用户名: 密码: 验证码:
寒地粳稻品种骨干亲本遗传演变及耐冷性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是重要的粮食作物,对保障粮食安全具有举足轻重的作用。水稻新品种在我国水稻生产中发挥了重要作用。总结前人的育种经验,全面研究水稻育种成就,深入追溯水稻育种系谱及骨干亲本,为设计育种技术路线提供有益的信息和借鉴。本研究以黑龙江稻区不同年代审定的226个水稻品种为试验材料,系统研究了黑龙江寒地稻区不同年代水稻品种来源、遗传演变规律,明确了黑龙江寒地稻区的骨干亲本,分析了不同年代间重要农艺性状的演变趋势,在此基础上利用SSR标记分析了20世纪90年代后包括骨干亲本在内的51份黑龙江寒地稻区主栽水稻品种的遗传差异,揭示了寒地粳稻骨干亲本与后代遗传差异的水平和亲缘关系,并以226份粳稻品种为研究对象,对芽期耐冷性、春川冷水池直播成苗率品种、孕穗期、成熟期四个不同时期耐冷性进行基础研究,分析了不同时期耐冷性与分子标记之间的关系。旨在为寒地粳稻骨干亲本的定向利用,提升寒地粳稻育种效率和水平,为水稻遗传研究和育种实践提供有效的理论依据,并为水稻耐冷的分子辅助选择育种和基因的精细定位及克隆奠定基础。主要研究结果如下:
     1.利用黑龙江寒地稻区不同年代审定的226个水稻品种为研究对象,追溯其系谱,明确了黑龙江寒地稻区水稻品种的骨干亲本是石狩白毛、虾夷、藤系138、富士光、农林11、下北、上育397、富士光、五优稻1号。进一步分析骨干亲本对育成品种的细胞核和细胞质贡献,细胞核贡献值大于5的亲本依次为石狩白毛、虾夷、藤系138、富士光、农林11、下北和上育397,其中石狩白毛的细胞核贡献值为18.85,远远大于其他亲本,可见其对黑龙江省审定品种的重要贡献。
     2.分析了226个水稻品种的重要农艺性状的发展变化规律。6个骨干亲本的重要农艺性状主成份分析:石狩白毛的第一成分对应较大影响的特征向量为每穗粒数,特征值为3.02,贡献率为50.38%,第二成分千粒重的贡献率为30.69%,第三成分单株穗重的贡献率为14.62%;虾夷第一成分千粒重的贡献率为48.02%,第二成分株高的贡献率为28.51%,第三成分结实率的贡献率为15.77%。石狩白毛和虾夷的累积贡献率分别达95.69%和92.30%;不同年代水稻品种农艺性状的演变:株高呈现出逐渐变矮的趋势,50年代的株高最高,60年代略有降低,70年代到80年代,水稻株高显著降低,80年代之后,株高的变化较小,各年代间株高差异不显著;有效分蘖从50年代到70年代保持在10个左右,略有增长,但各年代间差异不显著,80年代之后有效分蘖数大幅增加,与之前各年代差异均达到了显著水平;穗长在60年代平均值最小,与其他年代差异显著,70—90年代穗长逐渐升高,90年代达到最大值,2000年以后略有下降;穗重的演变规律与穗长相似,而穗重2000年后比90年代显著的提高,且与80年代和90年代的差异达到了显著水平;每穗粒数在各年代间呈先增高后降低的趋势,70年代平均值最高,与其他各年代的差异显著,与80年代和90年代的差异均不显著;一次枝梗数表现为先升后降的变化规律,在50年代最低,与其他年代的差异达到了显著水平,在80年代最高,并与其他年代的差异显著;二次枝梗数变化趋势和一次枝梗相似,均表现为先升后降,在2000年后最低,与其他各年代差异均达到了显著水平,在70年代最高,并与其他各年代差异显著;结实率呈现逐渐升高的趋势,50年代和60年代的结实率维持在很低的水平,90年代之后提高速率变慢,到2000年后达到最高值;千粒重在年际间的升高幅度较大,从50年代到2000年后各年代间差异达到了显著水平。
     3.利用50对SSR引物对20世纪90年代后51份水稻主栽品种进行了UPGMA聚类分析和主坐标分析(principal coordinate analysis, PCO)。结果显示,50对SSR引物在51份供试材料中共检测到150个等位基因,变化范围为2~6个,平均为3个,引物PIC的变化范围为0.0725~0.6845,平均值为0.3655,51份材料在遗传相似系数0.60处被分为4类,4个骨干亲本分别被聚到4类中。第Ⅰ类由五优稻1及其衍生品种组成,第Ⅱ类由富士光及其衍生品种组成,第Ⅲ类由藤系138及其衍生品种组成,第Ⅳ类由上育397及其衍生品种组成。PCO分析显示,四个骨干亲本相距较远,呈独立的分支,衍生品种围绕着骨干亲本分布。在检测出的39个稀有等位基因中,仅有3个存在骨干亲本中,表明近年寒地水稻品种遗传改良是围绕少数骨干亲本进行的,骨干亲本将大部分优良基因传递到了衍生品种中。SSR分析和PCO分析与系谱分析得到了一致的结果。
     4.本研究对226个水稻品种耐冷性进行表型分析,结果表明:(1)芽期耐冷性:死苗率变幅在3%~98%,平均值为35.2%,变异系数为20.4%。(2)春川冷水池直播:成苗率差异较大,变异幅度在21.2%-93.5%之间,平均值为69.2%,变异系数为18.6%。(3)孕穗期耐冷性:相对结实率差异较大,变异范围在2.1%-94.6之间,平均值为70.5%,变异系数为15.7%。(4)成熟期耐冷性:相对单株穗重的平均值为66.5%,变异范围为18.2-93.7,变异系数为25.7%。
     5.利用在品种间具有多态性的102个SSR引物,共检测到422个等位基因,SSR标记的聚类分析结果表明,相似度的范围是从61%-94%,说明黑龙江省水稻品种之间的关系都较接近。根据SSR数据的相似值并结合系统进化树将芽期低温处理下的死苗率大于35%和小于35%的品种,春川冷水池直播成苗率大于69%和小于69%的品种,孕穗期冷水处理下的相对结实率大于70%和小于70%的品种,成熟期冷水处理下的相对单株穗重大于66%和小于66%的品种大致分为两大类。
     6.本研究将水稻不同生育时期耐冷性状与分子标记进行相关分析,结果显示,检测到5个(RM225-160、RM230-260、RM488-190、RM249-130和RM551-200)与芽期耐冷性相关的标记,其中RM488-190和RM551-200与死苗率高于35%相关(相关系数分别为0.23*、0.16*),而另外三个标记RM225-160、RM230-260和RM249-130与死苗率低于35%相关(相关系数分别为-0.55**、-0.37*和-0.35*);检测到4个(RM498-220、RM230-260、RM1337-210和RM235-110)与春川冷水池直播成苗率相关的标记,其中RM235-110与成苗率低于69%相关(相关系数分别为-0.27*),而另外3个标记(RM498-220、RM230-260、RM1337-210)与成苗率高于69%相关(相关系数分别为0.37*、0.45**、0.13*)。检测到6个(RM498-220、RM263-180、RM587-240、RM264-200、RM242-235和RM20-150)与孕穗期耐冷性相关的标记,其中RM587-240和RM20-150与相对结实率低于70%相关(相关系数分别为-0.24*、-0.31*),另外4个分子标记(RM498-220、RM263-180、RM264-200、RM242-235)与相对结实率高于70%相关(相关系数分别为0.37*、0.32*、0.21*、0.48**)检测到4个(RM230-260、RM246-120、RM1267-170和RM410-190)与成熟期耐冷性相关的标记,其中RM1267-170与相对单株穗重低于66%相关(相关系数分别为-0.28*),另外3个分子标记(RM230-260、RM246-120、RM410-190)与相对单株穗重高于66%相关(相关系数分别为0.33*、0.25*、0.26*)。
Rice is one of the most important food crops and its production has a veryimportant position in food security. The new varieties played an important role in riceproduction. Here we summarized the experience and lesson of the past in ricebreeding; traced the pedigree of cultivated varieties and founder parent in depth, andprovided instructive information and reference for designing the technical routerationally in breeding. In this study, we used226cultivated Japonica rice varietiesauthorized in different times from cold area in Heilongjiang province, which wereinvestigated in the origins and biological evolution, and made clear the founder parentof cold area, analyzed evolving trend of important agronomic traits, and then weanalyzed the genetic difference of51main cultivated varieties of rice including thefounder parent in1990s by using the Simple Sequence Repeats(SSR), all the resultsreveal the genetic difference and relationship between founder parent of Japonica ricein cold area and the progeny. At the same time, We also measured and characterizedcold-resistant capabilities of the cultivated varieties in different developmental stagesincluding in seedling,tillering, boot and mature stages, Besides, we analyzed therelationship of cold tolerance in different stage and molecular marker. We hoped thatall these result can provide effective theoretical bases for rationally using the founderparent and promoting the breeding efficiency, and which could pave the way formolecular marker-assisted breeding and gene locating and cloning in cold tolerance ofrice.
     The main results were as follows:
     1. We collected and tracked the pedigree of226main cultivated varieties in coldregion of Heilongjiang. Our results defined Shishoubaimao and Xiayi、Tengxi-138、Fushiguang、Nonglin-11、Xiabei、Shangyu-397、Wuyoudao-1as the founder parentstrains in cold region of Heilongjiang. We further analyzed the nucleus andcytoplasmic contribution values of these varieties,7varieties’ nucleus contributionvalues were more than5. They are Shishoubaimao, Xiayi, Tengxi138, Fushiguang,Nonglin11, Xjiabei and Shangyu397. Of them, the nucleus contribution value ofShishoubaimao reached18.85, which was much higher than others. This suggestedShishoubaimao is the most important founder parent strain of cultivated varieties inHeilongjiang.
     2. We tracked the laws of changes and development of several important agronomic traits of226founder parent varieties. Applying principal component analysis approach to estimatecontribution of6founder parent varieties on the important agronomic traits, we found the mostcontributed variety was Shishoubaimao. The variety highly contributed to grain numberper panicle, its feature value was3.02and contribution rate was50.38%. The secondcontributed trait by Shishoubaimao was1000kernel weight, which contribution ratereached30.69%. The third one was grain weight per plant. Its contribution rate is14.62%. The second most contributed founder parent strain is Xiayi, whichcontribution rate on was1000kernel weight48.02%, on plant height was28.51%andon seed setting rate was15.77%.the accumulative contribution rate by Shishoubaimaoand Xiayi reached95.69%and92.30%respectively. We also analyzed thediversification trends of several important agronomic traits of the founder parent strainsand their derivative strains derived from different breeding history. The overall trends of plantheight changed towards lowers. Plant height reached highest level in1950s; thendecreased a little bite in1960s; followed by a significant decrease during1970s and1970s. After1980s, changes on plant height of the stains were comparatively lesssignificant. On the other hands, the number of the tillers was increasing successively.Form1950s to1970s, the number of the tillers slightly increased,10more thanprevious one. After1980s, the number of the tillers increased significantly. Thepanicle length of rice in1960s was significantly lower than the others, while increasedgradually through1970s to1990s and reached the maxim value in1990s. After2000the panicle length was slightly decreased. Ear weights have similar trends like thepanicle length before2000. However, ear weights increased significantly after2000than others. Grain weight per spike reached maxim value in1970s while slightlydecreasing after that. The lowest number of primary branches occurred in1950s whilereached highest number in1980s. The number of secondary branches changedsimilarly like the number of primary branches. It increased significantly and hadhighest number in1970s and significant lowest ones after2000. Setting percentagewas low in1950s and1960s and gradually increased in1990s while reached highestlevel after2000.1000kernel weight was continually increasing from1950s to2000and the increment was significant.
     3. We designed50pairs of SSR primers to detect genetics diversities of150SSRmarkers in51main cultivated varieties of rice in1990s. Data were then analyzed byUPGMA and principal coordinate analysis (PCO). We detected number of changedbands ranged from2to6with3as mean. The average primer PCI is0.3655, changed from0.0725to0.6845. According to the genetic similarity factors of0.6, the51testing samples could be classified into4groups. Group1is Wuyoudao1and theirderivative strains. Group2is Fushiguang and their derivative strains. Group3is Tengxi138and their derivative strains. Group2is Shangyu397and their derivative strains. PCO analysisshowed that the for founder parent strains and their derivative strains were genetically diversified.We also detected39SSR markers as rare alleles. Of them, only3were detected in founder parentstrains. Moreover, experimental verification of SSR and PCO analysis is highly consistent with thepedigree records which double confirmed the reliability of our experiment. Taken together, ourresult suggested that the genetic improvement of main cultivated varieties in cold region ofHeilongjiang in the past20years was performed on the basis of a limited range of geneticbackground. The derivative strains are genetically closed to their founder parent strains.
     4. In this study, we analyzed morphological characters of226cultivated Japonicarice varieties in cold-resistant capabilities. Results indicated that, in seedling stage, wedetected the average seedling death rate was35.2%with a wild range from3%to8%.In tillering stage, The average seedling emergence rate was69.2%, ranged from21.2%to93.5%with variation coefficient of18.6%. In boot stage, we found theaverage relative setting percentage was70.5%changed from2.1%-94.6%withvariation coefficient of15.7%. In mature stage, the average relative ear weights ofsignal plant was66.5%,ranged18.2%to93.7%. Its variation coefficient was25.7%
     5. We identified422alleles by using102SSR primers that having polymorphismbetween varieties. The result of clustering analysis of SSR showed that the similaritiesfrom61%to94%. It suggested that the testing rice varieties were genetically close.Combining the similarities of SSR data and phylogenetic tree, we classified thevarieties into2groups, the seedling death rate were lower or higher than35%inseedling stage under cold treatment, the seedling emergence rate s were lower orhigher than69%in tillering stage treated by cold water, the relative setting percentagewere lower or higher than70%in boot stage treated by cold water and the relative earweights of signal plant were lower or higher than66%in mature stage treated by coldwater.
     6. We also carried out an association analysis between cold-resistant traits andSSR markers, results indicated that5markers relative to cold tolerance in seedingwere detected (RM225-160, RM230-260, RM488-190, RM249-130and RM551-200).RM488-190and RM551-200were correlated with high seedling death rate (>35%) inseedling stage which related coefficients were0.23and0.16respectively. RM225-160, RM230-260and RM249-130were highly associated with low seedling death rate (<35%), which related coefficients were0.37,0.45and0.13respectively. RM498-220,RM230-260, RM1337-210and RM235-110were correlated with seedling emergencerate to low seedling emergence rate (<69%, related coefficients=-0.27), whileRM498-220, RM230-260and RM1337-210were related to high seedling emergencerate (>69%, related coefficients=-0.55,-0.37, and-0.35). RM498-220,RM263-180,RM587-240, RM264-200, RM242-235and RM20-150were associatedwith relative setting percentage in boot stage under cold water treatment. Among them,RM587-240and RM20-150were related to low setting percentage (<70%, relatedcoefficients=-0.24and-0.31), while RM498-220, RM263-180, RM264-200andRM242-235were related to high setting percentage (>70%, related coefficients=0.37,0.32,0.21and0.48). RM230-260, RM246-120, RM1267-170and RM410-190were associated with relative ear weights of signal plant in mature stage under coldwater treatment. RM1267-170was related to low ear weights of signal plant (<66%,related coefficients=--0.28), while RM230-260, RM246-120and RM410-190wererelated to high ear weights of signal plant (>66%, related coefficients=0.33,0.25and0.26).
引文
1.蔡星星,刘晶体,仇吟秋,等.籼稻9311和粳稻日本晴DNA插入缺失差异片断揭示的水稻籼-粳分化[J].复旦大学学报,2006,45(3):309-315.
    2.陈蕊红.辣椒杂种优势及其亲本选配[D].陕西:西北农林科技大学,2003.
    3.陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景[J].中国工程科学,2002,4(1):31~35.
    4.陈新民,何中虎,史建荣等.2003.利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究.作物学报,29(1):13-19
    5.陈玉清,郑有良,周永红.应用亲缘系数分析四川小麦种质资源的遗传多样性[J].南京师大学报,2002,25(2):22~27.
    6.陈志德,仲维功,杨杰,等.不同类型水稻品种品质性状间相互关系的分析[J].上海交通大学学报:农业科学版,2003,21(1):21~25.
    7.从夕汉,李莉,滕斌,等.56个杂交水稻骨干亲本SSR指纹图谱的构建及遗传相似性分析[J].生物学杂志,2010,27(1):87~91.
    8.丛万彪.1999.寒地水稻骨干亲本合江20的育成和利用,黑龙江农业科学,3:65-66
    9.大里久美,吉田智彦.水稻育成品系亲缘系数与食味的关系[M].国外作物育种,1997,(1).
    10.戴陆园,叶昌荣,余滕琼,等.水稻耐冷性研究Ⅰ.稻冷害类型及冷害鉴定评价方法概述[J].西南农业学报,2002,15(1):41~45.
    11.戴小军,欧立军,李文嘉,等.水稻籼型、粳型特异性分子标记的研究和应用[J].湖南农业大学学报,2007,33(S1):8.
    12.邓华凤,何强,舒服,等.中国杂交粳稻研究现状与对策[J].杂交水稻,2006,21(1):1.
    13.东正昭.水稻の超多收品种育种の现状と今后の课题.农业および园艺,1988,63(7):793~799.
    14.段世华,毛加宁,朱英国.红莲型杂交稻(红莲2号)及其骨干亲本的RAPD分析与鉴定[J].武汉植物学研究,2002,20(3):171~176.
    15.方宣钧,吴为人等.2001.作物DNA标记辅助育种.863生物高技术丛书.
    16.冯永祥,徐正进,姚占军等.行向对不同穗型水稻群体微气象特性影响的研究——
    17.盖红梅,王兰芬,游光霞,等.基于SSR标记的小麦骨干亲本育种重要性研究[J].中国农业科学,2009,42(5):1503-1511.
    18.盖钧锰,赵团结,崔章林,等.中国大豆育成品种中不同地理来源种质的遗传贡献[J].中国农业科学,1998,31(5),35-43.
    19.巩迎军.水稻生长早期耐冷性的QTL定位研究[D].上海师范大学硕士学位论文,2008,1-60.
    20.郭晋杰,陈景堂,祝丽英,等.基于玉米导入系群体的3个农艺性状QTL分析[J].植物遗传资源学报,2009,10(1):27-31.
    21.韩俊,张连松,李静婷,等.小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析.作物学报,2009,35(8):13951404.
    22.韩俊,张连松,李静婷.2009.小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析,作物学报,35(8):1395-1404
    23.韩龙植,乔永利,张媛媛.2005.水稻孕穗期耐冷性QTLs分析[J].作物学报.31(5):653~657
    24.韩龙植,朴钟泽,高熙宗.水稻耐冷性对稻米品质冷水反应的影响[J].中国农业科学,2003,36(7):757~763.
    25.韩龙植,乔永利,曹桂兰等.水稻生长早期耐冷性QTL分析[J].中国水稻科学,2005,19(2):122~126.
    26.韩龙植,张三元.水稻耐冷性鉴定评价方法[J].植物遗传资源学报,2004,5(1):5~80.
    27.何光华,裴炎,杨光伟,等.我国中籼杂交稻亲本的DNA变异性研究[J].作物学报,2000,26(4):449~454.
    28.胡国华.1990.从加拿大大豆系谱分析谈大豆产量育种,大豆科学,9,2:168-176
    29.黄发松,孙宗修,胡培松,等.食用稻米品质形成研究的现状与展望[J].中国水稻科学,1998,12(3):172~176.
    30.黄耀祥,林青山.水稻超高产、特优质株型模式的构想和育种实践[J],广东农业科学,1994,(4):1-6.
    31.黄真生,陈源泉.台湾水稻育成品种间之亲缘系数[J].中华农业研究,2011,10(3):1~5.
    32.贾继增,张正斌,Devos K,Gale M D.2001.小麦21条染色体RFLP作图位点遗传多样性研究,中国科学(C辑),31(1):13-21
    33.矫江,王伯伦.我国东北地区稻米垩白发生规律研究[J].作物学报,2003,29(2):311~314.
    34.金正勋,孙艳丽,秋太权,等.粳稻杂种后代直链淀粉含量遗传变异与选择[J].东北农业大学学报,2000,31(3):209~214.
    35.柯蓓.水稻籼粳亚种间杂交衍生系的SSR分析[D].福建,福建农业大学,2009.
    36.雷财林,张国民,程治军,等.黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略[J].作物学报,2011,37(1):18~27.
    37.雷武逵.2008,植物遗传多样性的利用及其检测方法,广西农学报,23(4):55-58
    38.黎裕,王天宇.我国玉米育种种质基础与骨干亲本的形成[J].玉米科学,2010,18(5):1~8.
    39.李建明.中国小麦骨干亲本(品种)性状演变与遗传差异研究[D].西北农林科技大学硕士论文,2007.
    40.李莉,杨剑波,D J Mackill,P M Colowit.2000.水稻SSR不同检测和分析方法的比较,中国水稻科学,14(3):185-188
    41.李晴祺.冬小麦种质创新与评价利用[M].济南:山东科学技术出版社,1998.
    42.李琼,王长有,刘新伦,等.小偃6号及其衍生品种(系)遗传多样性的SSR分析[J].麦类作物学报,2008,28(6):950-955.
    43.李太贵.在低温下筛选水稻不同生长期耐寒品种的室内方法[J].国外农业科技,1981,4:18~21.
    44.李文亮,张冬有,张丽娟.黑龙江省低温冷害发生规律及预测研究[J].灾害学,2008,12(4):30~34.
    45.李小军,徐鑫,刘伟华,等.2009.利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传,中国农业科学,42(10):3397-3404
    46.李小军,徐鑫,刘伟华,等.2009.应用SSR分子标记分析国外种质对我国小麦品种的遗传贡献,物学报,35(5):778-785
    47.李亚非,王连敏,曹桂兰,等.不同低温胁迫下粳稻耐冷种质的孕穗期耐冷性比较[J].植物遗传资源学报,2010,11(6):691-697.
    48.李云海,钱前,曾大力,等.我国主要杂交水稻亲本的RAPD鉴定及遗传关系研究[J].作物学报,2000,26(2):171~176.
    49.李振声.小麦远缘杂交新品种—小偃6号[J].山西农业科学,1986,(5):18
    50.李振声.用于小麦染色体工程的蓝粒小麦单体系列材料的创制[J].遗传,2001,23(1):42
    51.廖西元.水稻区域目标产量生产技术规范[M].北京:中国农业科学技术出版社,2010:330-333.
    52.凌忠专,王久林,李梅芳.我国北方稻区稻瘟病菌生理小种研究[J].中国农业科学,1989,22(3):7~13.
    53.刘晓,巩迎,董彦君,等.一个水稻苗期耐冷性的主效QTL精细定位研究[J].中国农学通报,2009,25(22):62-66.
    54.刘百龙.长雄蕊野生稻与栽培稻杂交不亲和性与种质创新研究[D].广西:广西大学硕士学位论文,2008.
    55.刘传光,张桂.2010.用SSR标记分析1949-2005年华南地区常规籼稻主栽品种遗传多样性及变化趋势.作物学报,36(11):1843-1852
    56.刘宏伟,刘秉华,张改生等. RAPD分子标记与小麦杂种优势相关性研究[D].麦类作物学报,2005,25(6):1-5.
    57.刘华招,杜欣谊,吴洪然等.2009.黑龙江省早熟粳稻育成品种亲本选配研究.北方水稻,39(3):4-6
    58.刘华招.2011.寒地水稻骨干亲本石狩白毛衍生品种的育成、推广及启示,黑龙江八一农垦大学学报,32:8-12
    59.刘化龙,王敬国,赵宏伟等.黑龙江水稻育种骨干亲本及系谱分析[J].东北农业大学学报,2011,42(4):18~21.
    60.刘怀年,王世全,邓其明,等.水稻骨干亲本蜀恢527产量相关性状关键区段分析[J].农业生物技术学报,2011,19(3):393~406.
    61.刘灵燕,龚秋林,彭少凡,等.水稻数量性状位点(QTL)分析研究进展[J].河北农业科学,2009,13(4):48-50.
    62.楼巧军.水稻耐冷性遗传基础研究[D].湖北:华中农业大学植物科学与技术学院,2006.
    63.路倩雯.超级稻高产密码[J].科技与项目,2009:66-67.
    64.吕彬.2005.合江20在黑龙江省水稻育种中的作用,黑龙江农业科学,1:1-3
    65.吕桂兰,丁芬,沈枫等.2007. SSR标记技术在水稻遗传育种中的应用,3:23-25
    66.栾非时.菜豆种质资源遗传多样性的研究[D].东北农业大学博士论文,2000,3~4.
    67.栾非时.菜豆种质资源遗传多样性的研究[D].哈尔滨,东北农业大学,2000.
    68.孟凯.黑龙江省农业生态环境态势与对策[C].中国环境科学学会学术年会论文集,2010::66-658.
    69.孟庆虹,李霞辉,卢淑雯,等.黑龙江省粳稻品种的品质现状与评价[J].黑龙江农业科学,2010(6):108~113.
    70.莫惠栋.我国稻米品质的改良[J].中国农业科学,1993,26(4):8-14.
    71.潘国君,刘传雪,邱爱民,等.寒地水稻品质育种研究[J].北方水稻,2008,38(6):1~7.
    72.潘国君,刘传雪.黑龙江省优质超级稻研究进展与展望[J].沈阳农业大学学报,2007,38(5):756~763.
    73.潘国君.寒地水稻产量潜力与超级稻育种研究[J].黑龙江农业科学,1999,2:1~4.
    74.潘英华,郑薇薇,李金杰,等.水稻耐冷性鉴定及定位研究概况[J].中国农学通报,2010,26(17):54-59.
    75.彭勃,王阳,李永祥,等.不同水分环境下玉米产量构成因子及籽粒相关性状的QTL分析[J].作物学报,2010,36(11):1832~1842.
    76.齐永文,张冬玲,张洪亮,等.中国水稻选育品种遗传多样性及其近50年变化趋势[J].科学通报,2006,51(6):693~699.
    77.钱前,陈洪,孙修宗,等.真、假杂交水稻II优63的RAPD鉴定[J].中国水稻科学,1996,10(4):241~242.
    78.乔永利,张媛媛,安永平,等.粳稻芽期耐冷性鉴定方法研究[J].植物遗传资源学报[J].2004,5(3):290~294
    79.乔永利,张媛媛,安永平等.粳稻芽期耐冷性鉴定方法研究[J].2004:290-294.
    80.秦君,陈维元,关荣霞等.2006.国外种质拓宽中国大豆品种遗传基础的SSR标记分析,科学通报,51,6:686-692
    81.邱福林,庄杰云,华泽田等.2005.北方杂交粳稻骨干亲本遗传差异的SSR标记检测,中国水稻科学,19,2:101-104
    82.邱福林,庄杰云,华泽田,等.北方杂交粳稻骨干亲本遗传差异的SSR标记检测[J].中国水稻科学,2005,19(2):101~104.
    83.商世吉,李明贤,朴明浩,等.黑龙江省稻瘟病菌生理小种的鉴定[J].植物保护,1996,22(4):11~14.
    84.沈锦骅,凌忠专,倪丕冲,等.中日两套鉴别品种的鉴别力研究[J].作物学报,1986,12(3):163~170.
    85.沈锦骅.1957.东北水稻品种考察,12
    86.石红良,姜艳喜,王振华,等.玉米抗丝黑穗病QTL分析[J].作物学报,2005,31(11):1449~1454.
    87.束爱萍,张媛媛,曹桂兰等.2009.中国不同省份粳稻选育品种的遗传相似性.中国农业科学,42(10):3381-3387
    88.司清林,刘新伦,刘智奎等.2009.阿夫及其衍生小麦品种(系)的SSR分析.作物学报,35(4):615619
    89.宋献军.控制水稻粒宽/粒重主效QTL的定位、克隆和功能研究[M].中国科学院研究生院博士学位论文,2007.
    90.苏泽胜,张效忠,李泽福,等.安徽省主要育成水稻品种及其系谱分析[J].安徽农业科学,1994(1):7-10.
    91.孙羽,王萍,王麒,等.黑龙江省水稻育种现状及发展趋势[J].黑龙江农业科学,2011,(5):10~12.
    92.孙松岩.从寒地水稻育种实践看骨干亲本的作用[J].作物品种资源,1993(1):7-9.
    93.孙太升,赵华,宋庆乃.乳白米等劣质稻米的性状成因和日本防止发生的办法[J].中国稻米,2004,4:43~45.
    94.孙晓泽.沈阳市百合品种遗传多样性的研究[D].沈阳:沈阳农业大学,2005.
    95.孙岩松.1983.我省水稻系谱分析,黑龙江农业科学,
    96.孙岩松.1993.从寒地水稻育种实践看骨干亲本的作用,中国种业,(1):8-9
    97.谭祖猛,李云昌,胡琼等.2009. SSR和SRAP标记研究油菜杂交种骨干亲本的遗传多样性,农业生物技术学报,17(5):882~890
    98.滕文涛,曹靖生,陈彦惠,等.十年来中国玉米杂种优势群及其模式变化的分析[J].中国农业科学,2004,37(12):1804-1811.
    99.田增荣,朱建峰,杨群慧.一种小麦蓝粒标记单体代换系4E(6B)的创制[J].麦类作物学报,2010,30(5):820-823.
    100.田增荣,朱建峰,杨群慧.一种小麦蓝粒标记单体代换系4E(5A)的创制[J].西北农林科技大学学报(自然科学版),2008,36(5):53~56.
    101.万建民.2010.中国水稻遗传育种与品种系谱,中国农业出版社
    102.王迪,李永祥,王阳,等.控制玉米雄穗分枝数目和雄穗重的主效QTL的定位[J].植物学报,2011,46(1):11–20.
    103.王继馨,张云江,程爱华,等.水稻蛋白亚基含量对米饭食味的影响[J].中国农学通报,2008,24(1):89~92.
    104.王江春,胡延吉,余松烈,等.建国以来山东省小麦品种及其亲本的亲缘系数分析[J].中国农业科学,2006,39(4):664-672.
    105.王江春,胡延吉,余松烈等.建国以来山东省小麦品种及其亲本的亲缘系数分析[J].2006,39(4):664-672.
    106.王瑾,廖祥政,杨学举,等.人工合成小麦Am3大穗多粒QTL的发掘与利用[J].植物遗传资源学报,2008,9(3):277-282.
    107.王连敏,曾宪国,王立志,等.2009.黑龙江省水稻冷害I水稻冷害发生的时间规律.黑龙江省农业科学.(1):1
    108.王珊珊,李秀全,田纪春.2007.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性,分子植物育种,5(4):485-490
    109.王涛.玉米第十染色体单片段代换系的构建[D].广州,华南农业大学,2010.
    110.王晓群,张宇.黑龙江省水稻低温冷害风险评估[J].安徽农业科学,2012,40(1):263~266.
    111.王延锋,时新瑞,梁嘉陵,等.不同类型水稻鉴别品种对黑龙江稻瘟病菌生理小种的鉴定与评价研究[J].中国稻米,2011,17(3):22~24.
    112.王延颐,陆景淮,陈玉泉等.水稻株型及受光量的研究[J].中国农业气象,1982,3(1):29-36.徐正进,陈温福,张龙步等.水稻不同穗型群体冠层光分布的比较研究[J].中国农业科学,1990,23(4):6-10.
    113.魏新艳,杨文香,刘大群,等.150个小麦品种(系)抗叶锈基因Lr35分子检测.中国农业科学,2004,37(12):1951–1954.
    114.魏兴华,汤圣祥,江云珠,等.中国栽培稻选育品种等位酶多样性及其与形态学性状的相关分析[J].中国水稻科学,2003,17(2):123~128.
    115.翁东旭,徐世昌,万安民,等.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记[J].遗传学报,2005,32(9):937-941.
    116.吴敏生,戴景瑞,王守才.玉米优良自交系优势群划分的初步研究[J].中国农业科学,1998,3(5):97-100.
    117.伍静.木薯主栽品种/品系农艺性状与分子标记的关联分析[D].海南:海南大学,2010.
    118.辛明远,王险峰,关成宏.2005年黑龙江省稻瘟病大发生与防治调查分析[J].现代化农业,2006,(9):7~8.
    119.行向对群体内太阳直接辐射影响的理论分析
    120.熊冬金.2008.1923~2005年中国大豆育成品种种质的地理来源及其遗传贡献,作物学报,34(2):175-183
    121.徐希德.低温冷害对黑龙江省水稻的影响及其防御对策[J].中国农学通报,2003,1(95):135~136.
    122.徐希德.低温冷害对黑龙江省水稻的影响及其防御对策[J].中国农学通报,2003,1(95):135~136.
    123.徐鑫,李小军,李秀全,等.2010.小麦骨干亲本“洛夫林10号”1BL/1RS在衍生品种中的遗传分析,麦类作物学报,30(2):221-226
    124.徐一戎,邱丽莹.寒地水稻旱育稀植三化栽培技术图历[M].哈尔滨:黑龙江科学技术出版社,1996:5.
    125.徐一戎.黑龙江农垦稻作(1947-1996).哈尔滨:黑龙江人民出版社,1999:73.
    126.徐正进,韩勇,邵国军,等.东北三省水稻品质性状比较研究[J].中国水稻科学,2010,24(5):531~534.
    127.玄英实,姜文沫,刘宪虎,等.中国东北地区水稻主要栽培品种的遗传多样性分析[J].植物遗传资源学报,2010,11(2):206-212.
    128.杨春玲,侯军红,宋志均,等.河南省主要小麦品种系谱研究及核心种质利用[J].山东农业科学,2009(1):27-31.
    129.杨春玲,侯军红,宋志均等.2009.河南省主要小麦品种系谱研究及核心种质利用.山东农业科学,(1):27-31.
    130.杨杰,仲维功,王才林等.2004. SSR标记及其在水稻分子生物学研究中的应用,20(4):34-39
    131.杨杰,仲维功,王军.水稻芽期耐冷性的QTL分析[J].基因组学与应用生物学,2009,28(1):46~50.
    132.杨守仁,张步龙,王进民,等.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,3:6~13.
    133.虞国平,陈惠哲,鄂志国.黑龙江水稻生产发展及品种推广[J].中国稻米,2010,16(6):69~71.
    134.袁力行,傅骏骅,刘新芝,等.利用分子标记预测玉米杂种优势的研究[J].中国农业科学,2000,33(6):6-12.
    135.袁园园,王庆专,崔法,等.小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递[J].作物学报,2010,36(1):9-16.
    136.詹克慧,高翔,范平等.2006.河南审定小麦品种的骨干亲本分析.河南农业大学学报,40(1):11-14
    137.张矢,张洪涛,崔成焕等.黑龙江水稻[M].哈尔滨:黑龙江科学技术出版社,1998:19~94
    138.张国民,马军韬,肖佳雷,等.已知抗瘟基因在黑龙江省寒地稻区的评价与利用[J].植物病理学报,2011,41(1):72~79.
    139.张家年,程秋琼.垩白对稻米吸湿产生裂纹的影响[J].中国粮油学报,2001,16(1):40-42.
    140.张军,赵团结,盖钧镒.2008.中国东北大豆育成品种遗传多样性和群体遗传结构分析.作物学报,34(9):15291536
    141.张军,赵团结,盖钧镒.2009.我国黄淮和南方主要大豆育成品种家族产量和品质优异等位变异在系谱中遗传的研究.作物学报,35(2):191-202.
    142.张兰民.从龙粳21的选育看黑龙江省超级稻育种[J].黑龙江农业科学,2011(1):9-12.
    143.张矢.黑龙江水稻.哈尔滨:黑龙江科学技术出版社,1998:79.
    144.张涛,杨德,吉万全等.2010.小麦骨干亲本及其衍生后代产量分析模型及比较方法,麦类作物学报,30,6:1165-1169
    145.张秀茹,李德华,韩勇等.1998.水稻骨干亲本在育种中的作用.水稻育种,3:6-7
    146.张振华,郭梁,朱玉君,等.籼稻不同定位群体抽穗期和株高的QTL比较研究[J].中国农业科学,2011,44(15):3069-3077.
    147.赵建亚,张瑛英,梁康迳.利用ILP分子标记分析籼粳杂交水稻的遗传多样性[J].石河子大学学报(自然科学版),2009,27(3):291~292
    148.赵向前.水稻内含子长度多态性分子标记的开发和应用[D].浙江大学,2007.
    149.赵一洲,王绍林,张战.2006.水稻骨干亲本育种价值分析,垦殖与稻作,4:6-9
    150.周开达,马玉清,刘太清,等.杂交水稻亚种间重穗型组合选育[J].四川农业大学学报,1995,13(4):403~407.
    151.周开达,马玉清,刘太清等.杂交水稻亚种间重穗型组合选育—杂交水稻超高产育种的理论与实践[J].川农业大学学报,1995,13(4):403–407.
    152.周丽静.气候变暖对黑龙江省水稻、玉米产量的影响[D].东北农业大学硕士论文,2009,23~24.
    153.朱作峰,孙传清,姜延波,等.2001.水稻品种SSR与RFLP及其与杂种优势的关系比较研究,遗传学报,28(8):738-745
    154.主要粮食作物骨干亲本遗传效应和利用的基础研究.2010新立项973项目,正式编号2011CB100100.领域:农业,承担单位:中国农业科学院作物科学研究所,首席专家:李立会.
    155.庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社,2002,83~89.
    156.邹德堂.黑龙江省稻米品质性状的主成分分析[J].东北农业大学学报,2008,39(3):17~21.
    157.邹江石,吕川根.水稻超高产育种的时间与思考[J].作物学报,2005,31(2):254-258.Beckmann J S,Soller M.1986. Restricition fragment length polymorphisms in plant geneticimprovement,Oxford Surveys of Plant Molecular and Cell Biology,118(3):196-250
    158. Bernardo R,Romero-Severson J,et al.2000. Parental contribution and coefficient of coancestryamong maize inbreedings:pedigree,RFLP,and SSR,Thero Appl Genet,100:552-556
    159. Can Li,Yu Zhang,Kai Ying,et al.2004. Sequence variations of sequence repeats on chromosome-4in two subspecies of Asian cultivated rice,Theor Appl Genet,108:392-400
    160. Chee M,Yang R,Hubbell E,et al.1996. Accessing genetic information with high density DNA arrays.Science,274(2287):610-614
    161. Chen X,Temnykh S,Xu Y,et al.1997. Development of a Microsatellite Framework Map ProvidingGenome a wide Coverage in Rice (Oryza sativa L.). Theor App1Genet,95:553-567
    162. Cox T S, Kiang Y T, Gorman M B, Rodgers D M. Relationship between coefficient of parentage andgenetic similarity indices in the soybean. Crop Science,1985,25:529-532.
    163. Cui Z L, Jr Carter T E, Burton J W. Genetic diversity patterns in Chinese soybean cultivars based oncoefficient of parentage. CropScience,2000,40:1780-1793.
    164. Danin Poleg Y,Tzri G,Reis N.1998. Report Cucurbit Genetics Cooperative,(21):25-28
    165. Dong N V,Subudhi P K,Luong P N,Quang V D,et al.2000. Moleculer mapping of a rice geneconditioning thermosensitive genic male sterility using AFLP,RFLP and SSR technique.Theor ApplGenet,100:724-734
    166. Gill B S,Friebe B,Endo T R.1991. Standard karyotype and nomenclature system for description ofchromosome band and structural aberrations in wheat (Triticum aestivum),Genome,34:830-839
    167. Hedden P. The genes of the green revolution. Trends Genet,2003,19:5-9.
    168. IRRI. IRRI Towards2000and Beyond. Manila: IRRI,1989:36~37.
    169. Jefferys A J, Wilson V, Neumann R, et al.1988. Amplification of Human Minisatellites by thePolymerase Chain Reaction: towards DNA Fingerprinting of Single Cell. Nucleic Acids Research.16:10053~10071
    170. Jefferys A J, Wilson V, Thein S.L.1985. Hypervariable "Microsatellite" Regions in HumanDNA.Nature (London).31:676~79
    171. Khush G S. Green revolution: Preparing for the21st century. Genome,1999,42:646-655.
    172. Lagervrant U,Ellegren H.1993. The abundance of varipous polymophic Microsatellite motif differsbetween plants and vertibrates,Nucleic Acids Res,25:1111-1115
    173. Lima M L A, Garcia A A F, Oliveira K M, Matsuoka S, Arizono H, de Souza Jr C L, de Souza A P.Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes ofsugar cane (Saccharum spp.). Theoretical and Applied Genetics,2002,104:30-38.
    174. Lin F, Xue S L, Zhang Z Z, Zhang C Q, Kong Z X, Yao G Q,Tian D G, Zhu H L, Li C J, Cao Y, Wei JB, Luo Q Y, Ma Z Q.Mapping QTL associated with resistance to Fusarium head blightin the Nanda2419×Wangshuibai population: II. Type I resis-tance. Theor Appl Genet,2006,112:528–535
    175. Lorenzen LL, Boutin S,YoungN, eta.l Soybean pedigree analysis using map-based molecular markers:I.Tracking RFLP Markers in cultivars[J].Crop Sc,i1995,35:1326-1336.
    176. Lu Y, Yan J, Guimaraes C T, et al. Molecular characterization of global maize breeding germplasmbased on genome-wide single nucleotide polymorphisms[J]. Theoretical and Applied Genetics,2009,120:93-115.
    177. Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F,Kong Z X, Tian D G, Luo Q Y. Moleculargenetic analysis of five spike-related traits in wheat using RIL and immortalized F2populations. MolGenet Genomics,2007,277:31–42
    178. Ma Z Q, ZhaoDM, Zhang C Q, et a.l Molecular genetic analysis of five spike-related traits in wheatusing RIL and immortalized F2populations[J].MolGenetGenomics,2007,277:31-42
    179. McCouch S R, Chen X.1997. Microsatellite marker development, mapping and application in ricegenetics and breeding. Plant Mol. Bio,(35):89-99.
    180. Mercado L A, Souza E, Kephart K D. Origin and diversity of North American hard spring wheats.Theoretical and Applied Genetics,1996,93:593-599.
    181. Mochida K,Yamazaki Y,Ogihara Y.2003. Discrimination of homoeologous gene expression inhexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags,Mol Gen Genomics,270:371-377
    182. Morgante M,Olivieri A M.1993. PCR amplified microsatellites as markers in plant genetics,Plant J.3(1):175-182
    183. Mullis K B, Faloona F A.1985. Specifi Synthesis of DNA in Vitro a Poly Merase Catalyzed ChainReaction. Meth Enzymol,166:335-350
    184. Narvel J M, Fehr W R, Chu W C, et al.2000. Simple sequence repeat diversity among soybean plantintroductions and elite genotypes.Crop Sci,40:1452-1458
    185. Nikolau B J.Ohlrogge J B.Wurtele E S.2003. Plant biotin-containing carboxylases.Arch BiochemBiophys.414:211-222
    186. Paterson AH, Lander ES, Hewitt JD et al.1988. Resolution of Quantitative Traits into MendelianFactors by using a Complete Linkage Map of Restriction Fragment Length Polymorphism. Nature.335:721~726
    187. Pestsova E,R derM.Microsatellite analysis of wheat chromosome2D allows the reconstruction ofchromosomal inheritance in pedigrees of breeding programmes[J].Theor Appl Genet,2002,106:84-91
    188. Pestsova E., R der M. Microsatellite analysis of wheat chromosome2D allows the reconstruction ofchromosomal inheritance in pedigrees of breeding programmes. Theoretical and Applied Genetics,2002,106:84~91.
    189. Reddy M P,Sarla N,Siddiq E A.2002. Inter simple sequence repeat (ISSR) polymorphism and itsapplication in plant breeding,Euphytica,128:9-17
    190. Rohlf F J.2000. NTSYS: Numerical taxonomy and multivariate analysis system, Version2.1, NewYork:State University of New York
    191. Russell J R, Fuller J D, Macaulay M, et a1.1997. Direct Comparison of Levels of Genetic Variationamong Barley Accessions Detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet,93:714-722
    192. Russell JR, Ellis R P, ThomasW TB, eta.l A retrospective analysis of spring barley germplasmdevelopment from ‘foundation genotypes’ to currently successful cultivars[J]. Mol Breed,2000,6:553-568
    193. Schaal B J,Leverich and S H Rogstad.1991. Comparison of methods for assessing genetic variationin plant conservation biology,In:Falk D A and K E Holsinger,eds. Genetics and Conservation of RarePlants,New York:Oxford University Press,123-234
    194. Schlotterer C,Amos B,Tautz D.1991. Conservation of polymorphic simple sequence loci in cetaceanspecies,Nature,354(6348):63-65
    195. Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S J.Similarities among a group of elite maizeinbreds as measured by pedigree, Fl grain yield, heterosis, and RFLPs. Theoretical and AppliedGenetics,1990,80:833-840.
    196. Sneller C H. Pedigree analysis of elite soybean lines. Crop Science,1994,34:1515-1522.
    197. Soltis D E,Slotis P S.1989. Ployploidy,breeding systems and genetic differentiation in homosporouspteridophytes,Isozymes in plant biology,Portland,Dioscorides press,241-258
    198. Somerville C, Browse J, Jaworski J G, et al.2000. Biochemistry and Molecular BiologyofPlants.Amer Soc of plant physiologists.Rockville.MD. PP456-527
    199. Souza E, Sorrells M E. Pedigree analysis of North American oat cultivars released from1951to1985.Crop Science,1989,29:595-601.
    200. Stachel M, Lelley T, Grausgruber H, Vollmann J. Application of microsatellites in wheat (Triticumaestivum L.) for studying genetic differentiation caused by selection for adaptation and use.Theoretical and Applied Genetics,2000,100:242-248.
    201. Stuber CW, Edwards MD, Wendel JF.1987. Molecular-facilitated Investigations of Quantitative-traitLoci in Maize. II Factors Influencing Yield and its Component Traits. Crop Sci.27:639~648
    202. Tautz D.1989. Hypervariability if simple sequences as a general source for polymorphic DNAmarkers,Nucleic Acids Re,17:6463-6471
    203. Temnykh S, Park W D, Ayres N, et al.2000. Mapping and Genome Organization of MicrosatelliteSequences in Rice (Oryza Sativa L). Thear App1Genet,100:697-712
    204. Venable,D.L.1994. Usiug intra specific variation to study the ecological siguificance end evolutionof plant life histories,In Dirzo R.and J.Sarukhan,Perspectives on Plant Population Ecology,166-187
    205. Vos P,Hoger R,Sleeker M.1995. AFLP:a new technique for DNA fingerprinting,Nucleic AcidsRes,23(21):4407-4414
    206. Wang B,Xu W W,Wang J Z,et al.Tagging and map-ping the thermo-sensitive genetic male-sterilegene in rice (Oryza sativaL.) with molecular markers[J].Theor Appl Genet,1995,91:1111~1114.
    207. Williams J G K,Kubclik A R,Livak K J.1990,DNA polymorphisms amplified by arbitrary primersare useful as genetic marker. Nucleic Acids Res,18:6231-6235
    208. Xie C, Zhang S, Li M, et al. Inferring genome ancestry and estimating molecular relatedness among187Chinese maize inbred lines[J]. Journal of Genetics and Genomics,2007,34(8):738-748.
    209. Yano M, Katayose Y, Ashikari M,et al·Hd1, a major photoperiod sensitivity quantitative trait locus inrice, is closely related to the Arabidopsis flowering time gene CONSTANS [J]. PlantCell,(12):2473-2483.
    210. Yao F Y,Xu C G,Yu S B et al.1997. Mapping and genetic analysis of two fertility restorer loci in thewild-abortive cytoplasmic male sterility system of rice (Oryza saliva L.),Euphytica,98:183-187
    211. Yeh FC, Yang R C.1999. POPGENE Version1.31. http://www.ualberta.ca/~fyeh/popgene. pd,
    212. Yoshida S.Fundamentals of Rice Crop Science.International Rice Research Instilute.1981.
    213. Yu J, Hu SN, Wang J, et a.l2002. A draft sequence of the rice genome (Oryza sativaL. ssp.indica).Science,296:79-92
    214. Yu J, Hu SN, Wang J, et a.l2002. A draft sequence of the rice genome (Oryza sativaL. ssp.japonica).Science,296:92-100.
    215. Yuan Longping. Super hybrid rice[J]. Chinese Rice Research News Letter,2000,8(1):13~15
    216. Zabeau M.Selective restrication fragment amplification:a general method for DNA fingerprinting,European Patent Application,Publication No.0534858A1
    217. Zhang J w,Qi F,Jin C Q.Features of the expressed sequences revealed by alarge-scalean alysis of ESTsfrom a normalized cDNA library of the elite indica rice cultivar Minghui63.The PlantJournal,2005,42:772-780.
    218. Zhang ZH,Yu SB,Yu T,et al.Mapping quantitative trait loci (QTLs) for seedling-vigor usingrecombinant inbred lines of rice (Oryza sativa L)[J].Field Crops Res,2005,91:161~170.
    219. Zhao X,Kochert G.1993. Phylogenetic distribution and genetic mapping of an (GGC) micro satellitefrom Rice (Oryza Sati cal L). Plant Mot Biol,21:607-614
    220. Zheng K L, Subudi P K, Domingo J, et al.1995. Rapid DNA isolation for marker-assisted selection inrice breeding. Rice Genet Newsl,12:255-25
    221. Zhou X L, Carter T E Jr, Cui Z L, Shoji Miyazaki, Burton J W.Genetic diversity patterns in Japanesesoybean cultivars based on coefficient of pareatage. Crop Science,2002,42:1331-1342.
    222. Zhou Z,Gustafson J P.Genetic variation detected by DNA fingerprinting with a rice minisatelliteprobe in Oryza sativaL [J].Theor Appl Genet,1995,91:481~488.
    223. Ballinger C,Black I V,Miller B,et al.1992. Use of genetic polymorphisms detected by RAPD-PCRfor differentiation and identification of Aedes aegypti subsepecies and population,Trop Med. Hyg,47(6):893-901

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700