用户名: 密码: 验证码:
基于毛细管电泳的基因分析方法及肿瘤遗传背景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是与遗传明确相关的“基因病”之一,肿瘤遗传背景研究对肿瘤发生的早期预防及肿瘤基因治疗具有重要意义。 
    本论文以自制线性聚丙烯酰胺为分离介质,建立了检测错配修复基因突变的单链构象多态性-毛细管电泳分析方法,并系统研究了温度、甘油添加剂等因素对单链DNA 构象分析的影响。结果表明:温度对不同碱基序列的单链DNA 构象影响不同;甘油通过与分离介质中的硼酸反应,改变了分离介质的特性,从而提高了单链DNA构象的分离。
    在毛细管电泳上建立了检测hMLH1 基因启动子区甲基化的限制性内切酶PCR 法和甲基化敏感的单链构象分析法,提高了甲基化的检出率。
    在ABI 310 型基因分析仪上,用多色荧光标记检测和自制分析试剂盒,建立了检测微卫星不稳定性和杂合性缺失的方法,并系统研究了尿素变性剂和温度对微卫星分析和微卫星片段长度的影响。结果表明在60℃下,分离介质中添加8mol/L尿素可以完全消除二级结构,使微卫星片段的标定长度趋于其真实长度;建立的方法可以同时检测5 个微卫星位点,而且能检测出单碱基漂移和定量检测杂合性缺失。
    利用上述基于毛细管电泳的基因分析平台,筛查了家族性胃癌、多原发癌和散发性癌症中错配修复基因hMLH1、hMSH2 和癌基因K-ras 的突变,hMLH1 基因启动子甲基化以及微卫星不稳定性情况。结果在hMLH1 基因的exon8、exon12 和exon16 上发现突变,其中exon16 T1775G点突变是国际上未曾报道过的一种新的hMLH1 基因突变形式,而且可能是我国胃癌家系突变热点。此外还发现hMLH1 基因突变与多原发癌的发生关系密切;散发性肿瘤中,造成错配修复基因hMLH1 功能失活的主要原因是hMLH1 启动子甲基化,hMLH1 基因突变只起次要作用;而且有错配修复基因hMLH1 功能缺陷容易导致微卫星不稳定发生和癌基因K-ras 突变。
Cancer is one of the genetic diseases related to heredity. Hereditarybackground of cancer will be helpful to prevent cancer in early stage and genetictherapy on cancer.
    In the dissertation, a single-strand conformation polymorphism analysis withcapillary electrophoresis for detection of the mutations in mismatch repair geneshas been developed employing homemade linear polyacrylamide as sievingmedium. The effects of temperature and the addition of glycerol on SSCP-CEanalysis were investigated. The results show the effect of temperature depends onthe base sequence of single-strand DNA and the properties of the separated bufferwere changed by the reaction between glycerol and boric acid, which improvedthe resolution of single-strand DNA.
    PCR based methylation-sensitive restriction enzymes analysis andmethylation-sensitive SSCP analysis for detection of the hMLH1 promotormethylation were set up with laser-induced fluorescence capillary electrophoresis.
    On the ABI 310 genetic analyzer, a method for the analysis ofmicrosatellite instability and loss of heterozygosity was developed employinga homemade kit to replace the commercial kit and multiplex-fluorescencedetection. The effects of temperature and the addition of urea onmicrosatellite analysis and the length of microsatellite fragments wereinvestigated. The second-structure of microsatellite fragments was eliminatedcompletely by the addition of 8 mol/L urea and at 60℃. As a result, the lengthof microsatellite fragments inclined to their actual length. Based on thismethod, five microsatellite loci were simultaneously detected andone-bp-shift was detectable and loss of heterozygositywas exactly judged.
    These above-mentioned methods based on capillary electrophoresis were
    applied to the routine genetic analysis of clinical specimens including familialgastric cancer, multiplexcancer and various sporadic cancers. Three mutations ofhMLH1 exon8, exon12 and exon16 were detected. The T1775G mutation ofexon16 is a new mutation type of hMLH1 gene, which was never reported in theworld. Moreover, it could be the hot position of hMLH1 mutation in Chinesefamilial gastric cancer. The relationship between hMLH1 mutation and multiplexcancer is closer than that in single cancer. In the sporadic cancers, the major factorof the inactivation of hMLH1 gene is the hMLH1 promoter methylation; thehMLH1 mutation is minor. In addition, the rate of spontaneous mutation in K-rasoncogene and microsatellite instability increased owing to hMLH1 inactivation.
引文
1 Righetti P. G., Gelfi C. Capillary electrophoresis for molecular diagnostics. Electrophoresis, 1997, 18: 1709-1714
    2 Larsen L. A., Christiansen M., Vuust J., Andersen P. S. High throughput mutation screening by automated capillary electrophoresis. Comb. Chem. High Throughput Screen, 2000, 3: 393-409
    3 Righetti P. G., Gelfi C., D’Acunto M. R. Recent progress in DNA analysis by capillary electrophoresis. Electrophoresis, 2002, 23: 1361-1374
    4 Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874-879
    5 Kuypers A. W. H. M., Willems P. M. W., van der Schans M. J., Linssen P. C. M., Wessels H. M. C., de Bruijn C. H. M. M., Everaerts F. M., Mensink E. J. B. M., Detection of point mutations in DNA using capillary electrophoresis in a polymer network J. Chromatogr. 1993, 621: 149-156
    6 Ren J. High-throughput single-strand conformation polymorphism analysis by capillary electrophoresis. J Chromatogr B, 2000, 741: 115-128
    7 Kourkine I. V., Hestekin C. N., Barron A. E. Technical challenges in applying capillary electrophoresis-single strand conformation polymorphism for routine genetic analysis. Electrophoresis, 2002, 23: 1375-1385
    8 Andersen P. S., Jespersgaard C., Vuust J., Christiansen M., Larsen L. A. High-Throughput Single Strand Conformation Polymorphism Mutation Detection by Automated Capillary Array Electrophoresis: Validation of the Method. Human Mutation, 2003, 21:116-122
    9 Ren J., Ueland P. M. Temperature and pH effects on single-strand conformation polymorphism analysis by capillaryelectrophoresis. Hum. Mutat. 1999, 13: 458-463
    10 Hebenbrock K., Williams P. M., Karger B. L. Single strand conformational polymorphism using capillary electrophoresis with two-dye laser-induced fluorescence detection. Electrophoresis, 1995, 16:1429-1436
    11 Larsen L. A., Christiansen M., Vuust J., Andersen P. S. High-throughput single-strand conformation polymorphism analysis by automated capillary electrophoresis: robust multiplex analysis and pattern-based identification of allelic variants. Hum Mutat, 1999, 13: 318-327
    12 Atha D. H., Wenz H. M., Morehead H., Tian J., O’Connell C. D. Detection of p53 point mutations by single strand conformation polymorphism: analysis by capillary electrophoresis. Electrophoresis, 1998, 19:172-179
    13 Katsuragi K., Kitagishi K., Chiba W., Ikeda S., Kinoshita M. Fluorescence-based polymerase chain reaction single strand conformation polymorphism analysis of P53 gene by capillary electrophoresis. J. Chromatogr. A 1996, 744: 311-320
    14 Sheffield V. C., Beck J. S., Kwitek A. E., Sandstrom D. W., Stone E. M. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics, 1993, 16: 325-332
    15 Ru Q., Jing H., Luo G., Huang Q. Single-strand conformation polymorphism analysis to detect the p53 mutation in colon tumor samples by capillary electrophoresis, J. Chromatogr. A, 2000, 894: 171-177
    16 Wenz H. M., Ramachandra S., O’Connell C. D., Atha D. H. Identification of known p53 point mutations by capillary electrophoresis using unique mobility profiles in a blinded study, Mutation Research Genomics 1998, 382: 121-132
    17 Arakawa H., Nakashiro S., Maeda M., Tsuji A. Analysis of single-strand DNA conformation polymorphism by capillary electrophoresis. J. Chromatogr. A 1996, 722: 359-368
    18 Ren J., Ulvik A., Refsum H., Ueland P. M. Short-chain polydimethylacrylamide as sieving medium for the electrophoretic separation of DNA fragments and mutation analysis in uncoated capillaries. Anal. Biochem. 1999, 276, 188-194
    19 Ren J., Ulvik A., Ueland P. M., Refsum H. Single-strand conformation polymorphism by capillary electrophoresis with laser-induced fluorescence detection using short-chain polyacrylamide as sieving medium. Anal. Biochem. 1997, 245: 79-84
    20 Geisel J., Walz T., Bodis M., Nauck M., Oette K., Herrmann W. Fluorescence-based single-strand conformation polymorphism analysis of the low density lipoprotein receptor gene by capillary electrophoresis. J. Chromatogr. B, 1999, 724, 239-247
    21 Wenz H. M., Baumhueter S., Ramachandra S., Worwood M. A rapid automated SSCP multiplex capillary electrophoresis protocol that detects the two common mutations implicated in hereditary hemochromatosis (HH). Hum Genet, 1999, 104: 29-35
    22 Kuypers A. W., Linssen P. C., Willems P. M., Mensink E. J. Online melting of double-stranded DNA for analysis of singlestranded DNA using capillary electrophoresis. J Chromatogr B, 1996, 675: 205-211
    23 Andersen P. S., Jespersgaard C., Vuust J., Christiansen M., Larsen L. A. High-Throughput Single Strand Conformation Polymorphism Mutation Detection by Automated Capillary Array Electrophoresis: Validation of the Method. Human Mutation, 2003, 21:116-122
    24 Arakawa H., Igarashi H., Kashiwazaki H., Maeda M., Tokita A., Yamashiro Y. Single-strand conformation polymorphism analysis of Vitamin D receptor by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chim. Acta 2001, 445: 197-204
    25 Duffy M. J. Cellular oncogenes and suppressor genes as prognostic markers in cancer, Clin. Biochem. 1993, 26(6): 439-447
    26 Del Principe D., Iampieri M. P., Germani D., Menichelli A., Novelli G., Dallapiccola B. Detection by capillary electrophoresis of restriction fragment length polymorphism. analysis of a polymerase chain reaction-amplified product of the DXS 164 locus in the dystrophin gene. J. Chromatogr. 1993, 638: 277-281
    27 Gelfi C., Righetti P. G., Magnani C., Cremonesi L., Ferrari M. Simultaneous detection of delta F508, G542X, N1303K and 1717G-A mutations in cystic fibrosis by capillary electrophoresis in polymer networks. Clin. Chim. Acta, 1994, 229: 181-198
    28 Ulfelder K. J., Schwartz H. E., Hall J. M., Sunzeri F. J. Determination of metabolites by 1H NMR and GC: analysis for organic osmolytes in crude tissue extracts. Anal. Biochem. 1993, 200: 260-267
    29 Koay E. S. C., Zhu M., Wehr T., Choong M. L., Khaw M. C., Sethi S. K., Aw T. C. Detection of apolipoprotein E genotypes by capillary electrophoresis, Talanta, 1998, 45:673-681
    30 Cheng J., Kasuga T., Mitchelson K. R., Lightly E. R. T., Watson N. D., Martin W. J., Atkinson D. Polymerase chain reaction heteroduplex polymorphism analysis by entangled solution capillary electrophoresis. J. Chromatogr. A, 1994, 677: 169-177
    31 Kourkine I. V., Hestekin C. N., Buchholz B. A., Barron A. E. High-throughput, high-sensitivity genetic mutation detection by tandem single-strand conformation polymorphism/ heteroduplex analysis capillary array electrophoresis. Anal. Chem., 2002, 74: 2565-2572
    32 MCrépin F. E., Pigny P., Buisine M. P., Calender A., Porchet N., Odou M. F. Efficient mutation detection in MEN1 gene using a combination of single-strand conformation polymorphism and heteroduplex analysis. Electrophoresis 2003, 24: 26-33
    33 Cotton R. G., Rodrigues N. R., Campbell R. D. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA, 1988, 85(12): 4397-4401
    34 Verpy E., Biasotto M., Meo T., Tosi M. Efficient detection of point mutations on color-coded strands of targets DNA. Proc. Natl. Acad. Sci. USA, 1994, 91(5): 1873-1878
    35 Ren J., Ulvik A., Refsum H., Ueland P. M. Chemical mismatch cleavage combined with capillary electrophoresis: detection of mutations exon 8 of the cystathionine beta-synthase gene. Clin. Chem. 1998, 44(10): 2108-2114
    36 Felmlee T. A., Oda R. P., Persing D. A., Landers J. P. Capillary electrophoresis of DNA potential utility for clinical diagnoses, J. Chromatogr. A 1995, 717: 127-137
    37 Martincic D., Koury M. J., Gale K., Whitlock J. A. Detection of mutations by automated fluorescence/RNA-base dideoxy fingerprinting. Oncogene, 1999, 18: 617-621
    38 Cheng J., Shaffner M. A., Mitchelson K. R. Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis. J. Chromatogr. A, 1996, 732: 151-161
    39 Khrapko K., Hanekamp J. S., Thilly W. G., Belenkii A., Foret F., Karger B. L. Constant denaturant capillary electrophoresis (CDCE): a high resolution approach to mutational analysis. Nucleic Acids Res., 1994, 22(3): 364-369
    40 Gelfi C., Righetti P. G., Cremonesi L., Ferrari M. Detection of point mutations by capillary electrophoresis in liquid polymers in temporal thermal gradients. Electrophoresis, 1994,15(12): 1506-1511
    41 Gelfi C., Righetti P. G., Travi M., Fattore S. Temperature-programmed capillary electrophoresis for the analysis of high-melting point mutants in thalassemias. Electrophoresis, 1997,18(5): 724-731
    42 Ekstron P. O., Borresen-Dale A. L., Qvist H., Giercksdy K. E., Thilly W. C. Detection of low-frequency mutations in exon8 of the TP53 gene by Constant denaturant capillary electrophoresis. Biotech. 1999, 27:128-134
    43 Bjorheim J., Lystad S., Lindblom A., Kressner U., Westring S., Wahlberg S., Lindmark G., Gaudermack G., Ekstrom P., Roe J., Thilly W. G., Borresen-Dale A. L. Mutat. Res., 1998, 403: 103-112
    44 Arakawa H., Uetanaka K., Maeda M., Tsuji A. Analysis of polymerase chain reaction product by capillary electrophoresis and its application to the detection of single base substitution in genes. J. Chromatogr. A 1994, 664: 89-98
    45 Barta C., Sasvari-Sezkely M., Guttman A. Simultaneous analysis of various mutations on the 21-hydroxylase gene by multi-allele specific amplification and capillary gel electrophoresis. J. Chromatogr. A 1998, 817: 281-286
    46 Ulvik A., Ren J., Refsum H., Ueland P. M. Simultaneous determination of methylenetetrahydrofolate reductase C677T and factor V G1691A genotypes by mutagenically separated PCR and multiple-injection capillary electrophoresis, Clin. Chem. 1998, 44(2): 264-269
    47 Bianchi N., Mischiati C., Feriotto G., Gambari R. Polymerase-chain reaction: analysis of DNA/DNA hybridization by capillary electrophoresis. Nucleic Acids Res., 1993,21(15): 3595-3596
    48 Bianchi N., Mischiati C., Feriotto G., Fiorentino D., Di Biase S., Apicella N., Gambari R. Capillary electrophoresis: detection of hybridization between synthetic oligonucleotides and HIV-1 genomic DNA amplified by polymerase-chain reaction. J. Virol. Method., 1994,47(3): 321-329
    49 Perry-O’Keefe H., Yao X. W., Coull J. M., Fuchs M., Egholm M. Peptide nucleic acid pre-gel hybridization: an alternative to southern hybridization. Proc. Natl. Acad. Sci. USA, 1996, 93(25): 14670-14675
    50 Piggee C. A., Muth J., Carrilho E., Karger B. L. Capillary electrophoresis for the detection of known point mutations by single-nucleotide primer extension and laser-induced fluorescence detection. J. Chromatogr. A, 1997, 781: 367-375
    51 Maddox L. O., Li P., Bennett A., Descartes M., Thompson J. N. Comparison of SSCP analysis and CFLP analysis for mutation detection in the human iduronate 2-sulfatase gene. Biochem. Mol. Biol. Int., 1997, 43 (6): 1163
    52 Sanger F., Nicklen S., Coulson A. R. Proc. Natl. Acad. Sci. USA, 1977, 74(5): 463-467
    53 Cotton R. G. H. Slowly but surely towards better scanning for mutations. Trends Genet., 1997, 13(10): 43-46
    54 Yershov G., Barsky V., Belgovskiy A., Kirillov E., Kreindlin E., Ivanov I., Parinov S., Guschin D., Drobishev A., Dubiley S., Mirzabekov A. DNA analysis and diagnostics on oligonucleotide microchips. Proc. Natl. Acad. Sci. USA, 1996, 93(10): 4913-4918
    55 Wagner T. M. U., Stoppa-Lyonnet D., Fleischmann E., Muhr D., Pagès S., Sandberg T., Caux V., Moeslinger R., Langbauer G., Borg A., Oefner P. Denaturing high performance liquid chromatography (DHPLC) detects reliably BRCA1 and BRCA2 mutations. Genomics, 1999, 62: 369-376
    56 Liu W., Smith D. I., Rechtzigel K. J., Thibodeau S. N., James C. D. Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res., 1998, 26:1396-1400
    57 Hecker K. H., Asea A., Kobayashi K., Green S., Tang D., Calderwood S. K. Mutation detection in the human HSP70B gene by denaturing high-performance liquid chromatography. Cell Stress Chaperones, 2000, 5: 415-424
    58 Cotton R. G. H., Bray P. J. Using CCM and DHPLC to detect mutations in the glucocorticoid receptor in atherosclerosis: a comparison. Biochem. Biophys. Meth., 2001, 47: 91-100
    59 Yamada T., Koyama T., Ohwada S. Frameshift mutations in the MBD4/M ED1 gene in primary gastric cancer with high-frequency microsatellite instability. Cancer Lett., 2002, 181(1): 115-120
    60 Furlan D., Casati B., Cerutti R. Genetic progression in sporadic endometrial and gastrointestinal cancers with high microsatellite instability. J. Pathol., 2002, 197 (5): 603-609
    61 Mori Y., Sato F., Selaru F. M. Instability typing reveals unique mutational spectra in microatellite unstable gastric cancers. Cancer Res., 2002, 62 (13): 3641-3645
    62 Tsujimoto H., Hagiwara A., Sugihara H. Promoter methylations of p16 INK4 and p14 ARF genes in early and advanced gastric cancer. Pathol. Res. Pract., 2002, 198 (12): 785-794
    63 Larsen L. A., Gronskov K., Norgaard-Pedersen B., Brindum-Nielseen K., Hasholt L., Vuust J. High-throughput analysis of fragile X (CGG)n alleles in the normal and premutation range by PCR amplification and automated capillary electrophoresis. Hum. Genet., 1997,100 (5-6): 564-568
    64 Nesi M., Righerri P. G., Patrosso M. C., Ferlini A., Chiari M. Capillary electrophoresis of polymerase chain reaction-amplified products in polymer networks: the case of Kennedy's disease. Electrophoresis, 1994, 15(5): 644-646
    65 Gelfi C., Cossu G., Carta P., Serra M., Righetti P. G. Gene dosage in capillary electrophoresis: pre-natal diagnosis of Down's syndrome. J. Chromatogr. A, 1995, 718(2): 405-412
    66 Shen Y., Xu Q., Han F., Ding C., Song F., Fan Y., Zhu N., Wu G., Lin B. Application of capillary nongel sieving electrophoresis for gene analysis. Electrophoresis, 1999, 20(9): 1822-1828
    67 Oto M., Suehiro T., Akiyama Y., Yuasa Y. Microsatellite instability in cancer identified by non-gel sieving capillary electrophoresis. Clin. Chem. 1995, 41(3): 482-483
    68 Wang Y., Hung S. C., Linn J. F., Steiner G., Glazer A. N., Sidransky D., Mathies R. A. Microsatellite-based cancer detection using capillary array electrophoresis and energy-transfer fluorescent primers. Electrophoresis, 1997,18(10): 1742-1749
    69 Mansfield E. S., Vainer M., Harris D. W., Casparini P., Estivill X., Surrey S., Fortina P. Rapid sizing of polymorphic microsatellite markers by capillary array electrophoresis. J. Chromatogr. A, 1997, 781: 295-305
    70 Jones P. A. DNA methylation errors and cancer. Cancer Res., 1996, 56(11): 2463-2467
    71 Monk M. Epigenetic programming of differential gene expression in development and evolution, Dev. Genet., 1995, 17(3): 188-197
    72 Kane M. F., Loda M., Gaida G. M., Lipman J., Mishra R., Goldman H., Jessup J. M., Kolodner R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res., 1997, 57(5): 808-811
    73 Bevilacqua R. A. U., Simpson A. J. G.. Methylation of the hMLH1 promoter but no hMLH1 mutation in sporadic gastric carcinomas with high-level microsatellite instability. Int. J. Cancer, 2000, 87: 200-203
    74 Maxam A. M., Gilbert W. Methods Enzymol, 1984, 65: 499-560
    75 Wang R. Y., Gehrke C. W., Ehrlich M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acid Res., 1980, 8: 4777-4790
    76 Herman J. G., Graff J. R., Myohanen S., Nelkin B. D., Baylin S. B. Methylation-specific PCR: a novel PCR assary for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA, 1996, 93: 9821-9826
    77 Sakata K., Tamura G., Endoh Y., Ohmura K., Ogata S., Motoyama T. Hypermethylation of the hMLH1 gene promoter in solitary and multiple gastric cancers with microsatellite instability, Br. J. Cancer, 2002, 86: 564-567
    78 Gonzalgo M. L., Jones P. A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (MS-SNuPE). Nucleic Acids Res., 1997, 25: 2529-2531
    79 Shannon B. A., Iacopetta B. J. Methylation of the hMLH1, p16, and MDR1 genes in colorectal carcinoma: associations with clinicopathological features. Cancer Letter, 2001, 167: 91-97
    80 Maekawa M., Sugano K., Ushiama M., Fukayama N., Nomoto K., Kashiwabara H., Fujita S., Kakizoe T. Heterogeneity of DNA methylation status analyzed by bisulfite-PCR-SSCP and correlation with clinico-pathological characteristics in colorectal cancer. Clin. Chem. Lab. Med.,2001, 39 (2): 121-128
    81 Bianco T., Hussey D., Dobrovic A. Methylation-sensitive, single-strand conformation analysis (MS-SSCA): A rapid method to screen for and analyze methylation. Hum. Mutat. 1999, 14(4): 289-293
    82 Bian Y. S., Yan P., Osterheld M. C, Fontolliet C., Benhattar J. Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP. BioTechniques, 2001, 30(1): 66-72
    83 Petra H., Osman E. M., Sabine E., Joachim O., Alexander O., Jorn W. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method, Methods in Molecular Biology, 2002, 143-154
    84 Hiltunen M. O., Alhonen L., Koistinaho J., Myohanen S., Paakkonen M., Marin S., Kosma V. M., Janne J. Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int. J. Cancer, 1997, 70 (6): 644-648
    85 Melki J. R., Vincent P. C., Clark S. J. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res., 1999, 59(15): 3730-3740
    86 Deng D., Deng G., Zhou J., Xin H. Detection of CpG methylations in human mismatch repair gene hMLH1 promotor by denaturing high-performance liquid chromatography (DHPLC). Chinese J. Cancer Res., 2000, 12:171-191
    87 Worm J., Aggerholm A., GuldbergP. In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin. Chem., 2001, 47 (7): 1183-1189.
    88 Xiong Z., Laird P. W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res, 1997, 25 (12): 2532-2534
    89 Prolla T. A. DNA mismatch repair and cancer, Curr. Opin. Cell Biol., 1998, 10: 311-316
    90 Jiricny J., Nystrom-Lahti M. Mismatch repair defects in cancer. Curr. Opin. Genet. Dev., 2000, 10: 157-161
    91 Wheeler J. M, Bodmer W. F, Mortensen N. J. DNA mismatch repair genes and colorectal cancer, Gut, 2000, 47: 148-153
    92 Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer, Hum. Mol. Genet. 2001, 10: 735-740
    93 Fishel R., Lescoe M. K, Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer, Cell, 1993, 75: 1027-1038
    94 Prolla T. A., Pang Q., Alani E. MLH1, PMS1 and MSH_2 interactions during the initiation of DNA mismatch repair in yeast. Science, 1994, 265: 1091-1093
    95 Mellon I., Champe G. N. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotideexcision repair of the lactose operon in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1996, 93: 1292-1297
    96 Bronner C. E., Baker S. M., Morrison P. T., Warren G., Smith L. G., Lescoe M. K., Kane M., Earabino C., Lipford J., Lindblom A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary nonpolyposis colon cancer, Nature, 1994, 368: 258-261
    97 Liu T., Wahlberg S., Burek E., Lindblom P., Rubio C., Lindblom A. Microsatellite instability as a predictor of a mutation in a DNA mismatch repair gene in familial colorectal cancer, Genes Chromosomes Cancer, 2000, 27: 17-25
    98 Terdiman J. P., Gum J. R, Conrad P. G., Miller G. A., Weinberg V., Crawley S. C., Levin T. R., Reeves C., Schmitt A., Hepburn M., Sleisenger M. H., Kim Y. S. Efficient detection of hereditary nonpolyposis colorectal cancer gene carriers by screening for tumor microsatellite instability before germline genetic testing, Gastroenterology, 2001, 120: 21-30
    99 Ward R., Meagher I, Tomlinson A., O’Connor T., Norrie M., Wu R., Hawkins N. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut, 2001, 48: 821-829
    100 Katabuchi H., van Rees B., Lambers A. R., Ronnett B. M., Blazes M. S., Leach F. S., Cho K. R., Hedrick L. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res., 1995, 55 (23): 5556-5560
    101 Kowalski L. D., Mutch D. G., Herzog T. J., Rader J. S., Goodfellow P. J. Mutational analysis of MLH1 and MSH2 in 25 prospectively acquired RER+ endometrial cancers. Genes Chromosomes Cancer, 1997, 18: 219-227
    102 Esteller M., Levine R., Baylin S. B., Ellenson L. H., Herman J. G. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas, Oncogene, 1998, 17(18): 2413-2417
    103 Cunningham J. M, Christensen E. R., Tester D. J., Kim C. Y., Roche P. C., Burgart L. J., Thibodeau S. N. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability, Cancer Res., 1998, 58: 3455-3460
    104 Herman J. G., Umar A, Polyak K, Graff J. R, Ahuja N, Issa J. P, Markowitz S., Willson J. K., Hamilton S. R., Kinzler K. W., Kane M. F, Kolodner R. D., Vogelstein B., Kunkel T. A., Baylin S. B. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma, Proc. Natl. Acad. Sci. USA, 1998, 95: 6870-6875
    105 Wheeler J. M., Beck N. E., Kim H. C., Tomlinson I. P., Mortensen N. J., Bodmer W. F. Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1. Proc. Natl. Acad. Sci. USA, 1999, 96 (18): 10296-10301
    106 Fleisher A. S., Esteller M., Wang S., Tamura G., Suzuki H., Yin J., Zou T. T., Abraham J. M., Kong D., Smolinski K. N., Shi Y. Q., Rhyu M. G., Powell S. M., James S. P., Wilson K. T., Herman J. G., Meltzer S. J. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res, 1999, 59(5): 1090-1095
    107 Toyota M., Ahuja N., Ohe-Toyota M., Herman J. G., Baylin S. B., Issa J. P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA , 1999, 96(15): 8681-8686
    108 Toyota M., Ahuja N., Suzuki H., Itoh F., Ohe-Toyota M., Imai K., Baylin S. B., Issa J. P. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res, 1999, 59(21): 5438-5442
    109 Parsons R., Myeroff L. L., Liu B, Willson J. K., Markowitz S. D., Kinzler K. W., Vogelstein B. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer, Genes Chromosomes Cancer, 2000, 27:424-429
    110 Souza R. F, Appel R., Yin J., Wang S., Smolinski K. N., Abraham J. M., Zou T. T., Shi Y. Q., Lei J., Cottrell J., Cymes K., Biden K., Simms L., Leggett B., Lynch P. M, Frazier M., Powell S. M, Harpaz N, Sugimura H, Young J., Meltzer S. J., Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours, Nat. Genet. 1996,14: 255-257
    111 Shin K. H., Park Y. J., Park J. G., PTEN gene mutations in colorectal cancers displaying microsatellite instability, Cancer Letter, 2001, 174: 189-194
    112 Zhang H., Richards B., Wilson T., Lloyd M., Cranston A., Thorburn A., Fishel R., Meuth M. Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res, 1999, 59,13: 3021-3027

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700