用户名: 密码: 验证码:
多巴胺D4受体基因启动子区多态性研究以及与慢性抽动障碍的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     慢性抽动障碍(chronic tic disorder)是一种复杂的、慢性神经精神障碍,多起病于儿童期,以多种运动或发声抽动为主要临床表现。其患病率男性大于女性,常伴有强迫、多动等行为和情绪障碍。慢性抽动障碍的病因至今尚不十分明了,其病因学的研究近年来主要集中在分子生物学方面,目前比较公认的一个假说是抽动障碍的病因和多巴胺系统的紊乱有关系,涉及多巴胺能系统的代谢通路上的基因都成为了抽动障碍的候选基因,多巴胺受体基因也毫无争议的成为人们研究的重点对象,其中最为引人注目的是多巴胺D4受体基因。
     目前,对多巴胺D4受体基因多态性的研究主要集中在第三外显子的48bpVNTR多态性与抽动障碍、ADHD等精神疾病相关性方面,但在中国辽宁地区,对于多巴胺D4受体基因启动子区的多态性分布特点及其与慢性抽动障碍的相关性研究均未见报道。为此,本课题选取多巴胺D4受体基因启动子区3个功能多态性位点(-1240L/S、-521C/T、-616C/G),首先在辽宁汉族人群中进行多态性分析,然后采用病例-对照研究多巴胺D4受体基因启动子区的多态性与慢性抽动障碍发病风险的关系,在此基础上,构建含有不同多态性的pGL3-DRD4启动子的质粒,转染HeLa细胞,通过双荧光素酶报告系统,探讨多巴胺D4受体基因启动子区的多态性与慢性抽动障碍相关的可能机制。
     方法
     1.多巴胺D4受体基因启动子区3个功能多态性-1240L/S、-616C/G、-521C/T位点的遗传多态性分析
     选择100名无血缘关系个体,提取静脉血白细胞基因组DNA,采用聚合酶链反应及等位基因特异性扩增技术,对DRD4基因启动子区3个功能多态性-1240L/S、-616C/G、-521C/T位点,进行基因型频率和等位基因频率分析,并进行Hardy-Weinberg平衡吻合度检验及连锁不平衡分析。然后将中国辽宁人群DRD4基因启动子区3个功能多态性-1240L/S、-616C/G、-521C/T位点的等位基因频率分布与文献报道的其他人群进行比较,并进行X~2检验。
     2.多巴胺D4受体基因启动子区3个功能多态性-1240L/S、-616C/G、-521C/T位点与慢性抽动障碍的关联分析
     选取无亲缘关系的慢性抽动障碍患儿84例以及无亲缘关系的健康个体100例为对照组,提取静脉血白细胞基因组DNA,采用聚合酶链反应及等位基因特异性扩增技术检测DRD4基因启动子区-1240L/S,-616C/G和-521C/T 3个功能位点的基因型。用SHEsis在线统计软件分析各位点等位基因、基因型、单倍型频率及其组间差异。
     3.多巴胺D4受体基因启动子区-616C/G位点的功能分析
     在上述实验中选择-616C/G位点分别为-616CC和-616GG的两个纯合子个体的基因组DNA为模板,构建多巴胺D4受体基因启动子区-616C/G位点的荧光素酶报告基因的表达载体,分别为重组质粒pGL3-D4C和pGL3-D4G。应用脂质体载体介导方法将重组质粒pGL3-D4C和pGL3-D4G转染到HeLa细胞中表达,以双荧光素酶报告基因检测系统检测多巴胺D4受体基因启动子区-616C/G位点的转录活性。
     结果
     1.多巴胺D4受体基因启动子区3个功能多态性-1240L/S、-616C/G、-521C/T位点的遗传多态性分析结果
     DRD4基因启动子区-1240L/S的等位基因频率分别为60%和40%;-616C/G的等位基因频率分别为18%和82%;-521C/T的等位基因频率分别为39%和61%。X~2检验显示,基因型频率的观察值和期望值无显著性差异,提示
     该群体符合Hardy-Weinberg遗传平衡法则。3个位点间存在较弱的连锁不平衡。中国辽宁地区人群与其他人群基因多态性分布频率对照研究发现,-1240L/S位点在辽宁和上海地区等位基因分布无差异,但与日本、欧洲白种人、加拿大白种人比较有显著性差异;-521C/T位点在辽宁和上海地区、日本、欧洲白种人、美国黑人等位基因分布比较均无显著性差异;-616C/G位点在辽宁和上海地区、日本、欧洲白种人、匈牙利白种人等位基因分布比较均有显著性差异。
     2.多巴胺D4受体基因启动子区3个功能多态性-1240L/S、-616C/G、-521C/T位点与慢性抽动障碍的关联分析结果
     -1240L/S和-521C/T位点的等位基因和基因型频率,在慢性抽动障碍组与正常对照组间比较,均无显著性差异;-616C/G位点的等位基因频率及其基因型频率在慢性抽动障碍组显著高于正常对照组(P=0.004,χ~2=8.419;P=0.020,χ~2=7.860);DRD4基因-1240L/S,-616C/G和-521C/T组成的单倍型LCT的频率在慢性抽动障碍组显著高于正常对照组(p=0.012,χ~2=6.371)。
     3.多巴胺D4受体基因启动子区-616C/G位点的功能分析结果
     成功构建了重组质粒pGL3-D4C和pGL3-D4G。将pGL3-D4C和pGL3-D4G重组质粒分别与内参照质粒pRL-TK共转染HeLa细胞,利用双荧光素酶检测系统检测相对光强度,结果与pGL3-basic空载体相比,pGL3-D4C和pGL3-D4G重组质粒的相对光强度均明显增强,p<0.05,表明-616C和-616G均具有启动报告基因转录的能力。在HeLa细胞中,pGL3-D4C和pGL3-D4G重组质粒的相对光强度与pGL3-basic空载体的相对光强度的比率分别为:7.6±0.5,34.7±1.5。pGL3-D4C比pGL3-D4G重组质粒的转录活性明显降低(p<0.05),pGL3-D4G的转录活性约是pGL3-D4C的4.6倍。
     结论
     1.多巴胺D4受体基因启动子区-1240L/S、-616C/G位点多态分布在世界范围内存在明显的种族差异;而-521C/T位点的多态性分布可能无明显的种族差异。
     2.DRD4基因启动子区多态性与慢性抽动障碍易感性相关,DRD4基因-616C等位基因可能是决定慢性抽动障碍个体易感性的重要因素,而含有LCT单倍型的个体发生慢性抽动障碍的相对风险显著增高。
     3.DRD4基因启动子区的-616 G>C的变异可能在DRD4基因表达调控中起重要作用。
Objective
     Chronic tic disorder is a childhood-onset neuropsychiatric disorder characterized by multiple motor or vocal tics lasting more than one year. The prevalence of tics occurs in more males than females. In addition, affected individuals frequently display symptoms such as obsessive-compulsive disorder, attention-deficit hyperactivity disorder and behaviors disorder. Despite evidence that chronic tic disorder is an inherited disorder, the exact genetic abnormality is unknown. Dopaminergic hypotheses have included abnormalities of both pre- and postsynaptic function in chronic tic disorder. Based on neurobiological theories, most of the candidate genes belong to the dopamine neurotransmitter system. In particular, the highly polymorphic dopamine D4 receptor (DRD4) gene has attracted increasing interest.
     Currently, there were many studies about the 48-bp variable number of tandem repeats (VNTR) in the third exon polymorphism of the DRD4 gene and their relationship with tics, ADHD ect. neuropsychiatric disorder, but there is less reports concerning polymorphisms in the promoter region of the DRD4 gene distributing characteristics in liaoning, and association with chronic tic disorder. In our study, we test three polymorphisms in the promoter region (-1240L/S, -616C/G, -521C/T). Firstly, we study the distribution of the three gene polymorphisms in Chinese Han population Liaoning. Secondly, the association of polymorphisms in the promoter region with chronic tic disorder was studied using a case-control design. Finally, the functional activity of polymorphism was investigated through gene transfection and Dual-Luciferase Reporter assay system. To study whether there is an association of the three functional polymorphisms in the promoter region of dopamine D4 receptor (DRD4) gene with chronic tic disorder.
     Methods
     1. The three gene polymorphisms in the promoter of Dopamine D4 receptor in Chinese Han population Liaoning
     Genomic DNA was isolated from venous blood leukocytes from 100 healthy unrelated individuals. Polymorphisms of DRD4, -1240L/S, -616C/G and -521C/T, were genotyped by PCR and allele specific amplification (ASA) techniques and tested Hardy-Weinberg equilibrium. Current results were compared with the data on other ethnic groups, and carried X~2 test.
     2. Association between the polymorphisms in the promoter region of dopamine D4 receptor gene and chronic tic disorder
     Genomic DNA was isolated from venous blood leukocytes from 84 unrelated patients with chronic tic disorder (Study group) and 100 healthy unrelated individuals as controls. Polymorphisms of DRD4, -1240L/S, -616C/G and -521C/T, were genotyped by allele-specific primer (ASP) PCR. The frequencies of genotypes, allele and haplotypes were analysed by SHEsis online.
     3. The functional study of-616C/G in the promoter region of DRD4 gene Particular geneomes of two homozygotes of -616C/G, -616CC and -616GG respectively were templates in above-mentioned experiment. We constructed luciferase reporter gene express vectors of -616C/G in the promoter region of DRD4 gene, pGL3-D4Cand pGL3-D4G, and respetively. Constructed vectors pGL3-D4C and pGL3-D4G were transfected into HeLa cell through lipid vector. The transcriptional activity of-616C/G was determined by Dual-Luciferase reporter assay.
     Results
     1. The three gene polymorphisms in the promoter of Dopamine D4 receptor in Chinese Han population Liaoning
     Within the 100 individuals tested, the frequencies of -1240L/S in the 5'promoter region of the DRD4 gene were found to be 60% and 40%, respectively, which met Hardy-Weinberg equilibrium. The frequencies of -616C/G were found to be 18% and 82%, respectively, which met Hardy-Weinberg equilibrium. The frequencies of -521C/T were found to be 39% and 61%, respectively, which met Hardy-Weinberg equilibrium. Chinese Liaoning populations comparing with other populations gene polymorphism distribute frequency contrasting studying find that -1240L/S no significant difference in allele frequencies between Liaoning and shanghai, but significant difference between Liaoning and Japan, Europe and Canada. There was significant difference in allele distributions of -616C/G of DRD4 between the Liaoning Han population and those of shanghai Japan, Europe and Hungary. The distribution of -521C/T of DRD4 gene has not exhibit ethnic heterogeneity.
     2. Association between the polymorphisms in the promoter region of dopamine D4 receptor gene and chronic tic disorder
     There were no significant differences in allele frequencies and genotypes frequencies of DRD4 -1240L/S and -521C/T between the Study and the Control groups. There were significant differences in allele frequencies and genotypes frequencies (x~2 =8.419, P<0.01; x~2=7.860, P<0.05 respectively) of DRD4-616C/G between the Study and the Control groups. The haplotypic frequencies of LCT (-1240L/S, -616C/G, -521C/T) in the Study group were noticeably higher than in the Control group (x~2 =6.371, P<0.05).
     3. The functional study of -616C/G in the promoter region of DRD4 gene
     We had constructed pGL3-D4C and pGL3-D4G vector successfully. Transfection efficiencies were normalized by cotransfection with the Renilla vector, pRL-TK. Both pGL3-basic and pGL3-Control were separately transfected into the HeLa cells, which served as negative and positive controls, respectively, within the assay. The transcriptional activity of -616C/G was determined by Dual- Luciferase reporter assay. The transcriptional luciferase activety of pGL3-D4C and pGL3-D4G wre calculated by taking the ratio of the firefly luciferase activity versus the Renilla luciferase activity. Significant differences in luciferase activity were observed between pGL3-D4C and pGL3-D4G constructs at p<0.05, There were transcriptional activity of -616C and -616G. These ratios were compared with that obtained for the pGL3-basic vector to produce fold values representing increments in transcriptional activity over basic for pGL3-D4C and pGL3-D4G as follows: 7.6±0.5, 34.7±1.5. The transcriptional activity of -616C was much lower than that of -616G, The transcriptional activity of -616G was 4.6 times to -616C.
     Conclusion
     1. The distributions of -1240L/S and -616C/G of DRD4 gene exhibit ethnic heterogeneity; but .the distribution of -521C/T of DRD4 gene has not exhibit ethnic heterogeneity.
     2. There is an association between the DRD4-616C/G polymorphism and chronic tic disorder. The individuals with haplotype LCT (-1240L/S, -616C/G, -521C/T) are more susceptible to chronic tic disorder.
     3. -616C/G may have a role in regulating the expression of the DRD4 gene.
引文
1. Wong AH, Buckle CE, Van Tol HH. Polymorphisms in dopamine receptors: what do they tell us? Eur J Pharmacol. 2000; 410(2-3): 183-203.
    2. Paterson AD, Sunohara GA, Kennedy JL. Dapamine D4 receptor gene: novelty or nonsense. Neuropsychopharm. 1999; 21: 3-16.
    3. D'Souza UM, Russ C, Tahir E, et al. Functional effects of a tandem duplication polymorphism in the 5'flanking region of the DRD4 gene. Biol Psychiatry. 2004; 56(9): 691-697.
    4. Okuyama Y, Ishiguro H, Tom M, et al. A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Biophys Res Coraraun. 1999; 258(2): 292-295.
    5. Okuyama Y, Ishiguro H, Nankai M, et al. Identification of a polymorphism in the promoter region of DRD4 associated with the human novelty seeking personality trait. Mol Psychiatry. 2000; 5: 64-69
    6. Ronai Z, Szekely A, Nemoda Z, et al. Association between novelty seeking and the-521C/T polymorphism in the promoter region of the DRD4 gene. Mol Psychiatry. 2001; 6: 35-38
    7.赵书平,张俊洁,杨玉红,等.用碘化钾提取基因组DNA临床检验杂志,2000,18(1):38-39
    8. Seaman MI, Fisher JB, Chang F, et al. Tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4). Am J Med Genet B Neuropsychiatr Genet, 1999, 88(6): 705-709.
    9. Ronai Z, Szantai E, Szmola R, et al. A novel A/G SNP in the-615th position of the dopamine D4 receptor promoter region as a source of misgenotyping of the-616C/G SNP. Am J Med Genet B Neuropsychiatr Genet, 2004, 126(1): 74-78.
    10. Ronai Z, Barta C, Guttman A, et al. Genotyping the-521C/T functional polymorphism in the promoter region of dopamine D4 receptor (DRD4) gene. Electrophoresis, 2001, 22(6): 1102-1105.
    11. Xing QH, Wu SN, Lin ZG, et al. Association analysis of polymorphisms in the upstream region of the human dopamine D4 receptor gene in schizophrenia. Schizophr Res. 2003;65(1):9-14.
    
    12. Barr CL, Feng Y, Wigg KG, et al. 5'-untranslated region of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder. Am J Med Genet. 2001; 105( 1 ):84-90.
    
    13. Paterson AD, Ying DJ, Petronis A, et al. A Pst I restriction fragment length polymorphism in the 5' untranslated region of DRD4 is not associated with schizophrenia. Psychiatr Genet, 1996,6(4): 191-193
    
    14. Mitsuyasu H, Ozawa H, Takeda Y, et al. Novel polymorphisms in the upstream region of the human dopamine D4 receptor (DRD4) gene. J Hum Genet. 1999; 44(6):416-418.
    
    15. Bookman EB, Taylor RE, Adams-Campbell L, et al. DRD4 promoter SNPs and gender effects on Extraversion in African Americans. Mol Psychiatry. 2002;7(7):786-789.
    
    16. Lowe N, Kirley A, Mullins C, et al. Multiple marker analysis at the promoter region of the DRD4 gene and ADHD: evidence of linkage and association with the SNP-616. Am J Med Genet B Neuropsychiatr Genet, 2004, 131(1): 33 -37.
    
    17. Kendler KS, MacLean CJ, Ma Y, et al. Marker-to-marker linkage disequilibrium on chromosomes 5q, 6p, and 8p in Irish high-density schizophrenia pedigrees. Am J Med Genet, 1999; 88:29-33.
    
    18. Dawson E, Abecasis GR, Bumpstead S, et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature, 2002; 418: 544-548.
    
    19. Apter A, Pauls DL, Bleich A, et al. An epidemiologic study of Gilles de la Tourette's syndrome in Israel. Arch Gen Psychiatry, 1993, 50:734-738.
    
    20. Rober GT, Son MM, Verrill M, et al. Tourette's syndrome in New Zealand: a postal survey. Br J Psychiatry, 1994, 164:263-266.
    
    21.Hornsey H, Banerjee S, Zeitlin H, et al. The prevalence of Tourette syndrome in 13-14-year-olds in mainstream schools. J Child Psychol Psychiatry, 2001,42:1035-1039.
    
    22. Singer HS. Current issues in Tourette syndrome. Mov Disord, 2000, 15:1051-1063.
    
    23. Robertson MM. Diagnosing Tourette syndrome: Is it a common disorder? J Psychosom Res, 2003, 55:3-6.
    
    24. Freeman RD, Fast DK, Burd L, et al. An international perspective on Tourette syndrome: selected findings from 3500 individuals in 22 countries. Dev Med Child Neurol, 2000, 42:436-447.
    
    25. Pauls DL, Alsobrook JP, Almasy L, et al. Genetic and epidemiological analysis of the Yale Tourette's syndrome family study data 1 Psychiatric Genetics, 1991 ,2 : 28-30.
    
    26. Singer HS, Minzer K. Neurobiology of Tourette's syndrome: concepts of neuroanatomic localization and neurochemical abnormalities. Brain Dev Suppl, 2003, 25:70-84.
    
    27. Peterson BS, Pine DS, Cohen P, et al. Prospective, longitudinal study of tic, obsessive-compulsive, and attention deficit hyperactivity disorders in an epidemiological sample. J Am Acad Child Adolesc Psychiatry, 2001,40:685-695.
    
    28. Rebecca V. Scientist use neuroimaging, genetic studies to probe biology of Tourette syndrome. JAMA, 2004, 292(8):909-911.
    
    29. Pauls DL. Genetics of childhood disorders, IV: linkage analysis. J Am Acad Child Adolesc Psychiatry, 1999, 38:932-934.
    
    30. Hyde TM, Aaronson BA, Randolph C, Rickler KC, Weinberger DR. Relationship of birth weight to the phenotypic expression of Gilles de la Tourette's syndrome in monozygotic twins. Neurology. 1992;42(3):652-658.
    
    31. Lichter DG, Jackson LA, Schachter M. Clinical evidence of genomic imprinting in Tourette's syndrome 1 Neurology , 1995 ,45 : 924-928.
    
    32. Roger L, Jonathan WM. Recent advances in Tourette syndrome research. Trends in Neurosciences, 2006, 29(3): 175-182.
    
    33. Serra-Mestres J, Ring HA, Costa DC, et al. Dopamine transporter binding in Gilles de la Tourette syndrome: α [~123)I] FP-CIT/SPECT study. Acta Psychiatr Scand, 2004, 109:140-146.
    
    34. Karen Minzer, Olivia Lee, John J, et al. Increased prefrontal D2 protein in Tourette syndrome: a postmortem analysis of frontal cortex and striatum. Journal of the Neurological Sciences, 2004,219:55-61.
    
    35. Gervai J, Nemoda Z, Lakatos K, et al. Transmission disequilibrium tests confirm the link between DRD4 gene polymorphism and infant attachment. Am J Med Genet B Neuropsychiatr Genet, 2005, 132(1): 126-130.
    36. Oak JN, Oidenhof J, Van Tol HH. The dopamine D(4) receptor: one decade of research. Eur J Pharmacol. 2000; 405(1-3): 303-327.
    37. Grice DE, Leckman JF, Pauls DL, et al. Linkage disequilibrium between an allele at the dopamine D4 receptor locus and Tourette syndrome, by the transmission-disequilibrium test. Am J Hum Genet. 1996; 59(3): 644-52.
    38. Curz C, Camarena B, King N, et al. Increased prevalence of the seven repeat variant of dopamine D4 receptor gene in patients with obsessive compulsive disorder with tics. Neurosci Lett, 1997, 23: 1.
    39.黄颐,刘协和,李涛,等.多巴胺D4受体第3外显子48 bp可变重复序列多态性与抽动障碍的传递不平衡检测,中华医学遗传学杂志,2002;19(2):100-3.
    40. Diaz-Anzaldua A, Joober R, Riviere JB, et al. Tourette syndrome and dopaminergic genes: a family-based association study in the French Canadian founder population. Mol Psychiatry. 2004; 9(3): 272-7.
    41. Comings DE, Gonzalez N, Wu S, et al. Studies of the 48 bp repeat polymorphism of the DRD4 gene in impulsive, compulsive, addictive behaviors: Tourette syndrome, ADHD, pathological gambling, and substance abuse. Am J Med Genet. 1999; 88(4):358-68.
    42. Barr CL, Wigg KG, Zovko E, Sandor P, Tsui L-C. No evidence for a major gene effect of the dopamine D4 receptor gene in the susceptibility to Gilles de la Tourette syndrome in five Canadian families. Am J Med Genet (Neuropsychiatr Genet). 1996; 67: 301-305.
    43. Hebebrand J, Klug B, Fimmers R, Seuchter SA, Wettke-Schafer R, Deget F, et al. Rates for tic disorders and obsessive compulsive symptomatology in families of children and adolescents with Gilles de la Tourette syndrome. J Psychiatr Res. 1997; 31" 519-530.
    44. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005; 15(2): 97-8.
    45. Pauls DL. An update on the genetics of Gilles de la Tourette syndrome. J Psychosom Res. 2003; 55:7-12.
    
    46. McCracken JT, Smalley SL, McGough JJ, et al. Evidence for linkage of a tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4) with attention deficit hyperactivity disorder (ADHD). Mol Psychiatry, 2000, 5:531-536.
    
    47. Mill J, Fischer N, Curran S, et al. Polymorphisms in the dopamine D4 receptor gene and attention deficit hyperactivity disorder. Neuroreport, 2003, 14: 1463-1466.
    
    48. Li T, Chen C-K, Hu X, et al. Association analysis of the DRD4 and COMT genes in methamphetamine abuse. Am J Med Genet, 2004,129B (1): 120-124.
    
    49. Rogers G, Joyce P, Mulder R, et al. Association of a duplicated repeat polymorphism in the 5'-untranslated region of the DRD4 gene with novelty seeking. Am J Med Genet, 2004, 126(B):95-98.
    
    50. Ronai Z, Guttman A, Keszler G, et al. Capillary electrophoresis study on DNA-protein complex formation in the polymorphic 5' upstream region of the dopamine D4 receptor (DRD4) gene. Curr Med Chem, 2004, 11:1023-1029.
    
    51. Keresztuti E, Kiraly O, Csapo Z, et al. Association between the 120-bp duplication of the dopamine D4 receptor gene and attention deficit hyperrativity disorder: genetic and molecular analyses. Am J Med Genet B Neuropsychiatr Genet, 2007, 144B:231-236.
    
    52. Mitsuyasu H, Hirata N, Sakai Y, et al. Association analysis of polymorphisms in the upstream region of the human dopamine D4 receptor gene (DRD4) with schizophrenia and personality traits. J Hum Genet, 2001,46:26-31.
    
    53. Ekelund J, Suhonen J, Jarvelin MR, et al. No association of the -521C/T polymorphism in the promoter of DRD4 with novelty seeking. Mol Psychiatry, 2000, 6:618-619.
    
    54. Strobel A, Lesch KP, Hohenberger K, et al. No association between dopamine D4 receptor gene exon III and -521C/T polymorphism and novelty seeking. Mol Psychiatry, 2002, 7:537-538.
    
    55. Schinka JA, Letsch EA, Crawford FC. DRD4 and novelty seeking: results of meta-analyses. Am J Med Genet. 2002,114:643-648.
    
    56. Albin RL, Mink JW. Recent advances inTourette syndrome research. Trends Neurosci, 2006, 29(3): 175-182.
    57. Keen-Kim D, Freimer NB. Genetics and epidemiology of Tourette syndrome. J Child Neurol, 2006, 21(8): 665-671.
    58. Beatriz Sobrino, Man'a Brio'n, Angel Carracedo. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Science International. 2005, 154: 181-194.
    59. Gavin S, et al. Regulation of mRNA Translation by 5' -and Y-UTR-binding Factors. Trends Biochem Sci. 2003, 28(4): 182-188.
    60. Brasier, A. R., Tate, Habener. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 1989, 7, 1116-1122.
    61. Brasier, A. R., RON, D. Luciferase reporter gene assay in mammalian cells. Meth. Enzymol. 1992; 216, 386-397.
    62.胡维,向华,周艳,等。用PCR法直接快速筛查重组阳性克隆。生物技术通报,1999,6:39-41.
    63. Kereszturi E, Kiraly O, Barta C, et al. No direct effect of the -521C/T polymorphism in the human dopamine D4 receptor gene promoter on transcriptional activity. BMC Molecular Biology, 2006, 7(1): 18.
    64. Williams T, Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 1991, 5: 670-682.
    65. Wu F, Lee AS. Identification of AP-2 as an interactive target of Rb and a regulator of the G I/S control element of the hamster histone H3.2 promoter. Nucleic Acids Res. 1998, 26: 4837-4845.
    1. Comings DE, Gade R, Wu S, et al. Studies of the potential role of the dopamine D1 receptor gene in addictive behaviors. Mol Psychiatry. 1997; 2(1): 44-56.
    2. Chou IC, Tsai CH, Lee CC, et al. Association analysis between Tourette's syndrome and dopamine D1 receptor gene in Taiwanese children. Psychiatr Genet. 2004; 14(4): 219-21.
    3. Nobel EP, Blum K, Ritchie T, et al. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry, 1991, 48:648
    4. Comings DE, Comings BG, Muhleman D, et al. The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 1991; 266: 1793-800.
    5. Comings DE, Wu S, Chiv C, Ring RH, Gade R, Ahn C, et al. Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: the additive and subtractive effect of the three dopaminergic genes—DRD2, D beta H, and DATI. Am J Med Genet 1996; 67: 264-288.
    6. Comings DE, Muhleman D, Dietz G, Dino M, Le Gro R, and Gade R. Association between Tourette's syndrome and homozygosity at the dopamine D3 receptor gene. Lancet 1993; 341: 906.
    7. Grice DE, Leckman JF, Pauls DL, et al. Linkage disequilibrium between an allele at the dopamine D4 receptor locus and Tourette syndrome, by the transmission-disequilibrium test. Am J Hum Genet. 1996; 59(3): 644-52.
    8. Curz C, Camarena B, King N, et al. Increased prevalence of the seven repeat variant of dopamine D4 receptor gene in patients with obsessive compulsive disorder with tics. Neurosci Lett, 1997, 23: 1
    9. Comings DE, Gonzalez N, Wu S, et al. Studies of the 48 bp repeat polymorphism of the DRD4 gene in impulsive, compulsive, addictive behaviors: Tourette syndrome, ADHD, pathological gambling, and substance abuse. Am J Med Genet. 1999; 88(4): 358-68.
    10.黄颐,刘协和,李涛,等.多巴胺D4受体第3外显子48 bp可变重复序列多态性与抽动障碍的传递不平衡检测,中华医学遗传学杂志,2002;19(2):100-3
    11. Diaz-Anzaldua A, Joober R, Riviere JB, et al. Tourette syndrome and dopaminergic genes: a family-based association study in the French Canadian founder population. Mol Psychiatry. 2004; 9(3): 272-7.
    12. Grandy DK, Allen LJ, Zhang Y, et al. Chromosomal localization of three human D5 dopamine receptor genes. Genomics, 1992, 13: 968
    13. Barr CL, Wigg KG, Zovko E, et al. Linkage study of the dopamine D5 receptor gene and Gilles de la Tourette syndrome. Am J Meal Genet. 1997; 74(1): 58-61.
    14. Gelernter J, Kennedy JL, Grandy DK, et al. Exclusion of close linkage of Tourette's syndrome to D 1 dopamine receptor. Am J Psychiatry. 1993; 150(3): 449-53.
    15. Thompson M, Comings DE, Feder L, et al. Mutation screening of the dopamine D1 receptor gene in Tourette's syndrome and alcohol dependent patients. Am J Med Genet. 1998; 81(3): 241-4.
    16. Gelernter J, Pauls DL, Leckman J, et al. D2 dopamine receptor (DRD2) alleles do not influence severity of Tourette's syndrome: results from four large kindreds. Arch Neurol 1994; 51: 397-400.
    17. No"then MM, Hebebrand J, Knapp M, et al. Association analysis of the dopamine D2 receptor gene in Tourette's syndrome using the haplotype relative risk method. Am J Med Genet 1994; 54: 249-52.
    18. Devor EJ, Dill-Devor RM, Magee HJ. The Bal I and Msp 1 polymorphisms in the dopamine D3 receptor gene display, linkage disequilibrium with each other but no association with Tourette syndrome. Psychiatr Genet. 1998; 8(2): 49-52.
    19. Barr CL, Wigg KG, Zovko E, et al. No evidence for a major gene effect of the dopamine D4 receptor gene in the susceptibility to Gilles de la Tourette syndrome in five Canadian families. Am J Med Genet. 1996; 67(3): 301-5.
    20. Hebebrand J, Nothen MM, Ziegler A, et al. Nonreplication of linkage disequilibrium between the dopamine D4 receptor locus and Tourette syndrome. Am J Hum Genet. 1997; 61(1): 238-9.
    21. Barr CL, Wigg KG, Sandor P. Catechol-O-methyltransferase and Gilles de la Tourette syndrome. Mol Psychiatry. 1999; 4(5):492-5.
    22. Cavallini MC, Di Bella D, Catalano M, et al. An association study between 5-HTTLPR polymorphism, COMT polymorphism, and Tourette's syndrome. Psychiatry Res. 2000; 97(2-3): 93-100.
    23. Gade R, Muhleman D, Blake H, et al. Correlation of length of VNTR alleles at the X-linked MAOA gene and phenotypic effect in Tourette syndrome and drug abuse. Mol Psychiatry. 1998; 3(1): 50-60.
    24.戚元丽,王祖承,江三多,等,5-HT_(2A)受体基因102T/C多态性与慢性抽动障碍的遗传关联,上海精神医学,2002,14(3):129-131.
    25. Gelemter J, Rao PA, Pauls DL, et al. Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with Tourette syndrome. Genomics. 1995; 26(2): 207-9.
    26. Comings DE, Gade R, Muhleman D, et al. Exon and intron variants in the human tryptophan 2, 3-dioxygenase gene: potential association with Tourette syndrome, substance abuse and other disorders. Pharmacogenetics. 1996; 6(4): 307-18.
    27. Huang Y, Li T, Wang Y, et al. Linkage disequilibrium analysis of polymorphisms in the gene for myelin oligodendrocyte glycoprotein in Tourette's syndrome patients from a Chinese sample. Am J Med Genet B Neuropsychiatr Genet. 2004; 124(1): 76-80.
    28. Schoenian S, Konig I, Oertel W, et al. HLA-DRB genotyping in Gilles de la Tourette patients and their parents. Am J Med Genet B Neuropsychiatr Genet. 2003; 119(1): 60-4.
    29. Gadzicki D, Muller-Vahl KR, Heller D, et al. Tourette syndrome is not caused by mutations in the central cannabinoid receptor (CNR1) gene. Am J Med Genet B Neuropsychiatr Genet. 2004; 127(1): 97-103.
    30. Bottini N, MacMurray J, Rostamkani M, et al. Association between the low molecular weight cytosolic acid phosphatase gene ACP1~*A and comorbid features of Tourette syndrome. Neurosci Lett. 2002; 330(2): 198-200.
    
    31. de Carvalho Aguiar P, Fazzari M, Jankovic J, et al . Examination of the SGCE gene in Tourette syndrome patients with obsessive-compulsive disorder. Mov Disord. 2004 ; 19(10):1237-8.
    
    32. Stober G, Hebebrand J, Cichon S, et al. Tourette syndrome and the norepinephrine transporter gene: results of a systematic mutation screening. Am J Med Genet. 1999; 88(2): 158-63.
    
    33. Yuan B, Vaske D, Weber JL, Beck J, Sheffield VC. Improved set of short-tandem-repeat polymorphisms for screening the human genome. Am J Hum Genet 1997;60:459- 60.
    
    34. Simonic I, Gericke GS, Ott J, Weber JL. Identification of genetic markers associated with Gilles de la Tourette syndrome in an Afrikaner population. Am J Hum Gen 1998;63:839- 46.
    
    35. Simonic I, Nyholt DR, Gericke GS, Gordon D, Matsumoto N, Ledbetter DH, Ott J, Weber JL. Further evidence for linkage of Gilles de la Tourette syndrome (GTS) susceptibility loci on chromosomes 2p11, 8p22 and 11q23-24 in South African Afrikaners. Am J Med Genet 2001;105(32):163-7.
    
    36. Barr CL, Wigg KG, Pakstis AJ, Kurlan R, Pauls DL, Kidd KK, Tsui L-C, Sandor P. Genome scan for linkage to Gilles de la Tourette syndrome. Am J Med Genet 1999;88:437- 45.
    
    37. Merette C, Brassard A, Potvin A, Bouvier H, Rousseau F, Emond C, Bissonnette L, Roy MA, Maziade M, Ott J, Caron C. Significant linkange for Tourette syndrome in a large French Canadian family. Am J Hum Genet 2000;67(4):1008-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700