长中药色谱指纹图谱新方法-均谱法.中南药学,9(7):533~538
    汪程远,张浩,孟莉,张承平.2003. HPLC测定地黄及其制剂中梓醇的含量.华西药学杂志,18(2):134~135
    王敏,李明福,黄璐琦,陈燕芳,吴志刚,李桂芬,魏梅生,方荣祥.2006a.栽培地黄(Rehmanniaglutinosa Libosch.)普遍感染TMV和CMV.植物病理学报,36(2):189~192
    王敏,刘红彦,黄璐琦,王飞,李先端,洪巧瑜,吴志刚.2006b.道地产区地黄不同品种含梓醇量的比较.中草药,37(3):444~446
    王太霞,司源,李景原,胡正海.2005.怀地黄块根内含梓醇结构的组织化学和超微结构研究.西北植物学报,25(5):928~931
    王喜军,张宁,孙晖,孙文军.2004a.六味地黄丸的血清药物化学研究.中国天然药物,2(4):219~222
    王喜军,张宁,孙晖.2004b.六味地黄丸指纹图谱的研究.中国中药杂志,29(10):1004~1005
    温学森,赵华英,李先恩,马小军,杨世林,郑俊华.2002.地黄病毒病在不同品种中的症状表现.中国中药杂志,27(3):225~227
    温学森,杨世林,马小军,郑俊华.2004.地黄在加工炮制过程中HPLC谱图的变化.中草药,35(2):153~156
    温学森,李先恩,赵华英,霍德兰,杨世林.2005.地黄常见种质的染色体观察.中草药,36(1):124~125
    武雯,赵楠,李宏庆,瞿伟菁.2006.地黄属资源植物中梓醇的分布及积累动态.华东师范大学学报(自然科学版),4:90~96
    薛建平,石乐义,张爱民.2002.试管地黄诱导技术的研究.中国中药杂志,27(11):824~827
    薛建平,葛德燕,张爱民,柳俊.2003.地黄组织培养研究进展.中国中药杂志,28(12):1114~1117
    闫坤,赵楠,李宏庆.2007.地黄属种间亲缘关系研究.西北植物学报,27(6):1112~1120
    原春兰,李宗孝.2005.六味地黄丸的振荡指纹图谱.中成药,27(6):726~728
    曾志,杨东晖,宋力飞,杨挺,刘乡乡,袁敏,曾和平.2003.高效液相色谱指纹图谱应用于地黄的研究.分析化学,31(12):1485~1488
    张洁,段继诚,梁振,张维冰,张丽华,霍玉书,张玉奎.2006.六味地黄丸的精细指纹图谱分析及模式识别分类研究.分析化学,34(10):1423~1425
    张丽萍,李军,张振凌,白雁,王磊,王晓阁.2005.熟地黄清蒸和九蒸九晒炮制品中还原糖含量测定.河南中医学院学报.20(4):22~23
    张丽萍,李军,张振凌,王磊.2005.熟地黄炮制方法的历史沿革.河南中医学院学报,20(2):69~71
    张振臣,张丽芳,乔奇,王永江,靳秀兰.2004.河南省地黄病毒病初步鉴定.植物病理学报,34(5):395~399
    赵楠,武雯,闫坤,刘思涵,李宏庆,王幼芳.2007.不同植物生长调节物质对天目地黄组织培养及植株再生的影响.河南农业大学学报,41(1):33~37
    中国科学院中国植物志编辑委员会.1979.中国植物志:第六十七卷第二分册.北京:科学出版社:212
    周延清,景建洲,李振勇,张宝华,王天亮,贾敬芬.2005.怀区地黄遗传多样性的ISSR鉴定.中草药,36(2):257~261
    周延清,牛敬媛,郝瑞文,林雪,贾敬芬,郝建国,卢龙斗.2007.发根农杆菌转化怀地黄再生植株.分子细胞生物学报,40(4):223~231
    朱广军,王明道,吴宗伟,孙富林,贾新成.2007.地黄根区土壤潜在化感物质的GC-MS分析.河南科学,25(2):255~257
    朱梅芬,刘向前,吴柱熹,陆昌洙,崔胡荣,李济铉.2007.地黄的炮制对梓醇和5-羟甲基糠醛含量的影响.中国中药杂志,32(12):1155~1157
    Albach D C, Li H Q, Zhao N, Jensen S R.2007. Molecular systematics and phytochemistry of Rehmannia(Scrophulariaceae). Biochemical Systematics and Ecology,35:293~300
    Chun J C, Ma S Y, Kim S E, Lee H J.1997. Physiological responses of Rehmannia glutinosa to paraquatand its tolerance mechanisms. Pesticide Biochemistry and Physiology,59,51~63
    Chun J C, Kim J C, Hwang I T, Kim S E.2002. Acteoside from Rehmannia glutinosa nullifies paraquatactivity in Cucumis sativus. Pesticide Biochemistry and Physiology,72:153~159
    Chung I M, Kimb J J, Lim J D, Yu C Y, Kim S H, Hahn S J.2006. Comparison of resveratrol, SODactivity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and waterstress. Environmental and Experimental Botany,56:44~53
    Cui Y Y, Hahn E J, Kozai T, Paek K Y.2000. Number of air exchanges, sucrose concentration,photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth ofRehmannia glutinosa plantlets in vitro. Plant Cell, Tissue and Organ Culture,62:219~226
    Fan X H, Cheng Y Y, Ye Z L. Lin R C, Qian Z Z.2006. Multiple chromatographic fingerprinting and itsapplication to the quality control of herbal medicines. Analytica Chimica Acta,555:217~224
    Gu M, Ouyang F, Su Z G.2004c. Comparison of high-speed counter-current chromatography and high-performance liquid chromatography on fingerprinting of Chinese traditional medicine. Journal ofChromatography A,1022:139~144
    Gu M, Zhang S F, Su Z G Chen Y, Ouyang F.2004a. Fingerprinting of Salvia miltiorrhiza Bunge bynon-aqueous capillary electrophoresis compared with high-speed counter-current chromatography. Journalof Chromatography A,1057:133~140
    Li B Y, Liang Y Z, Du Y P, Xu C J, Li X N, Song Y Q, Cui H.2003. Resolution and identification of theacidic fraction of a petroleum ether extract of Radix Rehmanniae Preparata by an evolving chemometricapproach. Chromatographia,57:235~243
    Lim J D, Yun S J, Chung I M, Yu C Y.2005. Resveratrol synthase transgene expression and accumulationof resveratrol glycoside in Rehmannia glutinosa. Molecular Breeding,16:219~233
    Liu A H, Lin Y H, Yang M, Guo H, Guan S H, Sun J H, Guo D A.2007. Development of the fingerprintsfor the quality of the roots of Salvia miltiorrhiza and its related preparations by HPLC-DAD and LC–MSn.Journal of Chromatography B,846:32~41
    Ma L J, Zhang X Z, Zhang H P, Gan Y R.2007. Development of a fingerprint of Salvia miltiorrhiza Bungeby high-performance liquid chromatography with a coulometric electrode array system. J Chromatogr B,846(1-2):139~146
    Matsuda H, Tsukioka Y, Moriyama K, Shintani T, Asano T, Shiomoto H, Kubo M.2004. Studies onrehmanniae radix. V.5-hydroxymethyl-2-furaldehyde, active constituent of the steamed root of Rehmanniaglutinosa having increasing activity of erythrocyte deformability in rats. Nat Med,58(1):34~37
    Matsumoto M, Shoyama Y, Nishioka I, Iwai H, Wakimoto S.1989. Identification of viruses infected inRehmannia glutinosa Libosch var purpurea Makino and effect of virus infection on root yield and iridoidglycoside contents. Plant Cell Reports,7:636~638
    PAN C H, Lee E A, Chae Y A, Kim S I.1999. Purification of chitinolytic protein from Rehmanniaglutinosa showing N-terminal amino acid sequence similarity to thaumantin-like proteins. BiosciBiotechnol Biochem,63(6):1138~1140
    Park S U, Kim H H, Yu C Y, Park C H, Chae Y A.2002. Agrobacterium-mediated genetic transformationof Chinese foxglove, Rehmannia glutinosa L. Biotechnology Letters,24:547~550
    Pribylova J, Spak J, Franova J, Petrzik K.2001. Association of aster yellows subgroup16SrI-Bphytoplasmas with a disease of Rehmannia glutinosa var. purpurea. Plant Pathology,50:776~781
    Seon J H, Cui Y Y, Kozai T, Paek K Y.2000. Influence of in vitro growth conditions on photosyntheticcompetence and survival rate of Rehmannia glutinosa plantlets during acclimatization period. Plant Cell,Tissue and Organ Culture,61:135~142
    Wang L, Wang Y Z.2005. Floral development of Triaenophora (Veronicaceae) and phylogeneticimplications. Plant Syst. Evol.250:69~79
    Xu X H, Davey M R.1983. Shoot regeneration from mesophyll protoplasts and leaf explants of Rehmanniaglutinosa. Plant Cell Reports,2:55~57
    Yu L., Sun S Q, Fan K F, Zhou Q, Noda I.2005. Research on processing medicinal herbs with multi-stepsinfrared macro-fingerprint method. Spectrochim Acta A,62(1-3):22~29
    Zhang J L, Cui M, He Y, Yu H L, Guo D A.2005. Chemical fingerprint and metabolic fingerprint analysisof Danshen injection by HPLC–UV and HPLC–MS methods. Journal of Pharmaceutical and BiomedicalAnalysis,36:1029~1035
    Zhang R X, Zhou J H, Jia Z P Zhang Y X, Gu G M.2004. Hypoglycemic effect of Rehmannia glutinosaoligosaccharide in hyperglycemic and alloxan-induced diabetic rats and its mechanism. Journal ofEthnopharmacology,90:39~43
    Zhao H J, Tan J F, Qi C M.2007. Photosynthesis of Rehmannia glutinosa subjected to drought stress isenhanced by choline chloride through alleviating lipid peroxidation and increasing proline accumulation.Plant Growth Regul,51:255~262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700