用户名: 密码: 验证码:
轧制及反应退火制备微叠层TiB_2-TiAl复合材料板组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足超音速飞行器和未来涡轮发动机以及壳体热防护系统对800~1000oC使用的轻质高强合金薄板的迫切需求,TiAl基合金板材的开发与制备至关重要。然而由于本质脆性,直接轧制脆性的TiAl基合金锭制备板材十分困难,因而本文通过热轧塑性变形良好的多层Ti-(TiB_2/Al)复合板及后续的多步热处理成功制备出微叠层TiB_2-TiAl复合材料板材并采用真空热压烧结致密化处理显著提高了其致密度。探索并优化了TiAl基复合材料板材的制备工艺,利用扫描电镜(SEM)、X射线衍射(XRD)和透射电镜(TEM)系统研究了反应退火过程中反应层的相组成及反应动力学并揭示了其反应机理,探讨了TiB_2含量对TiAl基复合材料组织成分与力学性能的影响,并合理表征和评价了微叠层TiB_2-TiAl复合材料板的组织结构及力学性能。
     利用热压及热轧制成功制备出界面结合良好的多层Ti-(TiB_2/Al)复合板。为保证多层Ti-(TiB_2/Al)复合板层厚均匀,轧制变形量不宜超过65%。TiB_2/Al复合材料板取代多层Ti-Al复合板中的纯Al板,显著改善多层复合板的变形协调性。变形协调性的改善有利于设计和控制最终TiAl基复合材料的组织成分。
     多层Ti-(TiB_2/Al)复合板在520~700oC低温反应退火时,TiAl_3相为首要产物,TiB_2不参与反应与扩散。TiAl_3层形成和生长是反应扩散过程,且伴随其有序-无序转变。TiAl_3层向TiB_2/Al层的生长速率高于向Ti层的生长速率。铝熔点(660oC)以下反应退火时,TiAl_3层生长遵循抛物线生长动力学规律;铝熔点及以上反应退火时,TiAl_3层生长遵循直线生长动力学模式。基于对低温退火反应动力学研究,再综合考虑退火过程中不能发生Al大量熔化流出及尽量减少TiAl_3层中孔洞产生,确定660oC为最佳低温反应退火温度。
     低温反应退火过程中存在Kirkendall效应,Al消耗完全后,TiAl_3层中间位置形成疏松多孔的TiB_2堆积层,严重降低材料的致密度与力学性能。1225oC/2h/60MPa条件下的真空热压烧结能显著提高多层复合材料板材的致密度,且致密化过程不引入二次裂纹。随后在950~1200oC高温反应退火时,反应扩散继续进行,TiB_2亦不参与反应,最终得到层状TiB_2-TiAl-Ti3Al复合板。继续在1400oC片层化热处理22min,制备出由少量γ-TiAl连接着大量TiB_2颗粒的TiB_2-rich层和近全片层组织的γ-TiAl层交替排列的微叠层TiB_2-TiAl复合材料板材。TiB_2-rich层存在显著地限制α2γ片层组织粗化。且TiB_2-rich层中TiB_2与γ-TiAl间界面结合良好、局部区域存在位向关系:[1100]TiB_2//[112]TiAl和(001)TiB_2//(111)TiAl。
     通过研究TiB_2含量对TiAl基复合材料板材组织成分与性能的影响,发现微叠层2.6vol.%TiB_2-TiAl具有最佳的成分、组织结构、最小的密度和最高的弹性模量,其值达到172.15GPa。
     断裂韧性试验表明,微叠层TiB_2-TiAl复合材料板表现出良好的断裂韧性,随着TiB_2-rich层增厚,断裂韧性增加。且断裂韧性强烈地依赖于加载方向,2.6vol.%TiB_2-TiAl复合材料板平行于法向的断裂韧性值达到15.12MPa·m1/2,比平行于横向的断裂韧性值提高27.6%。TiB_2-rich层对裂纹扩展的阻碍和令裂纹发生的偏转及TiB_2-rich层内产生的大量微裂纹即微裂纹增韧均使裂纹在扩展中消耗能量增加,是平行于法向的断裂韧性显著高于平行于横向的主要原因。
     随拉伸测试温度升高,微叠层TiB_2-TiAl复合材料板强度先增加后减小,延伸率增加,弹性模量减小。750oC时屈服强度达到最大值为339.92MPa。可见,微叠层TiB_2-TiAl复合材料板材是具有一定发展潜力的高温轻质结构材料。TiB_2的强化作用和TiB_2-rich层对α2γ片层组织的细化作用是导致其高温性能提高的主要原因。
     断裂研究表明,裂纹首先在TiB_2-rich层中萌生,当继续加载,裂纹穿过TiB_2-rich层到达TiAl层,产生沿片层微裂纹或穿片层微裂纹,沿片层微裂纹通过主裂纹与沿片层微裂纹的连接及剪切而扩展;穿片层微裂纹依靠对沿片层和穿片层两种形式微裂纹的连接进行扩展。
In order o satisfy the requirements of supersonic aircrafts, future gas turbineengines and thermal protection systems for high-strength light-density alloy sheetsapplied in the range of800~1000oC, it is of crucial importance for development andmanufacture of TiAl-based alloy sheets. However, owing to intrinsic brittleness, it israther difficult to to fabricate TiAl-based alloy sheets by means of direct rolling ofTiAl-based alloy ingots. Therefore, in this paper micro-laminated TiB_2-TiAlcomposite sheets have been successfully produced by the processing route of hotrolling multi-layered Ti-(TiB_2/Al) composite sheets which have excellent plasticdeformation capacity and subsequent multistep heat treatment. The relative densityof micro-laminated TiB_2-TiAl composite sheets has been significantly improved byhot-pressing sintering densification process. Preparation processes of TiAl matrixcomposite sheets were investigated and optimized. Phase compositions of thereaction layer and reaction kinetics in the process of reaction annealing weresystemically studied by scan electron microscopy (SEM), X-ray diffraction (XRD)and transmission electron microscopy (TEM) and the reaction mechanism wasrevealed. In addition, the effect of volume fractions of TiB_2on microstructures andmechanical properties of TiAl matrix composite sheets were investigated. Moreover,microstructures and mechanical properties of micro-laminated TiB_2-TiAl compositesheets were reasonably characterized and evaluated.
     Multi-layered Ti-(TiB_2/Al) composite sheets with good interface bonding canbe fabricated by hot pressing and hot rolling. However, rolling deformationreduction in thickness should be not more than65%to ensure the thicknessuniformity of Ti and TiB_2/Al composite layers. Deformation compatibility ofmulti-layered Ti-Al composite sheets have been pronouncedly improved by thereplacement of pure Al sheets by TiB_2/Al composite sheets, which is benefit fordesigning and controlling compositions and microstructures of resulting TiAl matrixcomposite sheets.
     For multi-layered Ti-(TiB_2/Al) composite sheets, after the initial reactionannealing between520oC and700oC, TiAl_3was primary phase and the introductionof TiB_2has little influence on reaction and diffusion between Ti and Al. Formationand growth of TiAl_3layer is a reaction-diffusion process accompanied withorder-disorder transition and Growth velocity of TiAl_3towards TiB_2/Al layer ismuch faster than that towards Ti layer. When annealing temperature is below themelting point of pure Al (660oC), growth of TiAl_3layer is in consistent with theparabolic growth law, while annealing temperature is the melting point of pure Al or above, its growth accords with linear growth law. Based on reaction kinetics,controlling leakage of liquid Al and reducing formation of pores within TiAl_3layer,optimum initial reaction annealing is660oC.
     Because of Kirkendall effect during initial raction annealing, when Al has beenexhausted, porous TiB_2layer forms in the middle of TiAl_3layer, which severelyreduces the laminate’s relative density and mechanical properties. Relative densityof micro-laminated TiB_2-TiAl composite sheets can be significantly improved byhot-press sintering in vacuum under60MPa at1225oC for2h, which avoidsformation of secondary cracks. When the laminate is subsequently annealed at950~1200oC, the reaction diffusion proceeds and TiB_2still keep stable. Finally,multi-layered TiB_2-TiAl-Ti3Al composite sheets are obtained. Finally,after lamellartreatment at1400oC for22min, micro-laminated TiB_2-TiAl composite sheetsconsisting of TiB_2-rich layer containing numerous TiB_2particles connected by asmall quantity of γ-TiAl and fully lamellar TiAl layer were obtained. Moreover, theinterface between TiB_2and TiAl phases exhibits sound bonding and follows theorientation relationship:[1100]TiB_2//[112]TiAland (0001)TiB_2//(111)TiAlwthin the localTiB_2-rich layer. TiB_2-rich layer significantly hinders growth of α2γ lamellar colony.Results indicate that2.6vol.%TiB_2-TiAl have optimum composition, microstructure,the lowest density and the highest elastic modulus value of172.15GPa.
     Fracture toughness testing shows that micro-laminated TiB_2-TiAl compositesheets exhibit excellent fracture toughness and with increasing thickness ofTiB_2-rich layer, fracture toughness increases. Furthermore, fracture toughnessdepends on loading direction, fracture toughness of2.6vol.%TiB_2-TiAl compositesheets parallel to normal direction (ND) is15.12MPa·m1/2, which is27.6%higherthan the value parallel to transverse direction (TD). TiB_2-rich layer hinderspropagation of cracks and induces crack deflection and crack branching, andmicrocrack toughening occurs. All above factors make crack propagation consumeamount of energy, which contributes to higher fracture toughness of themicro-laminated composite sheets in parallel to normal direction.
     With raising tensile testing temperature, strength of micro-laminated TiB_2-TiAlcomposite sheets increases firstly and then decreases, elongation increases andelastic modulus reduces. Yield strength at750oC reaches the highest value of339.92MPa. Therefore, miro-laminated TiB_2-TiAl composite sheets have potentialfor high temperature structural applications. Improvement of properties at hightemperature is because of strenghening of TiB_2and refinement of α2γ lamellarcolony due to existing of TiB_2-rich layer.
     Fracture research results show that initial cracks nucleate within TiB_2-richlayers. With increasing loading, cracks propagate into TiAl layer and interlamellar crack and translamellar cracks are produced. Interlamellar cracks propagate bynucleation, growth and linkage with interfacial microcracks, while translamellarcracks propagate by nucleation, growth and linkage with two different types ofmicrocracks, e. g. interface delamination and translamellar microcracks.
引文
[1] Sung S Y, Kim Y J. Modeling of tita nium alumi nide turbo-charger casting[J].Intermetallics,2007,15:468-47.
    [2] Wu X H. Review of alloy and process development of TiAl alloys[J].Intermetallics,2006,14:1114-1122.
    [3] Wang F, Fan Z K, Zhu J F. In-situ processing of A12O3-whisker reinforcedTiAl intermetallic composite[J]. Acta Metallurgica Sinica,2006,19(6):432-440.
    [4]Luo J G, Acoff V L. Using cold roll bonding and annealing to process Ti/Almulti-layered composites from elemental foils[J]. Materials Science andEngineering A,2004,379:164.
    [5]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2001:707-783.
    [6] Bartolotta P, Barret J, Kelly T, et al. The use of cast Ti-48Al-2Cr-2Nb in jetengines[J]. Journal of the Minerals Metals and Materials Society(JOM),997,49(5):48-50.
    [7] Denhams M. Gamma titan ium research and application in Germany andAustria[J]. Advanced Performance Materials,1994,1:157-182.
    [8] Fores F H, Suryanarayana C, Eliezer D. Synthesis, properties andapplications of titanium aluminides[J]. Journal of Materials Science,1992,27(19):5113-5140.
    [9]Zhang X J, Li Q, Zhao S Y, et al. Improvement in the oxidation resistance ofa gamma-TiAl-based alloy by sol-gelderived Al2O3film[J]. Applied SurfaceScience,2008,255:1860-1864.
    [10] Austin C M. Current status of gamma Ti aluminides for aerospaceapplications[J]. Current Opinion in Solid State and Materials Science,1999,4:239-242.
    [11] Forouzanmehr N, Karimzadeh F, Enayati M H. Study on solid-state reactionsof nanocrystalline TiAl synthesized by mechanical alloying[J]. Journal ofAlloys and Compounds,2009,471:93-97.
    [12]孔凡涛,陈子勇,田竞,等.提高TiAl基合金室温塑性的方法[J].稀有金属材料与工程,2003,23(2):81-86.
    [13] Liu C T, Schneibel J H, Maziasz P J, et al. Tensile properties and fracturetoughness of TiAl alloys with controlled microstructures[J]. Intermetallics,1996,4:429-440.
    [14] Bartels A, Kestler H, Cle mens H. Deformation behavior of differentlyprocessed γ-titanium alumin ides[J]. Materials Science and Engineering A,2002,329-331:153-162.
    [15] Clemens H, Lorich A, Eberhardt N, et al. Technology, properties andapplications of inte r met a llic γ-TiAl based alloys[J]. Zeitschrift FürMetallkunde,1990,90(8):569-580.
    [16] Appel F, Oehring M, Wagner R. Novel design concepts for gamma-basetitanium aluminide alloys[J]. Intermetallics,2000,8:1283-1312.
    [17] Alman D E, Hawk J A, Rawers J C. Processing intermetallic composites byself-propagating, high-Temperature Synthesis[J]. Journal of the MineralsMetals and Materials Society,1994,3:31-35.
    [18] Fukutomi H, Ueno M, Nakamura M, et al. Production of Sheet with OrientedLamellar Microstructure by diffusion reaction of aluminum and texturedtitanium foils[J]. Materials Transactions, JIM,1999,40(7):654-658.
    [19] Luo J G, Acoff V L. Processinggamma-based TiAl sheet materials by cycliccold roll bonding and annealing of elemental titanium and aluminum foils[J].Materials Science and Engineering A,2006,433:334-342.
    [20] Xu L, Cui Y Y, Hao Y L, et al. Growth of intermetallic layer inmulti-laminated Ti/Al diffusion couples[J]. Materials Science andEngineering A,2006,435-436:638-647.
    [21] Rowe R G, Skelly D W, Larsen M, et al. Microlaminated high temperarureintermetallic composites[J]. Scripta Metallurgica et Materialia,1994,31(11):1487-1492.
    [22] Rao K P, Prasad Y V R K. Processing map and hot working mechanisms in aP/M TiAl alloy composite with in situ carbide and silicide dispersions[J].Materials Science and Engineering A,2010,527(24-25):6589-6595.
    [23]冯旭东,袁庆龙,曹晶晶,等. TiAl基合金研究进展[J].航天技术制造,2009,3:35-38.
    [24] Ye Heng Qiang. Recent developments in high temperature intermetallicsresearch in China[J]. Intermetallics,2000,8:503-509.
    [25] Draper S L, Krause D, Lerch B, et al. Development and evaluation of TiAlsheet structures for hypersonic applications[J]. Materials Science andEngineering A,2007,464(1-2):330-342.
    [26] Okamoto H. Al-Ti(Aluminum-Titanium)[J].Journal of Phase Equilibria,1993,14(1):120-128.
    [27]惠林海,耿浩然,王守仁,等. Al3Ti金属间化合物的研究进展[J].稀有金属材料与工程,2007,31(9):1-6.
    [28]曲恒磊,周廉,魏海荣. TiAl高温氧化表面分析[J].稀有金属材料与工程,2000,29(2):90-93.
    [29] Qian Y H, Li M S, Lu B. Isothermal oxidation behavior of Ti3Al-based alloyat700-1000oC in air[J]. Transasions of Nonferrous Metals Society of China,2009,19:525-529.
    [30] Zupan M, Hemker K J. High temperature microsample tensile testing ofγ-TiAl[J]. Materials Science and Engineering A,2001,319-321:810-814.
    [31] Imayev R M, Imayev V M, Oehring M, et al. Alloy design concepts forrefined gamma titanium aluminide based alloys[J]. Intermetallics,2007,15:451-460.
    [32] Park H S, Nam S W, Kim N J, et al. Refinement of the lamellar structure inTiAl-based intermetallic compound by addition of carbon[J]. ScriptaMaterialia,1999,41(11):1197-1203.
    [33] Kawabata T, Tamura T, Izumi O. Effect of Ti/Al ratio and Cr, Nb, and Hfadditions on material factors and mechanical properties in TiAl[J].Metallurgical and Materials Transactions A,1993,24(1):141-150.
    [34] Imayev V, Imayev R, Khismatullin T, et al. Superplastic behavior ofTi-43Al-7(Nb, Mo)-0.2B alloy in the cast and heat-treated condition[J].Scripta Materialia,2007,57:193-196.
    [35] Hecht U, Witusiewicz V, Drevermann A, et al. Grain refinement by low boronadditions in niobium-rich TiAl-based alloys[J]. Intermetallics,2008,16:969-978.
    [36] Muto S, Yamanaka T, Johnson D R, et al. Effects of refractory metals onmicrostructure and mechanical properties of directionally solidified TiAlalloys[J]. Materials Science and Engineering A,2002,329-331:424-429.
    [37]贺跃辉,黄伯云.包套锻复合热机械处理技术中TiAl基合金显微组织细化机理[J].中南大学学报,1997,28(4):355-358.
    [38] Huang B Y, He Y H, Zhou K C, et al. Grain refining of TiAl alloy by rapiddeformation[J]. Materials Science and Engineering A,1997,239-240:709-712.
    [39]张伟,刘咏,黄劲松,等.复合热机械处理的Ti-Al-Nb-W-B合金组织演变[J].金属热处理学报,2007,32(10):1-5.
    [40]史耀君,杜宇雷,陈光.高铌钛铝基合金研究进展[J].稀有金属,2007,31(6):834-839.
    [41] Peng L M, Li Z, Li H. Effects of microalloying and ceramic particulates onmechanical properties of TiAl-based alloys[J]. Journal of Materials Science,2006,41:7524-7529.
    [42] Paul J D H, Appel F,Wagner R. The compression behavior of niobiumalloyed γ-titanium aluminides[J]. Acta Metallurgica,1998,46(4):1075-1085.
    [43]鲁玉祥,陶春虎,杨德庄.燃烧合成金属间化合物及其复合材料[J].机械工程材料,1996,20(1):1-5.
    [44]岳云龙,吴海涛,王志杰,等. TiAl金属间化合物的研究进展[J].济南大学学报(自然科学版),2004,18(1):31-34.
    [45] Emamy M, Mahta M, Rasizadeh J. Formation of TiB2particles duringdissolutionof TiAl3in Al-TiB2metal matrix composite using an in situtechnique[J]. Composites Science and Technology,2006,66:1063-1066.
    [46] Yeh C L, Su S H. In situ formation of TiAl-TiB2composite by SHS[J].Journal of Alloys and Compounds,2006,407:150-156.
    [47] Wang Y H, Lin J P, He Y H, et al. Microstructural characteristics ofTi-45Al-8.5Nb/TiB2composites by powder metallurgy[J]. Journal of Alloysand Compounds,2009,468:505-511.
    [48]吕祥鸿,杨延青,马志军.纤维增强TiAl金属间化合物基复合材料的发展[J].材料导报,2005,19(3):60-62.
    [49] Hirose A, Hasegawa M, Kobayashi K F. Microstructures and mechanicalproperties of TiB2particle reinforced TiAl composites by plasma arc meltingprocess[J]. Materials Science and Engineering A,1997,239-240:46-54.
    [50] Kampe SL, Bryant J D, Christodoulou L. Creep deformation of TiB2reinforced near-γ titanium aluminides[J]. Metallurgical and MaterialsTransactions A,1991,22:447-454.
    [51]高文理,张虎,张二林,等. TiAl/TiB2复合材料高温氧化膜的结构和形成机制[J].稀有金属材料与工程,2006,35(2):209-210.
    [52]黄旭,齐立春,李臻熙. TiAl基复合材料的研究进展[J].稀有金属材料与工程,2006,35(11):1845-1846.
    [53] Zhang R G, Acoff V L. Processing sheet materials by accumulative rollbonding and reaction annealing from Ti/Al/Nb elemental foils[J]. MaterialsScience and Engineering A,2007,463(1-2):67-73.
    [54]王芬.原位反应合成Al2O3(P, W)/Ti-Al复合材料的研究[D].西安:西安理工大学博士学位论文,2007:9-10.
    [55]刘咏,黄伯云,周科朝,等.粉末冶金γ-TiAl基合金研究的最新进展[J].航空材料学报,2001,21(4):50-51.
    [56]刘峰晓,贺跃辉,刘咏,等.粉末冶金制备TiAl基合金板材的研究现状及趋势[J].稀有金属材料与工程,2005,34(2):169-173.
    [57] Wang G X, Dahms M. An effective method for reducing porosity in thetitanium aluminum alloy Ti52Al48prepared by elemental power metallurgy[J].Scripta metallurgica et materialia,1992,26:1469-1474.
    [58]江垚,贺跃辉,汤义武,等.元素粉末冷轧成形及反应合成制备TiAl合金板材[J].中国有色金属学报,2004,14(9):1501-1507.
    [59]路新,赵丽明,曲选辉.粉末冶金TiAl金属间化合物的研究进展[J].材料导报,2006,20(8):69-72.
    [60] Wu Y, Li X W, Zhou S X, et al. Indirect extrusion of TiAl-basedintermetallics from elemental powders metallurgy[J].Journal of Iron and SteelResearch, International,2007,14(5):104-109.
    [61] Senkov N, Uchic M D. Microstructure evolution during annealing of anamorphous TiAl sheet[J]. Materials Science and EngineeringA,2003,340:216-224.
    [62] Gerling R, Bartels A, Clemens H, et al. Structural characterization and tensileproperties of a high niobium containinggamma TiAl sheet obtained bypowder metallurgical processing[J]. Intermetallics,2004,12(3):275-280.
    [63] Gerling R, Schimansky F P, Stark A, et al. Microstructure and mechanicalproperties of Ti-45Al-5Nb-(0-0.5C) sheets[J]. Intermetallics,2008,16:689-697.
    [64]张俊红,黄伯云,何跃辉,等. TiAl基合金板材制备技术的发展现状[J].材料导报,2002,16(2):16-18.
    [65] Zhang D M, Chen G Q, Han J C, et al. Macro-microscopic morphology andphase analysis of TiAl-based alloys sheet abricated by EB-PVD method[J].Transactions of Nonferrous Metals Society of China,2007,17:777-782.
    [66]林映红,周科朝,黄伯云,等.铸轧铝的组织性能及工艺新进展[J].粉末冶金材料科学与工程,2001,6(4):297-301.
    [67] Cook R, Grocock P G, Thomas P M, et al. Development of the twin-rollcasting process[J]. Journal of Materials Processing Technology,1995,55:76-84.
    [68] Kim K H, Suh B C, Bae J H, et al. Microstructure andtexture evolution ofMg alloys during twin-roll casting and subsequent hot rolling[J]. ScriptaMaterialia,2010,63:716-720.
    [69] Haga T, Tkahashi K, Ikawaand M, et al. Twin roll casting of aluminum alloystrips[J]. Journal of Materials Processing Technology,2004,153-154:42-47.
    [70] Takeyamaa M, Kobayashi S. Physical metallurgy for wrought gammatitanium aluminides Microstructure control through phase transformations[J].Intermetallics,2005,13:993-999.
    [71] Hanamura T, Hashimoto K. Improvement of microstructure and mechanicalproperties in TiB2-droped TiAl alloy by direct sheet casting[J]. MaterialsTransactions, JIM,1998,39:724-730.
    [72] Kim H Y, Sohn W H, Hong S H. High temperature deformation ofTi-(46-48)Al-2W intermetallic compounds[J]. Materials Science andEngineering A,1998,251(1-2):216-225.
    [73]信木捻,高桥顺次,迁本得藏. TiAl金属间化合物大型溶制材高温变形[J].日本金属学会杂志,1989,53(8):809-813.
    [74]章德铭,任先京,马江虹,等. TiAl基合金薄板制备技术的研究进展[J].宇航材料工艺,2009,2:15-20.
    [75] Koeppe C, Bartels A, Clemens H, et al. Optimizing the properties of TiAlsheet material for application in heat protection shields or propulsionsystems[J]. Materials Science and Engineering A,1995,201(1-2):182-193.
    [76] Wurzwallner K, Clemens H, Schretter P, et al. Forming of γ-TiAl-Alloys[C].Proceedings of1992Materials Research Society (MRS) Fall Meeting.Cambridge:Cambridge University Press,1992,288:867-872.
    [77] Bartels A, Kestler H, Clemens H. Deformation behavior of differentlyprocessedγ-titanium aluminides[J]. Materials Science and Engineering A,2002,329-331:153-162.
    [78] Semiatin S L, Seetharaman V. Deformation and microstructure developmentduring hot-pack rolling of near-gamma titanium aluminide alloy[J].Metallurgical and Materials Transactions A: Physical Metallurgy andMaterials Science,1995,26:371-381.
    [79] Semiatin S L, Ohls M, Kerr W R. Temperature Transients during hot packrolling of high temperature alloys[J]. Scripta Metallurgica et Materialia,1991,25:1851-1856.
    [80]张功才. TiAl金属间化合物薄板的等温轧制设备及其工艺[J].钛合金信息,1996,1:7-8.
    [81] Imayev R M, Imayev V M, Kuznetsov A V. Novel Approaches tothermomechanical processing of ingot-metallurgy γ-TiAl based alloys[C].Proceedings of the10th World Conference on Titanium, Hamburg,2003:2257-2264.
    [82] Imayev V M, Imayev R M, Kuznetsov A V, et al. Microstructure, texture andsuperplastic properties of an Intermetallic Ti-45.2Al-3.5(Nb, Cr, B) alloysubjected to deformation and rolling below the eutectoid temperature[J].Russian Metallurgy (Metally),2005,2005(1):77-85.
    [83]张伟,刘咏,黄伯云,等.钛铝合金薄板成形技术的发展及应用研究[J].稀有金属快报,2008,27(5):4.
    [84]缪家士,林均品,王艳丽,等.高铌钛铝基合金板材的高温包套轧制[J].稀有金属材料与工程,2004,33(4):436-438.
    [85]张俊红,黄伯云,周科朝,等.包套轧制制备TiAl基合金板材[J].中国有色金属学报,2001,11(6):1055-1058.
    [86]杨非,孔凡涛,陈玉勇,等. TiAl合金板材的制备及研究现状[J].材料工程,2010,5:96-100.
    [87] Fang W B, Hu L X, He W X, et al. Microstructure and properties of a TiAlalloy prepared by mechanical milling and subsequent reactive sintering[J].Materials Science and Engineering A,2005,403:186-190.
    [88] Jakob A, Speidel M O. Microstructural and tensile properties of TiAlcompounds formed by reactive foil metallurgy[J]. Materials Science andEngineering A,1994,189(1-2):129-136.
    [89] Loo F J J V, Rieck G D. Diffusion in the titanium-aluminum system-Ibetween solid Al and Ti or Ti-Al alloys[J]. Acta Metallurgica,1973,21:61-71.
    [90] Loo F J J V, Rieck G D. Diffusion in the titanium-aluminum system-IIinterdiffusion in the composition range between25and100at.%Ti[J]. ActaMetallurgica,1973,21:73-84.
    [91] Chaudhari G P, Acoff V L. Titanium aluminide sheets made using rollbonding and reaction annealing[J]. Intermetallics,2010,18:472-478.
    [92] Peng L M, Wang J H, Li H, et al. Synthesis and microstructuralcharacterization of Ti-Al3Ti metal-intermetallic laminate(MIL)composites[J].Scripta Materialia,2005,52:243-248.
    [93] Peng L M, Li H, Wang JH. Processing and mechanical behavior of laminatedtitanium-titanium tri-aluminide(Ti-Al3Ti)composites[J]. Materials Scienceand Engineering A,2005,406:309-318.
    [94]孙彦波,赵业青,张迪,等.箔-箔法制备叠层Ti-Al系金属间化合物基合金板材[J].中国有色金属学报,2010,20(专辑1):s1064-s1067.
    [95]李晓海,陈贵清,韩杰才,等. EB-PVD法制备微层材料的研究[J].宇航材料工艺,2005,35(6):13-16.
    [96]章德铭,陈贵清,孟松鹤,等.电子束物理气相沉积TiAl基合金薄板的物相及显微分析[J].稀有金属材料与工程,2007,36(6):973-976.
    [97] Weeks C E. Evaluation of a gamma titanium aluminide for hypersonicstructural applications[D]. Georgia:Dissertation of the degree of master ofGeorgia Institute of Technology,2005:10-46.
    [98] Rivard J D K, Blue C A, Ott R D, et al. Advanced manufacturing technologiesutilizing high density infrared radiant heating[J]. Surface Engineering,2004,20(3):220-228.
    [99]唐建成,黄伯云,贺跃辉,等. Ti-Al基合金中的Hall-Petch关系及影响因素分析[J].金属学报,2002,38(4):365-368.
    [100] Kim Y W. Strength and ductility in TiAl alloys[J]. Intermetallics,1998,6:623-628.
    [101] Clemens H, Bartels A, Bystrzanowski S, et al. Grain refinement inγ-TiAl-based alloys by solid state phase transformations[J]. Intermetallics,2006,14:1380-1385.
    [102] Wang J N, Yang J, Wang Y. Grain refinement of a Ti-47Al-8Nb-2Cr alloythrough heat treatments[J]. Scripta Materialia,2005,52(4):329-334.
    [103] Liu C T, Schneibel J H, Maziasz P J, et al. Tensile properties and fracturetoughness of TiAl alloys with controlled microstructures[J]. Intermatellics,1996,4:429-440.
    [104] Chen YY, Li B H, Kong F T. Microstructural refinement and mechanicalproperties of Y-bearing TiAl alloys[J]. Journal of Alloys and Compounds,2008,457:265-269.
    [105] Seetharaman V, SemiatinS L. Microstructures and tensile properties ofTi-45.5Al-2Nb-2Cr rolled sheets[J]. Materials Science and Engineering A,2001,299:195-209.
    [106] Kim Y W, Dimiduk D M, Loretto M H.Gamma Titanium Aluminides1999[C].The Minerals, Metals and Materials Society,Warrendale,PA,1999:25-33.
    [107] Clemens H. Interm etallic γ-Ti A l based alloy sheet materials processing andmechanical properties[J]. Zeitschrift Fur Metallkunde,1995,86(12):814-822.
    [108] Das G, Kestler H, Clemens H, et al. Sheet Gamma TiAl: Status andopportunities[J]. Journal of the Minerals, Metals and Materials Society(JOM),2004,56(11):44-45.
    [109] Haanappel V AC, Sunderk tter J D, Stroosnijder M F. The isothermal andcyclic high temperature oxidation behaviour of Ti-48Al-2Mn-2Nb comparedwith Ti-48Al-2Cr-2Nb and Ti-48Al-2Cr[J]. Intermetallics,1999,7(5):529-541.
    [110] Clemens H, Kestler H. Processing and Applications of Intermetallicγ-TiAl-Based Alloys[J]. Advanced Engineering Materials,2000,9:551-552.
    [111]金永元,大雕·卡内洛.铌高温合金[M].北京:冶金工业出版社,2005:225-226.
    [112]傅恒志.未来航空发动机材料面临的挑战与发展趋向[J].航空材料学报,1998,18(4):52-61.
    [113]彰德铭,陈贵清,韩杰才,等.轻质高温结构材料—γ-TiAl基合金的研究动向[J].材料导报,2005,19(8):47-50.
    [114]彭超群,黄伯云,贺跃辉. TiAl基合金的工艺-显微组织-力学性能关系[J].中国有色金属学报,2001,11(4):527-528.
    [115] Rogers N J, Crofts P D, Jones I P, et al. Microstructure toughnessrelationships in fully lamellar γ-based titanium aluminides[J]. MaterialsScience and EngineeringA,1995,l92-193:379-386.
    [116] Chaudhari G P, Acoff V L. Cold roll bonding of multi-layered bi-metallaminate composites[J]. Composites Science and Technology,2009,69:1667-1675.
    [117] Lesuer D R, Syn C K, Sherby O D, et al. Mechanical behaviour of laminatedmetal composites[J]. International Materials Reviews,1996,41(5):172.
    [118]马志新,李德富,胡捷,等.采用爆炸轧制法制备钛/铝复合板[J].稀有金属,2004,28(4):797-799.
    [119] Kattner U R, Lin JC, Chang Y A. Thermodynamic assessment andcalculation of the Ti-Al system[J]. Metallurgical Transactions A,1992,23:2081-2083.
    [120] Sujata M, Bhargava S,Sang L S. On the formation of TiAl3during reactionbetween solid Ti and liquid Al[J]. Journal of Materials Science Letters,1996,16:1175-1178.
    [121] Martin R, Kampe S L, Marte J S, et al. Microstructure/processingrelationships in reaction-synthesized titanium aluminide intermetallic matrixcomposites[J]. Metallurgical and Materials Transactions A,2002,33(8):2747-2753.
    [122] Fedorov G B, Shevchuk Y A, Khasaev T O. Growth kinetics of theintermetallic coating in mutual diffusion in systems of aluminum withtitanium and titanium-zirconium alloys[J]. Fizika i Khimiya ObarabotkiMaterialov,1990,24(1):68-72.
    [123] Fu E K Y, Rawlings R D, McShane H B. Reaction synthesis of titaniumaluminides[J]. Journal of Materials Science,2001,36:5537-5542.
    [124] Nonaka K, Fujii H, Nakajima H. Effect of oxygen in titanium on reactiondiffusion between Ti and Al[J]. Journal of Japan Institute of Metals,2000,64(2):85-94.
    [125] Mishin Y, Herzig C. Diffusion in the Ti-Al system[J]. Acta Materialia,2000,48:593-603.
    [126] Mackowiak J, Shreir L L. Kinetics of the interaction of Ti(s) with Al(l)[J].Journal of the Less-Common Metals,1968,15:341-346.
    [127] Bǒhm A, Jüngling T, Kiback B. Swelling and densification during of Ti-Alelemental powder mixtures[J]. In: Advance in Powder Metallurgy andParticulate Materials,1996,3(10):51-58.
    [128] Wang T, Zhang J S. Thermoanalytical and metallographical investigations onthe synthesis of TiAl3from elementary powders[J]. Materials Chemistry andPhysics,2006,99:20-25.
    [129] Tardy J, Tu K N. Solute Effect on interdiffusion in Al3Ti thin filmcompound[J]. Physical Review B,1985,32:2070-2081.
    [130] Nonaka K, Fujii H, Hakajima H. Effect of oxygen in titanium on reactiondiffusion between Ti and Al[J]. Materials Transactions, JIM,2001,42(8):1734-1740.
    [131] Wittmer M, Goues F L, Huang H C W. Effect of Cu on the kinetics andmicrostructure of Al3Ti formation[J]. Journal of the Electrochemical Society,1985,132(6):1450-1455.
    [132] Wei Y, Wu A P, Zou G S, et al. Formation process of the bonding joint inTi/Al diffusion bonding[J]. Materials and Science Engineering A,2008,480(1-2):456-463.
    [133] Filho W J B, Yavari A R. Effect of stoichiometry on the ordering mechanismin a partially disordered Ni3Al type intermetallic[J]. Materials ScienceForum,1996,225-227:367-376.
    [134] Mackowiak J, Shreir L L. The nature and growth of interaction layers formedduring the reaction between solid titanium and liquid aluminium[J]. Journalof the Less-Common Metals,1959,1:456-466.
    [135] Fukutomi H, Nakamura M, Suzuki T, et al. Voids formation by the reactiondiffusion of titanium and aluminium foils[J]. Materials Transactions, JIM,1999,41(9):1244-1246.
    [136] Wegmann G, Gerling R, Schimansky F P. Temperature induced porosity in hotisostatically pressed gamma titanium aluminide alloy powders[J]. ActaMaterialia,2003,51:741-752.
    [137] Yang R, Cui Y Y, Dong L M, Jia Q. Alloy development and shell mouldcasting of gamma TiAl[J]. Journal of Materials Processing Technology,2003,135:179-188.
    [138] M. Perez Bravo, I. Madariaga, K. Ostolaza, M. Tello. Microstructuralrefinement of a TiAl alloy by a two step heat treatment[J]. Scripta Materialia,2005,53:1141-1146.
    [139] Wang J N, Xie K. Grain size refinement of a TiAl alloy byrapid heatmenttreatment[J]. Scripta materiallia,2000,43:441-446.
    [140] Zhang J, He L, Cui Y, et al. Microstructural characteristics of Ti-48Al-2CrAlloy. Journal of Material Engineering and Performance,2001,10:378-389.
    [141] Jones S A, Kaufman M J. Phase equilibria and transformations inintermediate titanium-aluminum alloys[J]. Acta Metallurgica et Materialia,1993,41(2):387-398.
    [142] Denquin A, Naka S. Phase transformation mechanisms involved in two-phaseTiAl-based alloy-I. Lamellar structure formation[J]. Acta Materiallia,1996,44(1):343-352.
    [143] Yang Y S, Wu S K. Orientation faults of γ lamellae in a Ti-40at.%Al alloy[J].Scripta Metallurgica et Materialia,1991,25:255-260.
    [144] Aaronson H I, Furuhara T, Hall M G, et al. On the mechanismof formation ofdiffusional plate-shaped transformation products[J]. Acta Materialia,2006,54(5):1227-1232.
    [145] G ken M, Kempf M, Nix W D. Hardness and modulus of the lamellarmicrostructure in PST-TiAl studied by nonoindentations and AFM[J]. ActaMateriallia,2001,49:903-911.
    [146] Yeheskel O, Dariel M P. The effect of processing on the elastic moduli ofporous γ-TiAl[J]. Materials Science and Engineering A,2003,354:344-350.
    [147]公衍生. TiC颗粒增强TiAl金属间化合物基复合材料的制备与性能研究
    [D].济南:济南大学硕士学位论文,2003:42-43.
    [148] Rao K T V, Odette G R, Ritchie R O. On the contrasting role of ductile-phasereinforcements in the fracture toughness and fatigue-crack propagationbehavior of TiNb/γ-TiAl intermetallic matrix composites[J]. ActaMetallurgica et Materialia,1992,40(2):353-361.
    [149] Hazzledine P M, Kad B K. Yield and fracture of lamellar γ/α2TiAl alloys[J].Materials Science and Engineering A,1995,192-193:340-346.
    [150]李臻熙. TiAl基合金组织控制对力学性能的影响[D].北京:北京航空材料研究院博士学位论文,2000:15-18.
    [151] Inui H, Oh M H, Nakamura A, et al. Room-temperature tensile deformationof polysynthetically twinned(PST)crystals of TiAl[J]. Acta Meterialia,1992,40(11):3095-3104.
    [152] Cao R, Lin Y Z, Hu D, et al. Fracture behaviour of a TiAl alloy under variousloading modes[J]. Engineering Fracture Mechanics,2008,75:4343-4362.
    [153]陆永浩,张永刚,乔利杰,等.全层状TiAl基合金断裂机制原位观察[J].稀有金属材料与工程,2001,30(1):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700