用户名: 密码: 验证码:
TiC颗粒局部增强铸造钢基复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次将铸造过程与Fe-Ti-C-Al 体系SHS 反应有机结合,成功制备出TiCp局部增强铸造钢基复合材料,很好地解决了SHS 反应的引燃、致密化及增强体原位形成和零件成形一体化制造等关键科学问题。
    对Fe-Ti-C-Al 体系溶液进行了热力学计算结果表明:Al 加入量增加可以降低TiCp 的生成自由焓,有利于TiCp 的生成。在本实验条件下,TiCp 可在1600℃钢液中生成。为研究Fe-Ti-C-Al 体系SHS 反应合成制备TiC 颗粒局部增强铸造钢基复合材料提供了理论依据。
    采用Fe-Ti-C-Al 体系,将粉料充分混合压制成约理论密度60%的预制块,经预处理后放置在铸型内,利用高温钢液的热能引发SHS 反应,使液态金属成型和在钢液内内生TiC 增强颗粒同时完成。成功地制备了大体积分数的TiC颗粒局部增强铸造锰钢基和铸造45Mn2 钢基复合材料。很好地解决了在颗粒增强铸造钢基复合材料制备过程中,存在的外加陶瓷颗粒润湿性差、颗粒表面易污染、颗粒参与下的熔体流动性差、充型困难和大体积分数颗粒无法实现等严重影响颗粒增强铸造钢基复合材料制备中的难题。
    探讨了Fe-Ti-C-Al 体系在钢液内SHS 反应生成TiC 的机制,并给出粉末粒度、配比、预制块的紧实率及添加剂等影响TiC 生长的动力学因素对TiCp生成尺寸的影响规律。优化出适合于TiC 颗粒局部增强铸造钢基复合材料制备的工艺参数。
    为进一步提高TiC 颗粒局部增强铸造45Mn2 钢基复合材料的性能,进行了强韧化热处理,以改善TiCp 形态,提高TiCp 增强区和基体的宏观硬度。并对TiC 颗粒局部增强铸造锰钢基、铸造45Mn2 钢基复合材料的硬度、耐磨性进行了研究。为上述两种TiCp 局部增强铸造钢基复合材料的应用,提供了可供参考的理论与技术依据。
It is believed that the three major failure forms of ferrous material are: abrasion, corruption, fracture, the world expends more than 350 million tons ferrous material every year by abrasion only. Because wear abrasion is a comparatively complicated system, it is determined by both work circumstance and material property. If the work circumstance is different, so is the abrasion mechanism. Therefore, to accomplish our aims at applications, with no omnipotent wear-resistance materials at all, we have to select the proper wear-resistance materials under a given work circumstance. Under different work circumstance, materials have different failure forms: some are resulted from abrasion of the whole body; others are from local abrasion, for example, the failures of crusher’s hammerhead and grab’s teeth are resulted from local wear abrasion. Under this circumstance, to guarantee the safety of the task process above, the ideal wear-resistance materials should be high wear-resistance at local abrasion failure position, while high obdurability at no rubbing abrasion position. However, there is a pair of contradiction between wear-resistance and obdurability: high rigidity can increase wear-resistance, but lower the obdurability and depress the safety; contrarily, if we strengthen the obdurability, hardness may be depressed and lower the wear-resistance. So simplex traditional material cannot resolve this contradiction. One of the best ways to resolve the problem is the selection of composites, and steel matrix composites rinforced by particulates are the most effective method in solving rubbing abrasion problems.
    There are some defects in the technology of ex situ particulates: ①the size of the particulate is influenced by the starting materials, and they have large size
    and always is 1~2μm or tens of microns; ②particulates are prone to be contaminated because of the absorbed gas and impurities at the surface, so there is poor wettability between particulate and matrix. Thus, it is difficult to control the interface reactions between them; ③these particulate will be oxidated, burned up, decomposed and so on when they are added into high temperature melts; and ④some other problems may happen when they are added, for example, gas and lard may be entangled into the melts. To overcome the inherent problems which are associated with conventional processed MMCs, new in situ processing techniques have been developed in recent years, which is able to solve the problems of the ex situ. However, all the progressed composites are monolithic composites, it makes the composites some disadvantages in the application, such as: (1) the toughness of the composites is decreased due to their monolithic reinforcement; (2) the composites cost much, because there are reinforced with ceramic particulate in everywhere, even through some need not reinforced; (3) for the ceramic particulates are high melting temperature and have been formed before processing, while its volume percentage is little it has not difference in melt castablity, but the reinforced of the composites is little. When high, it has the poor castability and makes the composites quality poor. In order to overcome the defects of the monolithic reinforced composites, the locally reinforced composites have been developed in this research. Compared to monolithic reinforcement, the most obvious advantages of local reinforcement are primarily: (1) it optimizes the performance of composites. There has a very well reinforcement in the local region that need reinforced, and other region in matrix has a super strength and toughness, as makes composites a good performance under some circumstance and a longer using time; (2) the high volume fraction (10%~60%) of reinforcement distributed only in the local region, which can not realized in the monolithic composite (usually with a reinforcement <10%~15%) fabricated by conventional casting route due to the poor castability, indicates that the local reinforced composite is a promising type of material for processing the large, complex and high volume fraction locally reinforced MMCs; (3) it reduces the processing cost and saves a lot of valuable reinforcement particulates; and (4) its technology is easy , it can universally applied. 1. According to the thermodynamic calculations of Fe-Ti-C-Al system, the theory evidence of system reaction of forming TiC particulate was provided. (1) It is suggested through thermodynamic analysis that TiC is much more stable than TiAl3, Fe2Ti, Fe3C and Al4C3. Generally, TiC could be formed in the liquid steel with the temperature of 1600℃.
    (2) The Gibbs energy ( ? G) of formation of TiC, TiAl3, Fe2Ti, Fe3C and Al4C3 during 1400~1600℃decreased with the increaseing of Al content; the increase of Al content can promote the formation of TiC; the increase of Ti content has no significant effect on ?G of TiC formation, but can decrease ?G of TiAl3 and Fe2Ti formation. Moreover, the increase of Ti conten can improve ?G of Fe3C formations; the C can promote the decrease of ?G of Fe3C, TiC and Al4C3 formations, but has no significant effect on formation of TiAl3, and superfluous C can promote the decomposition of Fe2Ti. 2. After pretreatment, the performs consisting of Fe, Ti, C and Al were placed in the mold. Then the SHS reaction was induced with the liquid steel of high temperature, and the solidification of liquid metal and the formation of in situ TiC in the steel liquid were accomplished simultaneously. It can avoid the poor wettability of ex situ particulates, the easily polluted interface, the poor fluidity of the molten metal with the addition of particulate and the difficult mould filling effectively, and TiC particulate with a large volume fraction locally reinforced cast steel matrix and cast 45Mn2 steel matrix composites were prepared successfully. A strong interfacial bonding of the reinforced region and matrix in the TiC particulate locally reinforced 45Mn2 steel matrix composites were achieved; furthermore, the emergence of transition region promote the improvement of the interfacial strength; the products in the particulate reinforced region consisting of TiCp and matrix steel. The sizes of TiC particulates changed from 2 to 5 μm, and most of particulates exhibit spherical except a small amount of polygonal particulates. 3. The effects of SHS reaction dynamical factors of Al-Ti-C and Fe-Ti-C-Al systems in the melt on the size and distribution of in situ TiCp were investigated. (1) Effect of SHS reaction dynamical factor of Al-Ti-C system in the melt on the size and distribution of in situ TiCp. a) When Al contents increased in the preforms, the size of TiC particulate decreased, and the distribution of TiC particulate was more uniform. At the same time, the size of TiC particulate increased with the increasing of the size of Al powder. These results were in accordance with the law of SHS reaction out of melts but under the protective atmosphere. b) When the size of Ti powder increased from 38 μm to 75μm, the size of TiC particulate increased slightly from 1~3 μm to 3~5 μm. c) The sizes of C powder had hardly effects on the size of TiC particulate.
    TiCp were uniformly distributed with the increasing of the sizes of C powder. These results were in accordance with the law of SHS reaction out of melts but under the protective atmosphere. (2) Effect of SHS reaction dynamical factor of Fe-Ti-C-Al system in the melt on the size and distribution of in situ TiCp. a) The compact density of green preforms as a function of uniaxial pressures were obtained, which provided reliable data for the following experiments. When the compact density of green perform was 55-65% theoretical density, the ability of infiltration of molten steel into the prefom was the best, and the smallest microporosity of the locally reinforced region was obtained (~ 3% of the volumetric ratio). b) In the Fe-Ti-C-Al system, the effects of the sizes of Ti-Fe and C powders and Al contents on the hardness of locally reinforced region with in situ TiCp in the as-cast steel matrix (45Mn2) composite was: the hardness hardly changed with the increasing of the size of Ti-Fe powder, and increased slightly with the increasing of the size of C powder. In addition, the hardness decreased with the increasing of Al contents. c) In the Fe-Ti-C-Al system, the morphologies of TiCp in the locally reinforced region were almost spherical, and the size of TiCp increased with the increasing of Al contents. When the Al content was 30%, the maximum size of TiCp was obtained, which maybe related with the exothermic reaction to form FeAl in the SHS reaction of Fe-Ti-C-Al system. 4. The following path is the transition from the starting powder (Fe-Ti-C-Al) to TiC particulates via SHS in steel melt: the preform in the mould was quickly heated by the steel melt and the Al powder in the preform was firstly molten and the molten Al reacted with Fe to form FeAl, and the exothermic reaction promoted the molten Al reacted with Ti in the preform to form TiAlx, which triggered the two reactions (TiAlx+C→TiC+xAl and Ti+C→TiC) occurred to form TiC particulates. 5. The heat treatment can change the shape of TiC particulates of locally reinforced region from spherality to polygon, which can increase the hardness in locally reinforced region and matrix region and the maximum hardness value is 66.9 and 53.7 HRC, respectively. Furthermore, the bonding between locally reinforced region and matrix region is strong. In addition,
    the optimal heat treatment parameters are water quenched at 805 ℃and tempered at 200 ℃. 6. The wear resistance disciplinarian of reinforced region of TiCp being synthesized via SHS reaction in Fe-Ti-C-Al system as follows: (1) When matrix steel is Mn steel by casting and reinforced region of TiCp containing 10wt.% Al content, the micro-hardness is the highest and wear resistance is the best, nevertheless the Al content increases, the wear resistance decreases. The relatively wear resistances compared to Mn steel matrix, when wear resistances test was carried out with a pin-on-disk tester under applied loads of 5N performed on SiC abrasive paper of 600 grit, and 20N performed on SiC abrasive paper of 240 grit, are 4.97 and 3.07, respectively. The main invalidation form of Mn steel matrix wear is plough. The hard SiC particles cut in the soft Mn steel matrix under the applied loads, and as the applied load increases, the furrow gets relatively broader and deeper. The wear invalidation mechanism of reinforced region of TiCp is: TiCp restrains SiC particles from cutting in Mn steel matrix and reducing the degree of ploughing, so the furrow becomes relatively narrower and shallower. (2) When matrix steel is 45Mn2, the wear resistances of reinforced region of TiCp and 45Mn2 steel matrix after heat treatment; when wear resistances test was carried out with a pin-on-disk tester under applied loads of 15N and 35N performed on SiC abrasive paper of 400 grit, are 2.00 and 2.34, respectively. The wear invalidation mechanism of TiCp locally reinforced 45Mn2 steel matrix composite is: after heat treatment, TiC particulate in reinforced region are more steadily inlayed martensite, and therefore, with the the applied loads increasing, the wear resistances compared to steel matrix improved. So heat treatment is an efficient method of increasing the wear resistance of reinforced region. In conclusion, an excellent combination of the SHS technology and the traditional casting technology was achieved in this paper. The SHS reaction in the preform was ignited by the steel melt and the SHS product was penetrated and diluted by the steel melt, which successfully solve the problem such as the densification technology, porosity and high volume fraction of reinforcement particulates of SHS. Therefore, the application range of SHS technology was enlarged and a new path with independent knowledge property right for fabricating particulate locally reinforced steel matrix composite was developed.
引文
[1] 朱敦伦,“机械零件失效分析”,徐州中国矿业大学出版社,1993.
    [2] 刘宗浚,“材料磨损原理及其耐磨性”,北京清华大学出版社,1993.
    [3] 齐纪渝,“国内外耐磨材料的研究与应用”,电力情报,1996; (3): 29-31.
    [4] 李恒德,马春来,“中国材料发展现状及迈入新世纪对策咨询项目”,材料科学与工程国际前沿,2002.
    [5] 吴人洁,“先进复合材料高科技材料要览”,北京科技出版社,1995.
    [6] 师昌绪,“材料大辞典”,北京化学工业出版社,1999.
    [7] S.C. Tjong, Z.Y. Ma, “Microstructural and mechanical characteristics of in situ metal matrix composites”, Materials Science and Engineering, 2000; R29: 49-113.
    [8] K. Das, T.K. Bandyopadhyay, S. Das, “A review on the various synthesis routes of TiC reinforced ferrous based composites”, Journal of Materials Science, 2002; 37(18): 3881-3892.
    [9] J.D Muhly., “The beginnings of metallurgy in the ald world ,In the Beginning of the Use of Metals and Alloys”, Maddin R, Cambridge Ma: MI T press, 1988; 2-20.
    [10] Taylor G I, “The mechanism of plastic deformation of crystal,I-theoretical”,Proc Roy Soc ,1934; Al45: 362-404
    [11] Oro E, Zur Kristallplastizitat Ⅲ. “Uber den mechanismus des hleitv-ganges”.Z Phys,1934; 89: 634-659.
    [12] 郝元恺,肖加余,“高性能复合材料学”,北京化学工业出版社,2004.
    [13] 李顺林,“复合材料新进展”,北京航空出版社,1994.
    [14] 吴人洁,“金属基复合材料的现状与展望”,金属学报,1997; 33(1): 78-84.
    [15] 于春田,“金属基复合材料的发展及展望”,铸造,1994; (11): 36-39.
    [16] 王慧远,“原位增强美基复合材料的制备”,吉林大学博士学位论文,2004.
    [17] 福永秀春,“金属基复合材料の新展开”,材料,1994;43(33):73-381.
    [18] 刘耀辉,李庆春,何镇明,“金属基铸造复合材料”,复合材料学报,1989;6(1):56-61.
    [19] 于琨,“金属基复合材料的现状与发展”,材料科学与工程,1989; 7(1): 6-12.
    [20] H. E. Deve, “Compressive strength of continuous fiber reinforced aluminum matrix composites”, Acta Materialia, 1997; 45(12): 5041-5046.
    [21] 鲁云,朱世杰,马鸣图等,“先进复合材料”,北京机械工业出版社,2004.
    [22] G. F. Quan, “Mechanical behavior and microstructure of NiAl short fiber reinforced aluminum matrix composite”, Scripta Materialia, 1999; 41(7): 779-783.
    [23] 刘政,“氧化铝短纤维增强锌基复合材料的凝固组织”,热加工工艺,1995; (2): 11-13.
    [24] 储双杰,吴人洁,“莫来石短纤维/Al-4.5Cu 复合材料力学性能与断裂特征”。复合材料学报,1998; 15(4): 33-37.
    [25] 毛天祥,“基体成分对晶须增强铝基复合材料强化行为的影响”,第十一届全国复合材料学术会议论文集,中国科学技术大学出版社,2000.
    [26] 姚中凯,耿林,“非连续物增强轻金属复合材料研究现状及展望”,材料学报,1994;(4):67—71
    [27] W.L. Suk, I. Tsunemichi, N. Yoshinori, C. Takao, “High strain rate superplasticity of TiC particulate reinforced magnesium alloy composites by vortex method”, Scripta Materialia, 1995; 32(11): 1713-1717.
    [28] P. Perez, G. Garces, P. Adeva, “Mechanical properties of a Mg-10 (vol.%)Ti composites”, Composites Science and Technology, 2004; 64(1): 145-151.
    [29] 张淑英等,“颗粒增强金属基复合材料的研究进展”,材料导报,1996; (2): 66-71.
    [30] 桂满昌等,“颗粒增强铝基复合材料的制备及应用”,材料导报,1996; (3): 65-71.
    [31] E.L. Zhang, S.Y. Zeng, B. Yang, Q.C. Li, M.Z. Ma, “A study on the kinetic process of reaction synthesis of TiC: Part Ⅰ. Experimental research and theoretical model,”Metallurgical and Materials Transactions, 1999; A30, 1147-1151.
    [32] Y. Cai, D. Taplin, M.J. Tan, W. Zhou, “Nucleation phenomenon in SiC particulate reinforced magnesium composite”, Scripta Materialia, 1999; 41(9): 967-971.
    [33] 吴人洁,“复合材料”,天津大学出版社,2000.
    [34] 师昌绪,李恒德,周廉,“材料科学与工程手册—下册”,北京化学工业出版社,2004.
    [35] 严学华,孙少纯,蒋宗宇,“原位反应复合材料研究进展”,铸造 设备研究,2001; (1): 27-30.
    [36] 储双杰,张国定,吴人洁,“金属基复合材料的二次成型加工”,轻合金加工技术,1996; 24(10): 2-6.
    [37] 朱正吼,“铸造SiC/钢基复合材料中粒子的分布特点”,热加工工艺,1995; (2): 8-9.
    [38] 林君山,沙民,沈文荣,李鹏兴,吴人洁,“铸造SiCp/2004 复合材料微观结构与强化机制的研究”,金属学报,1993; 29(9): B417-422.
    [39] M.J. Koczak, M.K. Premkumar, “Emerging technologies for the in-situ production MMCs”, JOM, 1993; January: 44-48.
    [40] 李春玉,李英,刘伯操,王自东,胡汉起,“原位反应复合法制备金属基复合材料的进展”,材料工程,1995; (11): 8-10
    [41] W.T.克莱因,P.J.威瑟斯,“金属基复合材料导论”,余永宁,房志刚译,北京冶金工业出版社,1996.
    [42] 谢国宏,“搅拌铸造法制造颗粒增强铝基复合材料的研究与发展”,材料工程,1994; (12): 5-7.
    [43] 张玉龙,“先进复合材料制造技术手册”,机械工业出版社,2003.
    [44] 肯尼思.G .克雷德,“金属基复合材料”,温仲元译,国防工业出版社,1982.
    [45] K.Marsaden,“Conmerical Potentials for Composites”,Metals,1985; 37(6): 59-62.
    [46] 严有为,“反应铸造工艺制备原位TiCp/Fe 复合材料的研究”,华中理工大学博士学位论文,1998.
    [47] M.K. Premkumar, M.G. Chu, “Al-TiC particulate composite produced by a liquid state in situ process”, Materials Science and Engineering, 1995; A202(1-2): 172-178.
    [48] M.A. Matin, L. Lu, and M. Gupta, “Investigation of the reactions between boron and titanium compounds with magnesium”, Scripta Materialia, 2001; (4); 45: 479-486.
    [49] I. Gotman, M.J. Koczak, E. Shtessel, “Fabrication of Al matrix in situ composites via self-propagating synthesis”, Materials Science and Engineering, 1994; A187: 189-199.
    [50] 江涛,鲁玉祥,祝美丽,张俊善,“颗粒增强金属基原位复合材料的制备技术回顾与展望”,宇航材料工艺,2000; (1): 12-18.
    [51] 杨霓虹,“原位生成增强体金属基复合材料及其应用前景”,材料导报,1993;(1): 53-54.
    [52] 崔春翔,吴人洁,“原位AlN-TiC 粒子增强铝基复合材料”,金属学报,1996; 32(1): 101-104.
    [53] Mitra. R, Fine. M.E, Weertman. J.R, “Interfaces in As-Ex-truded XD Al/TiC and Al/TiB2 MMCs”,J.Master.Res,1993; 8(9): 2380-2392.
    [54] R.P. Baron, J.A. Wert, D.A. Gerand and F.E. Wawner, “The Processing and Characterization of Sintered Metal-Reinforced Aluminium Matrix Composites”,J.Mater.Sci,1997; 32(34): 6435-6446.
    [55] Zhang. E.L, Zeng. S.Y, Zeng. X.C, Li Q.C, “Reaction synthesis of Al/TiC Composites and the Effect of Al content”, Rear Metals,1996; 15(1): 41-44.
    [56] H.Y. Wang, Q.C. Jiang, Y.Q. Zhao, F. Zhao, B.X. Ma, Y. Wang, “Fabrication of TiB2 and TiB2-TiC particulate reinforced magnesium matrix composites”, Materials Science and Engineering A, 2004; 372: 109-114.
    [57] S. Jayalakshmi, S.V. Kailas, S. Seshan, “Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites”, Composites, 2002; A33(8): 1135-1140.
    [58] M.Y. Zheng, K. Wu, C.K. Yao, “Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites”, Materials Science Engineering, 2001; A318(1-2): 50-56.
    [59] M. Svoboda, M. Pahutova, K. Kucharova, V. Sklenicka, T.G. Langdon, “The role of matrix microstructure in the creep behaviour of discontinuous fibre-reinforced AZ91 magnesium alloy”, Materials Science Engineering, 2002; A324(1-2): 151-156.
    [60] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori, “Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique”, Journal of Alloys and Compounds, 2001; 327(1-2): 248-252.
    [61] Y.J. Kim, H. Chung, S.J.L. Kang, “Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas-solid reaction”, Materials Science and Engineering, 2002; A333(1-2): 343-350.
    [62] X.N. Zhang, W.J. Lu, D. Zhang, R.J. Wu, B.J. Bian, P.W. Fang, “In situ technique for synthesizing (TiB+TiC)/Ti composites”Scripta Materialia, 1999; 41(1): 39-46.
    [63] B. Hans, W. Birgit “Development of an abrasion resistant steel composite with in situ TiC particles”, Wear, 2001; 251(1-12): 1386-1395.
    [64] Y.S. Wang, X.Y. Zhang, G.T. Zeng, F.C. Li, “In situ production of Fe-VC and Fe-TiC surface composites by cast-sintering”, Composites, 2001; A32(2): 281-286.
    [65] Z. Mei, Y.W. Yan, K.Cui, “Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites”, Materials Letters, 2003; 57(21): 3175-3181.
    [66] 章德铭,李凤珍,刘兆晶,韩媛媛,“原位TiC/Fe 复合材料的制备工艺优化”,哈尔滨理工大学学报,2002; 7(4): 22-26.
    [67] 梁作俭,邢建东,鲍崇高,“碳化钨/铁基铸造复合材料的抗冲蚀磨损性能”,铸造,2000; 49(5): 265-267.
    [68] J.P. Tu, N.Y. Wang, Y.Z. Yang, W.X. Qi, F. Liu, X.B. Zhang, H.M. Lu, M.S. Liu, “Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing”, Materials Letters, 2002(6); 52: 448-452.
    [69] Q. Xu, X.H. Zhang, J.C. Han, X.D. He, V.L. Kvanin, “Combustion synthesis and densification of titanium diboride-copper matrix composite”, Materials Letters, 2004; 57(28): 4439-4444.
    [70] Y.J. Kwon, M. Kobashi, T. Choh, N. Kanetake, “Fabrication and simultaneous bonding of metal matrix composite by combustion synthesis reaction”, Scripta Materialia, 2004; 50(5): 577-581.
    [71] X.H. Zhang, X.D. He, J.C. Han, W. Qu, V.L. Kvalin, “Combustion synthesis and densification of large-scale TiC-xNi cermets”, Materials Letters, 2002; 56(3): 183-187.
    [72] J.C. Han, X.H. Zhang, J.V. Wood, “In-situ combustion synthesis and densification of TiC-xNi cermets”, Materials Science and Engineering, 2000; A280(2): 328-333.
    [73] 贾均红,吕晋军,周惠娣,“镍基复合材料在水环境中的摩擦学性能及磨损技机理的研究”,材料科学与工程学报,2004; 22(1): 28-32.
    [74] B. Yang, F. Wang, J.S. Zhang, “Microstructural characterization of in situ TiC/Al and TiC/Al-20Si-5Fe-3Cu-1Mg composites prepared by spray deposition”, Acta Materialia, 2003; 51(17): 4977-4989.
    [75] 杨瑞成,王军民,王夏冰,“碳化物增强钢基复合材料的奥氏体化行为”,甘肃工业大学学报,1998; 24(9): 22-26.
    [76] 孙志平,王一三,丁义超,“铸造烧结VC-Fe 基表面复合材料”,铸造技术,2001; (5): 46-48.
    [77] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori, “Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique”, Journal of Alloys and Compounds, 2001; 327(1-2): 240-247.
    [78] L. Lu, M.O. Lai, Y. Su, H.L. Teo, C.F. Feng, “In situ TiB2 reinforced Al alloy composites”, Scripta Materialia, 2001; 45(9): 1017-1023.
    [79] P.C. Maity, P.N. Chakraborty, S.C. Panigrahi, “Al-Al2O3 in situ particle composites by reaction of CuO particles in molten pure Al”, Materials Letters, 1997; 30(2-3): 147-151.
    [80] 包崇高,王恩泽,高义民,“颗粒体积分数对Al2O3/钢基复合材料高温抗磨性的影响”,复合材料学报,2001; 18(2): 61-64.
    [81] 匡加才,张长瑞,江大志,“碳纤维增韧增强氮化硅陶瓷基复合材料力学性能的数值模拟”,高科技纤维与应用,2002; 27(3): 31-33.
    [82] R.F.Shyu , F.T.Weng , C.T.Ho, “In situ reacted titanium nitride-reinforceed aluminium alloy composite”,Journal of Material Processing Technology, 2002; 122 (2-3): 301-304.
    [83] 林文松,李元元,“颗粒强化钢基铸造复合材料的研究现状与展望”,粉末冶金工业,2001; 14(4): 25-29.
    [84] B.S Terry,O.S Chinyamakobvu,“In situe production of Fe/TiC composites by reaction in liquid iron alloys ”,J , Master .Sci Letter ,1991; (10): 618-629.
    [85] 沃丁柱,“复合材料大全”,北京化学工业出版社,2000.
    [86] 〔美〕邹祖讳主编,“复合材料的结构与性能”,吴人洁等译,科学出版社,1999.
    [87] 叶恒强等,“材料界面结构与特性”,科学出版社,1999.
    [88] 骆灼旋,“铸造金属基复合材料及其应用前景”,特种铸造及有色金属,1991; (6): 36-38
    [89] AJ Cook,P.S Werner,“Pressure infiltration casting of metal matrix composites”,Materials Science and Engineering,1991; A144: 189-206.
    [90] M K Aghajanian,M A Rocazella,J T Burke“,The fabrication of metal matrix composites by a pressureless infiltration technique”,Journal of Materials Science,1991; 26: 447-454.
    [91] 李恒德,肖纪美,“材料表面与界面”,清华大学出版社,1990.
    [92] 肖纪美,朱逢吾,“材料能量学”,上海科学技术出版社,1999.
    [93] 王恩泽,徐学武,邢建东,“颗粒增强钢基复合材料研究”,材料科学与工程,1996; 14(4): 27-29.
    [94] 潘冶,“铸造金属基颗粒复合材料”,机械科学与技术,1995; (3): 5-7.
    [95] 〔澳大利亚〕M V 斯温,“陶瓷的结构与性能”,科学出版社,1998.
    [96] 钦征骑,“新型陶瓷材料手册”,江苏科学技术出版社,1996.
    [97] 王武孝,袁森,“铸造法制备颗粒增强金属基复合材料的研究进展”,铸造技术,2001; (2): 42-45.
    [98] 张国定,“金属基复合材料界面问题”,材料研究学报,1997; 11(6): 649-657.
    [99] 吴人洁,“金属基复合材料的发展现状与应用前景”,航空制造技术,2001; (3): 19-22.
    [100] 长谷川正义著,“喷散弥散强化合金”,卡为一译,北京国防出版社,1986.
    [101] 王恩泽,包崇高,邢建东等,“氧化铝/耐热纲基复合材料的研究”,铸造设备研究,1998; (6): 46-48.
    [102] 迁川正人,富永正须,日野害,川本信,溶湯搅拌法にょゐAl—Si/ァルミナ粒子復合材料の气泡と摩耗,铸物,1992; 64(7): 443-448.
    [103] 刘江,彭晓东,刘相果,权燕燕,“搅拌铸造法反应合成金属间化合物增强铝基复合材料”,铸造,2003; 52(5): 336-339.
    [104] 李凤平,“金属基复合材料的发展与研究现状”,玻璃钢/复合材料,2004; (1): 48-52.
    [105] U. S. Patent, No 1072026 (1913), Method of making resistant surface .
    [106] 王恩泽,郑燕青,邢建东等,“铸渗法制备颗粒增强钢基复合材料的研究”复合材料学报,1998; 15(2): 12-17.
    [107] 王溪,胡汉起,“WCp/Fe-Ni 钢基复合材料的界面”,钢铁研究学报,1998; 10(4): 46-49.
    [108] 赵宇光,“仿生梯度耐磨铸造钢基复合材料”,吉林大学博士学位论文,2000.
    [109] 张军,童杏林,曹彪,“超重力场铸渗表面合金化研究”,第61届世界铸造会议论文集,铸造杂志社,1995; 215-223.
    [110] 松下润二,“远心铸造法にょゐAl-11%Si 合金基の表面复材の制造”,铸物,1985; (2): 102-105.
    [111] 徐大庆,罗吉荣,宋秉军,“V-EPC 铸渗工艺的研究”,铸造设备研究,1999; (2): 3-6.
    [112] 王金华,“悬浮铸造”,国防工业出版社,1982.
    [113] 赵宇光,任露泉,姜启川等,“液态金属处理工艺及装置”发明专利,中国专利:ZL96113139X,2000.
    [114] 阎久林,赵宇光,佟金等,“ZG25Mn2、ZG75Mn13 基梯度耐磨表面及其耐磨性”,中国机械,2000; (8): 949-951.
    [115] L.X. Hu, E.D. Wang,“Fabrication and mechanical properties of SiCw/ZK51A magnesium composites by two-step squeeze casting”,Mater. Sci. Eng., 2000; A278: 267-271.
    [116] V. Kevorkijan, T. Smolar, M. Jelen,“Fabrication of Mg-AZ80/SiC composites bars by pressureless and pressure-assisted infiltration”,Am. Ceram. Soc. Bull, 2003; (7): 9201-9208.
    [117] 边涛,潘颐,崔岩,“金属基复合材料的自发浸渗制备工艺”,材料导报,2002; (1): 21-24.
    [118] P. Vervoortz.“Extrusion of spray deposited QE22 magnesium alloy and composite”,Powder Metal,1995; 38(2): 98-102.
    [119] 惠希东,王执福,杨院生等,“液态反应法制备TiCp 增强铸造Fe-Cr-Ni 基复合材料”,金属学报,1998; 34(10): 1115-1120.
    [120] 严有为,魏伯康,林汉同等,“金属基原位(in siteu)复合材料的研究现状及发展趋势”,特种铸造及有色合金,1998; (1): 47-49.
    [121] K.P. Rao, Y.J. Du, “In situ formation of titanium silicides-reinforced TiAl-based composites”, Materials Science and Engineering, 2000; A277(1-2): 46-56.
    [122] D.C. Jia, Y. Zhou, “Mechanical properties and fracture behavior SiCw reinforced Al-12Ti alloy prepared by mechanical alloying technique”, Materials Science and Engineering, 1998; A252(1): 44-52.
    [123] L. Lu, M.O. Lai, C.W. Ng, “Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying”, Materials Science and Engineering, 1998; A252(2): 203-211.
    [124] A. Calka, A.P. Radlinski, “Formation of amorphous Fe-B alloys by mechanical alloying”, Applied Physics Letters, 1991; 58(2): 119-121.
    [125] J.S. Benjamin, “Dispersion strengthened superalloys by mechanical alloying”, Metallurgical Transactions, 1970; 1: 2943-2951.
    [126] 朱心昆,林秋实等,“机械合金化的研究与进展”,粉末冶金技术,1999; 17(4): 291-296.
    [127] M. Nagumo, “Reaction milling of metals with hydrocarbon or ceramics(overview)”, Mate . Trans, 1995; 36(2): 170-175.
    [128] E. Arzt, L. Schulta, “New Materials by Mechanical Alloying Techniques”, Calw-Hirsau (FRC), 1989.
    [129] A.G.. Merzhanov, V. M. Shikro, Authors certificate application. SU255221, 1967.
    [130] 王克智,高秋凡,陈新力,“离心SHS 法钢管涂敷陶瓷层致密化机制的探讨”,钢铁,1995; 30(10): 33-36.
    [131] J. Surbrahmanyam, M. Vijayakumar, “Self-Propagating High-Temperature Synthesis”, Mater. Sci. 1992; 27(23): 6249-6273.
    [132] 符寒光,邢建东,蒋志强,“自蔓延高温合成技术的发展及其在冶金工业应用的展望”,上海金属,2002; 24(1): 37-41.
    [133] 佐多延博,“SHS 法材料合成技术与应用”,工业火药(日),1988; 49(4): 242-248.
    [134] H.C. Yi, J.J. Moore, “Review: Self-propagating high-temperature (combustion) synthesis (SHS) of powder compacted materials”, Journal of Materials Science, 1990; 25: 1159-1168.
    [135] J.J. Moore, H.J. Feng, “Combustion synthesis of advanced materials: Part Ⅰ. Reaction parameters”, Progress in Materials Science, 1995; 39(4-5): 243-273.
    [136] J.J. Moore, H.J. Feng, “Combustion synthesis of advanced materials: Part Ⅱ. Classification, applications and modelling”, Progress in Materials Science, 1995; 39(4-5): 275-316.
    [137] A.G. Merzhanov, “Combustion Progress in Chemical Technology and Metallury”, 1975.
    [138] 殷声,“自蔓延高温合成技术和材料”,北京冶金工业出版社,1995.
    [139] A.G. Merzhanov, “History of new development in SHS”,J Mater Pro Tech,1996; 56: 440-447.
    [140] A.G. Merzhanov, “Self-prooagating high temperatures synthesis: twenty years of search and fingding”, In: Combustion and Plasma. Edited by Z A Munir . New York: VCH Publisher, 1990.
    [141] 傅正义,王皓,王为民,“采用SHS/QP 技术制备TiC-xNi 金属陶瓷”,复合材料学报,1997; 14(2): 56-59.
    [142] 刘海峰,刘耀辉,于思荣,“原位合成VC 颗粒增强钢基复合材料组织及其形成机理”,复合材料学报,2001; 18(4): 58-63.
    [143] 刘海峰,“凝固结合高碳高钒系高速钢/结构钢双金复合材料的基础研究”,吉林大学博士学位论文,2000.
    [144] 陈俊,边建华,刘常胜等,“原位TiC 颗粒强化的Fe-Cr-Ni 及复合材料的拉伸性能”,钢铁研究学报,2001; 13(5): 55-59.
    [145] 王一三,张欣菀,李凤春等,“反应铸造生成Fe-TiC 梯度表面复合材料的研究”,热加工工艺,1999; (4): 13-15.
    [146] 王一三,黄文,曾光廷, “铸渗表面耐磨复合层的研究”,铸造,1999; (4): 19-22.
    [147] C. Raghunath, M.S. Bhat, P.K. Rohatgi, “In situ technique for synthesizing Fe-TiC composites”, Scripta.1995; (4): 577-580.
    [148] 严新炎,孙国雄,“SHS 铸造技术在材料制备中的应用”,稀有金属材料与工程,1996; 25(1): 5-8.
    [149] 崔鸿芝,李惠琪,毕勇,“自蔓延高温合成技术在表面冶金强化中的研究与应用”,机械工程材料,1996; 20(4): 23-25.
    [150] 石力开,“新材料的发展趋势及其在我国的发展状况”,科技成果纵横,1996; 27(6): 24-26.
    [151] 胡恒康,赵天林,吴志平等,“陶瓷钢铁复合管在火电厂的应用”, 中国电力,1997; 30(2): 30-31.
    [152] J.M. Brupbacher, L. Christodoulou, D.C. Nagle, “Process for Forming Metal Ceramic Composites”, 1987; US Patent No. 4,710,348.
    [153] J.M. Brupbacher, L. Christodoulou, andD.C. Nagle, “Rapid Solidification of Metal-Second Phase Composites”, 1989; US Patent No. 4,836,982.
    [154] 朱和国,吴申庆,“自生铝基复合材料的制备、性能及生成机理”,材料导报,1998; 12(4): 61-64.
    [155] D.C.V. Aken, P.E. Krajewski, G.M. Vyletel, J.E. Allison, J.W. Jones, “Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite”, Metallurgical and Materials Transactions, 1995; 25A: 1395-1405.
    [156] G.M. Vyletel, J.E. Allison, and D.C. Van Aken, “The effect of matrix microstructure on cyclic response and fatigue behavior of particle-reinforced 2219 aluminum: Part I. Room temperature behavior”, Metallurgical and Materials Transactions, 1995; 26A: 3143-3154.
    [157] 张国军,金宗哲等,“材料的原位合成技术”,材料导报,1997; 11(2): 1-4.
    [158] M.K. Anhajanian, “Properties and microstructure of Lanxide Al2O3/Al ceramic composite materials”, J. Mat. Sci, 1989; 24: 658-662.
    [159] B.L. Lee, M.A. Einarsurd, “Low-temperature synthesis of aluminum nitride via liquid-liquid mix carbothermal reduction”, J. Mater. Sci. Lett. ,1990;9: 1389-1393.
    [160] T.A. Kircher, “In Metal Matrix, Carbon and Ceramic Matrix composite (Conf Proc)”, 1989; NASA.
    [161] 鲁玉祥,杨德庄,陶春虎,“NiAl 金属间化合物热爆合成动力学的研究”,材料科学与工艺,1997; 5(4): 5-9.
    [162] 曾松岩,张二林,李庆春,“一种新型的制备金属基复合材料的方法—接触反应法”,宇航材料工艺,1995; (5): 27-32.
    [163] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, Q.F. Guan, H.Q. Liang, “In-situ synthesis of TiC from nanopowers in a molten magnesium”, Materials Research Bulletin, 2003; 38: 1387-1392.
    [164] Q.C. Jiang, H.Y. Wang, J.G. Wang, Q.F. Guan, C.L. Xu, “Fabrication of TiCp/Mg composites by thermal explosion synthesis reaction in molten magnesium ”, Materials Letters, 2003; 57: 2580-2583.
    [165] Q.C. Jiang, X.L. Li, H.Y. Wang, “Fabrication of (TiB2-TiC)/AZ91 magnesium matrix composites”, Scripta Materialia, 2003; 48: 713-717.
    [166] 张二林,曾松岩,曾晓春,李庆春,“Al/TiC 复合材料中TiC 生成规律的研究”,粉末冶金技术,1995; 13(3): 170-173.
    [167] E.L. Zhang, S.Y. Zeng, X.C. Zeng, Q.C. Li, “Phase consititute and micrography of reaction synthesis of Al-Ti-C system”, Acta Metal Sinica, 1995; 8(2): 130-136.
    [168] 张虎,高文理,张二林,曾松炎,“TiAlB 合金中初生TiB_2 的形貌及其形成机理”,北京航空航天大学学报,2002;28(5): 540-543.
    [169] H. Asanuma, M. Hirohashi etal, “Fabrication of in situ Al3Ti/Al composite, Advancement in Synthesis and Process[Proc. conf] ”, Toronto, Canada, 1992.
    [170] Q.F. Guan, Q.C. Jiang, YQ. Zhao, C.H. Liu, “In situ production of Fe-TiC composites by self-propagative high-temperature synthesis reaction in liquid iron alloy”, ISIJ International, 2002; 42(6): 673-675.
    [171] Q.C. Jiang, Y. Wang, H.Y. Wang, B.X. Ma, Z.Q. Zhang, “In situ synthesis of TiB2 Particulate locally reinforced steel matrix composites by the self-propagating high temperature synthesis reaction of Al-Fe-Ti-B system during casting”, ISIJ International, 2004; 44(11): 1847-1851.
    [172] D.C. Dunand, A. Mortensen, J.L. Sommer, “Synthesis of bulk and reinforced nickel aluminides by reactive Infiltration”, Metallurgical and Materials Transactions, 1993; 24A: 2161-2170.
    [173] Q. Dong, L.Q. Chen, M.J., Zhao, J. Bi, “Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process”, Materials Letters, 2004; 58(6): 920-926.
    [174] D. Tiberghien, J. Lapin, S. Ryelandt, F. Delannay, “Processed by reactive squeeze-infiltration of aluminium into a preform of steel fibres”, Materials Science and Engineering, 2002; A323(1-2): 427-435.
    [175] F. Wagner, D.E. Garcia, A. Krupp, N. Claussen, “Interpenetrating Al2O3-TiAl3 alloys produced by reactive infiltration”, Journal of the European Ceramic Society, 1999; 19(13-14): 2449-2453.
    [176] C.N. Chu, T.Oktay, N.Saka, N.P. Suh, “Dispersion-strengthened alloys by the mixalloying process”, ASME Transactions Journal of Engineering for Industry, 1991; 113: 481-485.
    [177] J.M. Han, Y.S. Han, S.Y. You, H.S. Kim, “Mechanical behaviour of a new dispersion-strengthened bronze”, Journal of Materials Science, 1997; 32(24): 6613-6618.
    [178] Z. Liu, H. Fredriksson, “On the precipitation of TiC in liquid iron by reactions between different phase”, Metallurgical and Materials Transactions, 1997; A28: 471-483.
    [179] A. T. Tang, F. S. Pan, et al, “Reactive Products of carbothermic reduction of ilmenite in mixed air for iron based Ti(C, N) composite”, Material Science Forum,2003; 437: 149-153.
    [180] 李奎,汤爱涛,潘复生,“金属基复合材料原位反应合成技术现代与展望”,重庆大学学报,2002; 25(9): 155-160.
    [181] X. Gu, R.J. Hand, “The production of reinforced aluminium/alumina bodies by directed melt oxidation”, Journal of the European Ceramic Society, 1995; 15(9): 823-831.
    [182] X. Gu, R.J. Hand, “The use of lithium as a dopant in the directed melt oxidation of aluminium”, Journal of the European Ceramic Society, 1996; 16(9): 929-935.
    [183] K.B. Lee, H. Kwon, “Interfacial reactions in SiCP/Al composite fabricated by pressureless infiltration”, Scripta Materialia, 1997; 36(8): 847-852.
    [184] S. Khatri, M. Koczak, “Formation of TiC in situ processed composites via solid-gas, solid-liquid and liquid-gas reaction in molten Al-Ti”, Materials Science and Engineering, 1993; A162: 153-162.
    [185] X.C. Tong, H.S. Fang, “Al-TiC composite in situ processed by ingot metallurgy and rapid solidification technology: Part 1 Microstructural evolution”, Metallurgical and Materials Transactions, 1998; 29A: 875-891.
    [186] A.M. Kanury, “A kinetic model for metal+nonmetal reactions”, Metallurcical Transactions, 1992; 23A: 2349-2356.
    [187] T. Nukami, M.C. Flemings, “In situ synthesis of TiC particulate-reinforced aluminum matrix composites”, Metallurgical and Materials Transactions, 1995; A26, 1877-1884.
    [188] E.L. Zhang, B. Yang, S.Y. Zeng, Q.C. Li, “Formation mechanism of TiC in Al/TiC composites prepared by direct reaction synthesis”, Transactions of Nonferrous Metals Society of China, 1998; 8(1): 92-96.
    [189] E.L. Zhang, S.Y. Zeng, X.C. Zeng, Q.C. Li, “Reaction synthesis of Al/TiC composites and the effect of Al content”, Rare Metals, 1996; 15(1): 41-44.
    [190] W.C. Lee, S.L. Chung, “Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system”, Journal of American Ceramic Society, 1997; 80(1): 53-61.
    [191] A.M. Kanury, “A kinetic model for metal+nonmetal reactions”, Metallurcical Transactions, 1992; 23A: 2349-2356.
    [192] L. Lu, M.O. Lai, Y.H. Toh, L. Froyen, “Structure and properties of Mg-Al-Ti-B alloys synthesized via mechanical alloying”, Materials Science and Engineering, 2002; A334(1-2): 163-172.
    [193] M.O. Lai, L.Lu, B.Y. Chung, “Formation of Mg-Al-Ti/MgO composite via reduction of TiO2”, Composite Structures, 2002; 57(1-4): 183-187.
    [194] M. S. El-Eskandarany, H.N. El-Bahnasawy, H.A. Ahmed, N.A. Eissa, “Mechanical solid-state reduction of haematite with magnesium”, Journal of Alloys and Compounds, 2001; 314(1-2): 286-295.
    [195] N.Q. Wu, S. Lin, J.M. Wu, Z.Z. Li, “Mechanosynthesis mechanism of TiC powders”, Materials Science and Technology, 1998; 14: 287-291.
    [196] M. Atzmon, “In situ thermal observation of explosive compound-formation reaction during mechanical alloying”, Physical Review Letters, 1990; 64(4): 487-490.
    [197] 顾宜,“材料科学与工程基础”,北京化学工业出版社,2002.
    [198] 张静,潘复生,陈万志,“铁基复合材料的现状和发展”. 材料导报,1995; 1: 67-71
    [199] 严有为,魏伯康,梅志,“铸造原位(In Situ)TiCP/Fe 复合材料制备工艺的研究”, 铸造,1998; (4): 5-8.
    [200] 李文超,“冶金与材料物理化学”,北京冶金工业出版社,2001.
    [201] 徐祖耀,“金属材料热力学”,北京科学出版社, 1981.
    [202] 王正烈,周亚平,“物理化学”,北京高等教育出版社,2001.
    [203] 吴长春,“冶金热力学”,北京机械工业出版社,1993.
    [204] 董若璟,“冶金原理”,北京机械工业出版社,1980.
    [205] 梁英教,车荫昌,刘晓霞,“无机物热力学数据手册”,辽宁东北 大学出版社,1993.
    [206] 王慧远,“镁基复合材料内生TiC 颗粒自蔓延形成反应”,吉林大学硕士学位论文,2002.
    [207] 赵宇光,姜启川,任露泉,秦庆东,“Fe-C-Ti-Mn 合金系中TiC原位生成反应的热力学分析”, 吉林大学学报(工学版),2004; 34 (1): 1-6.
    [208] Choi Y, Rhee S W, “Effect of aluminium addition on the combustion reaction of titanium and carbon to form TiC”, Mater Sci, 1993; 28: 6669-6675.
    [209] 王旭中,田瑞生,刘进益,徐启昆,傅典志,张丁非,“ZG25Mn18Cr4热处理强韧化组织结构根据的研究”,金属热处理学报, 1996; 17(1): 27-32.
    [210] 吴锦波,“铝基复合材料的发展和现状”,材料科学与工程,1992; 10(1): 6-12.
    [211] 虞觉奇,易文质,陈邦迪,陈宏鉴,“二元合金状态图集”. 上海科学技术出版社,1987.
    [212] 蔡俊鸿,“金属材料磨损及其影响因素”,四川冶金,1994; 4: 53-58.
    [213] Framkhoussr, W.L. Kieszek, M .G.Brendley, K.W Gasless, “Combustion of Refractory Compounds.Park Ridge”, New York, Noyes 1985; (3): 152-157.
    [214] 许斌,冯承明,杨胶溪,“碳化钨-高铬铸铁表面复合材料耐磨粒磨损性能的研究”,摩擦学学报,1998; 18(4): 22-26.
    [215] 严有为,魏伯康,傅正义等,“淬火处理对原位TiCp/Fe 复合材料组织及耐磨性的影响”,摩擦学学报,2000; 20(1): 6-11.
    [216] 王健安,“金属学与热处理(下册)”,北京机械工业出版社,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700