用户名: 密码: 验证码:
OSB-单板复合集装箱底板刚度模型及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定向刨花板-单板复合集装箱底板(OSBVCCF)是利用具有高抗剪强度的定向刨花板(OSB)芯层和较高力学性能的单板制成的多层结构用人造板,作为集装箱的主要承载配件——底板,要求具有足够的刚度、强度、耐老化性、抗疲劳性能,来保证集装箱承运货物的安全性以及必要的使用寿命。
     本论文以OSBVCCF为研究对象,运用断面密度仪、Pressman、激光测角仪、喷蒸压机等先进的仪器设备来进行定向刨花板和复合集装箱底板的热压工艺研究,同时综合运用VBA编程、弹(塑)性力学、正交各向异性复合材料层板理论、损伤力学、模型模拟方法,重点分析了OSBVCCF的宏观力学性能和细观结构(微薄层)之间的相互关系,建立了单板在热、压力、胶粘剂等作用下弹性模量和静曲强度与密度预测模型,进而建立了OSB弹性模量预测模型和OSBVCCF的弹性模量和静曲强度预测模型,并从理论上论证了复合底板的芯层抗剪性能优于传统的克隆底板。
     1.对板的热压工艺表明:1)采用一次热压成型的OSBVCCF能满足集装箱底板的要求,总的热压时间为27分;2)采用喷蒸预热工艺,可以将OSB的热压时间缩短到常规热压时间的一半(7分钟),且压出的板的芯层抗剪切强度提高35%。3)对工厂生产出的OSB进行分析,施胶量10%比7.5%只有在芯层剪切强度上有显著差异(分别为3.4MPa、3.1MPa),其它性能无显著性差异;4)在芯板上二次覆贴单板的热压时间以24~27分种为佳。
     2.分析了构成OSBVCCF的定向刨花板芯层和表层单板的材料特性。建立了各种材料的宏观力学性能与其结构参数及其它物理量之间的关系模型。分析认为OSBVCCF是由各向异性的OSB和单板组成的具有对称结构的正交各向异性层合板。
     3.根据复合材料层板的刚度理论,推导了复合集装箱底板的刚度矩阵,弹性常数之间的耦合效应和交叉效应可以忽略不计。在此基础上,推导出OSBVCCF的弹性模量的理论模型,形成了弹性模量预测的理论基础。
     4.采用层板的刚度理论,将定向刨花板细分为96薄层,根据激光测量的刨花分布角,并依据每薄层对应的密度,推断出每薄层对应的弹性模量,用VBA编程来计算出定向刨花板的弹性模量。
     5.基于纤维增强复合材料的混合模型和层合板刚度理论,构建单板涂胶和压力浸胶热压后的弹性模量的物理模型和数学模型。研究结果表明:1)随着胶粘剂的固化和单板的压密实,横向弹性模量也将升高,可将单板的横向弹性模量提高三倍。2)随着密度的增加,单板涂胶和压力浸胶热压后的纵向弹性模量的增加幅度不及单板无胶热压后的增加幅度。
     6.依据各向异性层合板的强度理论,分析了OSBVCCF分别基于线弹性应力-应变关系和弹塑性应力-应变关系的应力分布,并推导了因考虑上表某些纵向层的产生压缩屈服时中性轴的偏离量的估算公式。根据损伤力学原理和最弱环(Weakest-link)破坏理论,提出了OSBVCCF的弯曲破坏模式。构建了OSBVCCF在不同破坏模式下的静曲强度预测的理论模型。为简化计算,基于木材破坏形式,建立了复合集装箱底板与表背层相同木材的静曲强度之间的预测模型;并建立了不同跨距下底板的静曲强度预测的关系模型。
Oriented strand board (OSB)-veneer composite container flooring (OSBVCCF) is a multi-layer composite board manufactured with OSB as the core and the veneer as the face. It is used as container flooring to bear the freight loads. Therefore it must have high stiffness and strength, aging-resistant and fatigue resistant to ensure the safety of freight and have essential service-life.
     This paper researches mainly on the OSBVCCF. Use modern machines such as DENSE LAB X, PRESSMAN, LASER TEST ANGLE and STEAM INJECTION HOT-PRESS and so on. At the same time the theories of elastic and elastic-plastic mechanics, anisotropic laminate, damage mechanics and model simulation were used to analysis the mechanical properties of OSBVCCF. The study is mainly on the constitutive relationship between macro mechanical properties and micro structure (thin layer). First establish the model of density and MOR & MOE of the veneers, which were treated with heat, pressure and resin, then get the model prediction system of MOR and MOE of the OSBVCCF. The high shear of OSB can be proved by theory.
     1. Researches on hot-press can get: 1) The mechanic properties of one hot-press OSBVCCF can meet the request of container flooring. 2) The time of steam injection hot-press is only half (7 minutes) time of the ordinary hot-press, and the shear strength increases 35%. 3)Analysis the mechanical properties of the OSB manufactured by the mill with the resin 7.5% and 10%, The significant difference only exists on the shear strength(3.41MPa and 3.1MPa separately). 4) The optimization time of veneer over-layered are 24~27minutes.
     2. Analyze the composite characteristics of OSB and the veneer of OSBVCCF. Formulate a series of models indicating the relationship between macro properties and micro structure parameter and other physical parameter. The OSBVCCF can be treated as an orthotropic laminate with symmetrical structure configures by the macro even OSB and veneers.
     3. Derive the stiffness matrix of OSBVCCF in reference to the stiffness theory of composite laminate, and the coupling effect have been neglected according to this assumption, derive the theoretical prediction models of MOE of OSBVCCF.
     4. In reference to the stiffness theory of laminate, divide the OSB into 96 thin-layers, and use laser to test the distribute angle of strands, then according to the density tested by the DENSE LAB X, and derive the MOE of the thin-layers. According to these data, use Visual Basic for Applications to compute the MOE of the OSB.
     5. Formulate the MOE model of veneers which were treated with heat, pressure and resin on the basis of mixture mode of fiber reinforced composite and stiffness theory of laminate respectively. It shows: 1) The veneer treated with heat, pressure and resin can get 3 times MOE on perpendicular diction than the veneer without treated. 2) The MOE of veneer spread and impregnated with pressure will be increased with the density, and their increasing speed is lower than that of the compressed veneer.
     6) According to the theory of anisotropic laminate, study the stress distribution of the OSBVCCF with the linear elastic stress-strain and elastic-plastic stress-strain relation. Derive the evaluating formulation of central axis offset considering the compression yield of upper longitudinal layers. Presume theoretical bending rupture mode of OSBVCCF. On the basis of the damage mechanics principles of MOR of OSBVCCF according with different rupture model. Establish theoretical prediction relationship models of MOR of OSBVCCF with different span. In order to compute the MOR easily. Formulate a MOR model of OSBVCCF according to the MOR of same wood as the surface veneer of the OSBVCCF.
引文
1.Geimer, R.L. 1976. Flake alignment in particleboard as affected by machine variable and particle geometry. Res. Pap. FPL275.USDA Forest Serv., Forest Prod. Lab.,Madison, Wis.
    
    2. Chen S, Wellwood R (2002) Nondestructive Evaluation of Oriented Strand Board. Proceedings of the 13th International Symposium on Nondestructive Testing of Wood, August 19-21, 2002, University of California, Berkeley, California, USA 3.3
    
    3. Grant, D.1997.Effects of the through-thickness strand alignment distribution on the unidirectional bending properties of oriented strand board. Master's thesis. Laval Univ., Quebec, Canada
    
    4. Xu, W. and O.Suchsland. 1998. Modulus of elasticity of wood composite panel with a uniform vertical density profile: A model. Wood and Fiber Sci. 30(3)
    
    5. Xu, W. 1999. Influence of vertical density distribution on bending modulus of elasticity of wood composite panels: A theoretical consideration. Wood and Fiber Sci. 31(3)
    
    6. Xu, W. 2000. Influence of percent alignment and shelling ratio on modulus of elasticity of oriented strandboard: a theoretical consideration. Forest Prod. J. 50(10)
    
    7. Mei Changtong, C. Dai, Zhou Dingguo, 2002. Effects of Horizontal Density Variation on Propertied of Wood Strand Composites. J. of NanjingForestry University.26(6)
    
    8. Shuming Suo. Modeling strength properties of structure paticleboard, Wood and Fiber Science, 1995, 27(1)
    
    9.Dai, C, and P.R.. Steiner. 1994a. Spatial structure of wood composites in relation to processing and performance characteristic. Part 2. Modeling and stimulation of a randomly-formed strand layer network. Wood Sci. Technol. 28(2)
    10.Congjin Lu, Paul R.Steiner and Frank Lam. 1998. Simulation study of wood-flake composite mat structures. Forest Prod. J. 48(5)
    
    11.金菊婉,华毓坤,童雀菊.定向刨花板平面密度变异的模拟研究.南京林业大学学报.1999,23(6)
    12.Shuming Suo. Modeling strength properties of structure paticleboard, Wood and Fiber Science, 1995,27(1)
    13.Congjin Lu, Paul R.Steiner and Frank Lam. 1998. Simulation study of wood-flake composite mat structures. Forest Prod. J. 48(5)
    14.Dai, C, and P.R.. Steiner. 1994a. Spatial structure of wood composites in relation to processing and performance characteristic. Part 2. Modeling and stimulation of a randomly-formed strand layer network. Wood Sci. Technol. 28(2)
    15.Barnes, D.2000. Integrated model of the effect of processing parameters on the strength properties of oriented srand wood products. Forest Prod. J. 50(11/12)
    
    16. D.M.Moses, H.G L. Prion, H.Li. 2003. Composite behavior of laminatedstrand lumber. Wood Sci Tech.37: 59-77.
    
    17. Greer Printer, Hector Budman, Mark Prizker. 2006. Prediction of oriented strand board from mat formation and compression operating condition. Part 2: MOE prediction and process optimization. Wood Sci Tech.40: 291-307.
    
    18.Chen, S., L. Fang, X. Liu, and R. Wellwood. 2008a. Effect of mat structure on mod ulus of elasticity of oriented strandboard. Wood Sci Tech. 42:197-210.
    
    19.Chen, S., C. Du, and R. Wellwood. 2008b. Analysis of strand characteristics and alignment of commercial.
    
    20.Jenkin, C.F. report on the materials of construction used in aircraft and aircraft engines. Aeronautical Research Committee. HMSO. London 1920.
    
    21. Elmendorf, A. The uses and propertiesof water-resistant plywood.. Proceedings American Society for testing materials. 1920.
    
    22. Freas, A.D. Methods of computing the strength and stiffness of plywood strips in bending. US department of Agriculture, Forest products laboratory report No. 1304.
    
    23. Norris, C.B. Technique of plywood. I.F. Lakes. Seattle.USA, 1942.
    
    24. Freas, A.D. The Bending strength and stiffness of plywood. US Department of Agriculture, Forest Products Laboratory Research Note FPL-059,1964.
    
    25.Geimer, R.L. 1979. Data basic to the engineering of reconstituted flackboard. In: Processing of the thirteenth Washington State University international symposium on particleboard, Pullman, Washington, Aprial 1979, pp105-125
    
    26. Pearson. R.G. Application of Fracture Mechanics to the Study of Tensile Strenth of Structural Lumber. Holzforchung, 1974The Bending strength and stiffness of plywood. US Department of Agriculture, Forest Products Laboratory Research Note FPL-059, 1964
    
    27. L.G. Booth. Predicting the Strength of Structural Plywood. Part1 : A Theoretical Model. J. Inst. Wood Science, 1990,12(1)
    
    28. L.G. Booth. Predicting the Strength of Structural Plywood. Part2 : An Experimental Vertifiction. J. Inst. Wood Science, 1990,12(1)
    
    29. M.T.P. Hettiarachchi. Prediction the Strength of Structural Plywood. Part 3:Incorporaying the Effectof Knots. J. Inst. Wood Science, 1990,12(2)
    30.Buhnnum Kyokong.Frederick J.David Barrett.Fractrue Behavior of Adhensive Joints in Poplar.Wood and Fiber Science,1986,18(4)
    31.Borjen Yeh,Arno P.Schniewind.Elasto-plastic facture mechanicsof wood using the J-integral method,Wood and Fiber Science,1992,24(3)
    32 J.Murphy,B.Ellingwood,E.Hendrickson.Damage Accumulation in wood Structural Members under Stochastic Live Loads.Wood and Fiber Science,1987,19(4)
    33.C.C.Gerhards,C.L.Link.A Cumulative Damage model to Product Load Duration Characteristics of Lumber,Wood and Fiber Science,1987,19(3)
    34.Xuesong Bai and Andy W.C.Lee et al.1999.Finite element analysis of moso bamboo-reinforced southern pine OSB composite beams.Wood and Fiber Science.31(4)
    35.Jong N,Qinglin Wu.2003.Continuum modeling of engineering constants of oriented strandboard.Wood and Fiber Science.35(1)
    36.洪中立.复合胶合板的研究.Ⅰ.组成部分对胶合板特性的影响.南京林产工业学院学报,1986(1).
    Ⅱ.结构形式对复合胶合板特性的影响.南京林产工业学院学报,1983(2).
    37.张齐生,孙丰文等.竹材碎料复合板的结构和工艺的研究.林业科学.1995,31(6)
    38.张齐生,孙丰文.竹木复合集装箱底板的研究.林业科学.1997,33(6)
    39.张齐生,孙丰文.竹木复合集装箱底板使用性能的研究—与阿必东胶合板底板的对比分析.南京林业大学学报.1997,21(1)
    40.孙丰文,李燕文等.竹材复合板的试验尺寸对静曲强度和弹性模量测试值的影响.林产工业.1998,25(4)
    41.孙丰文.竹材碎料复合板的结构设计与弯曲性能预测理论.南京林业大学学报.1999,23(3)
    42.王泉中,朱一辛等.用奇异函数法解变截面竹木复合空心板的变形.南京林业大学学报.2002,24(1)
    43.那斌,卢晓宁.胶合板弹性特性预测.建筑人造板.2002,32(1)
    44.张晓冬,李君等.木竹复合层合板力学性能预测与分析.南京林业大学学报.2005,29(6)
    45.马岩,李松林等.定向刨花板弹性模量微观力学理论求解方法探讨.东北林业大学学报.1996,24(6)
    46.战丽,齐英杰等.重组木复合刨花板截面弹性模量求解方法的研究.木材加工机械.2002,(2)
    47.孙丰文.竹木复合集装箱底板静曲强度的预测模型.南京林业大学学报.2006,30(5)
    48.孙丰文.竹木复合集装箱底板的结构力学性能的模型理论与强度预测.南京林业大学博士论文.2001
    49.孙丰文,张齐生.世界集装箱底板用材的新进展.世界林业研究.1995,(6)
    50.Bureau Veritas 《BV Container-Homologation and Inspection》.
    51.中国国家标准GB/T T19536-2004《集装箱底板用胶合板》.北京.
    52.[美]罗杰.罗维尔编著.实木化学[M].北京:中国林业出版社.1988
    53.南京林业大学木材学教研组.世界木材.2000.
    54.鲍甫成,江泽慧等著.中国主要人工林树种木材性质.北京.中国林业出版社.1998
    55.王恺主编.木材工业实用大全:刨花板卷.北京:中国林业出版社.1998
    56.American Society for Testing and Material 2000.Annual Book of ASTM Standards.Section 4:D2718 Method B.ASTM Philadelphia,PA
    57.王震鸣编著.复合材料力学和结构材料力学[M].北京.机械工业出版社.1991
    58.李顺林,王兴业主编.复合材料结构设计基础[M].武汉.武汉工业大学出版社.1993
    59.沈观林,胡更开编著.复合材料力学[M].北京.清华大学出版社.2006
    60.沈观林编著.复合材料力学[M].北京.清华大学出版社.1994
    61.杜善义,王彪编著.复合材料细观力学[M].北京.科学出版社.1998
    62.王兴业,唐羽章编著.复合材料力学性能[M].长沙.国防科技大学出版社.1988
    63.吴鸿遥编著.合层板、夹层板与整体板的强度计算原理[M].国防工业出版社.2006
    64.王耀先编著.复合材料结构设计[M].北京.化学工业出版社.2001
    65.张锦,张乃恭编著.新型复合材料力学机理及其应用[M].北京.北京航空航天大学出版社.2001
    66.成俊卿主编.木材学[M].北京:中国林业出版社.1985.
    67.Forest Products Laboratory.Wood handbook wood-as an engineering Material[M].American:USDA Forest Service,1999
    68.卢晓宁,陈宇聪等.速生杨木单板顺纹弹性模量预测模型.南京林业大学学报.2002,26(3)
    69.卢晓宁,黄河浪等.速生杨木单板横纹弹性模量预测模型.南京林业大学学报.2003,27(2)
    70.王志强.复合型杨木单板层积材刚度模型及工艺研究.南京林业大学硕士论文.2004
    71.Michanel O.Hunt and Stanley K.Suddarth...1974.Properties Prediction of elastic constants of particleboard.Forest Prod.J.24(5)
    72.Jozsef Bodig,Benjamin A.Jayne(1982).Mechanics of Wood and Wood Composites.Van Nostrand Reihold Company,New York
    73.OkazakiY.,Arima T.,Nakamura N.Strength Prediction of Glued-laminated Veneer Lumber by a Probabilistic Model Ⅰ.Effect of Lap Length.Faculty of Agriculture,The University of Tokyo,Tokyo 113,Japan.
    74.王世绩主编,杨树研究进展[M].北京:中国林业出版社.1995.
    75.刘君良,江泽慧等.酚醛树脂处理杨树木材物理力学性能测试.林业科学.2002,38(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700