用户名: 密码: 验证码:
Q235钢和定向凝固钛铝合金板坯表层塑性变形及微观组织演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属的微观组织决定其力学性能。细小晶粒拥有优良的塑性、韧性和抗疲劳性能,粗大晶粒则拥有较好的抗高温蠕变和抗断裂性能。因此对矩形坯料实施精确的定向表层塑性变形并辅以后续的热处理,使其获得表层是等轴细晶而中心部位是粗大晶粒组成的复合组织,将能同时满足对高温蠕变、断裂韧性和疲劳强度的要求。本文就是在这样的思想下提出来的。
     依据以上想法,提出了复合辊轧、滚珠滚压、表面挤压和受控喷丸四种表层塑性变形工艺,并依据局部加载理论设计了相应的塑性变形装置。通过物理模拟实验和有限元分析的方法,对四种表层变形工艺的金属流动规律进行了研究,得出表层塑性变形后沿板坯厚度方向的应力应变特点,并揭示了经过四种表层变形工艺和后续热处理后的Q235钢和定向凝固钛铝合金板坯的微观组织演变规律。
     利用商业有限元软件ABAQUS-6.7对四种定向凝固钛铝合金板坯表层塑性变形过程进行了有限元分析,结果表明经过四种表层变形工艺后,塑性变形基本上被局限在表层的1mm内,最大等效应变值分别能达到0.2、0.22、0.032和0.25。利用弹塑性力学的相关理论,结合定量计算和定性分析,得出了四种工艺的应变类型分布特点,即:经过复合轧制后的坯料表层处于平面应变状态,经过滚珠滚压和表面挤压后的坯料沿特定的厚度方向路径的应变类型由伸长类应变转化为压缩类应变,而经过受控喷丸后的坯料沿特定的厚度方向路径的应变类型由压缩类应变转化为伸长类应变。
     对经过表层塑性变形的Q235钢坯料进行显微组织观察,结果表明在室温下,经过复合辊轧、滚珠滚压、表面挤压和受控喷丸后,表层晶粒发生强烈塑性变形,呈纤维状,心部组织保持原始形态。对经过复合辊轧、滚珠滚压和表面挤压变形后的Q235钢辅以再结晶退火,得到了表层细晶和心部粗晶的复合组织,而对经过受控喷丸后的坯料进行再结晶退火发现,坯料表层的晶粒由于处于临界变形区而发生异常长大。
     定向凝固钛铝合金坯料经过复合辊轧后,表层晶粒出现再结晶细化,而中心部分保持粗大的全层片组织。对经过滚珠滚压、表面挤压和受控喷丸后的定向凝固钛铝合金表层组织进行组织观察发现,层片发生强烈的弯曲,在层片的界面处出现了相转变和动态再结晶。对滚珠滚压、表面挤压和受控喷丸后的试样在α相转变线上10~20oC进行短时间的真空热处理发现,显微组织尺寸从坯料的表层向中心方向有明显的梯度渐变特征,即形成了表层组织为细小全片层晶粒,心部组织为粗大全层片的原始晶粒的复合组织;而对受控喷丸后的试样进行相同的热处理发现,表层晶粒由于处在临界变形区而发生了异常的长大。
The mechanical property is determined by its microstructure. Fine grains possess good plasticity, toughness and fatigue property. However, large grains possess premium high temperature creep and anti-fracture property. Therefore, the rectangular billet after surface plastic deformation and subsequent heat treatment, which results in fine grains on the surface and coarse column grains in the center, will meet the demands on high temperature creep, fracture toughness and fatigue strength. This thesis is presented on the idea.
     Based on this idea, four different surface plastic deformation techniques including: compound rolling, ball burnishing, surface milling and controlled shot peening, which will localize the plastic deformation on the surface of the billet and leave little plastic deformation in the center, were presented in this study. Based on the local load theory, equipments for the plastic deformation on the surface of the rectangular billet have been developed. The surface plastic deformation behavior of the Q235 and the directionally solidified (DS) TiAl billet has been studied using these equipments. The metal flow behaviors after four plastic deformation techniques were studied using the commercial finite element method (FEM) and simulated experiments. The stress-strain distribution along the depth of the as-deformed billet was also obtained. What's more, the microstrucutural evolution of the Q235 and the directionally solidified TiAl billet were investigated after cold deformation and subsequent heat treatment.
     These four surface plastic deformation processes on the directionally solidified TiAl were simulated with the FEM software ABAQUS-6.7. The results indicate that the plastic deformation was localized within the surface of 1mm and the maximum equivalent strains were 0.2,0.22,0.032 and 0.25, respectively. The strain type distribution of four surface plastic deformation techniques by quantitative and qualitative analysis of elasticity and plasticity was obtained. The strain distribution on the surface of the billet after compound rolling is subject to plane strain; strain distribution along the depth of the billet after ball burnishing and surface milling changes from tension to compression; while, strain distribution along the depth of the billet after controlled shot peening changes from compression to tension.
     The microstructure after the surface plastic deformation was observed, which indicate that the Q235 grains on the surface of the billet turn into fiber-like line after the compound rolling, ball burnishing, surface milling and controlled shot peening. The compound microstructures that are fine grains on the surface and the coarse grains in the center after the subsequent recrystallization annealing are obtained as for the compound rolling, ball burnishing and surface milling. But for the grains on the surface of the shot peened sample with recrystallization annealing grow coarser because of critical deformation zone.
     The coarse-column grains of the directionally solidified TiAl on the surface of the billet were recrystallized, while the microstrcuture keeps the original state after the compound rolling. The fully lamellar structures occurs strong kinking after ball burnishing, surface milling and controlled shot peening. The cold deformed billets were subject to vacuum heat treatment aboveαtransus line of 10~20oC for several minutes. The results indicate that the microstructures are characterized by microstructual gradient,namely fine recrystallized grains on the surface and the original directionally solidified microstructures in the center were obtained after ball burnishing and surface milling. The grains on the surface of the shot peened sample with subsequent heat treatment grow coarser because of critical deformation zone.
引文
1.苏祖武,姚泽坤,郭鸿镇. TC11钛合金双性能盘研究[J].金属学报, 1996, 32: 377-381.
    2.陶春虎,张卫方,施惠基,等.定向凝固高温合金的再结晶[M].北京:国防工业出版社, 1996: 8-9.
    3. Kim YW. Odered Intermetallic Alloys Gamma-Titanium Aluminides [J]. J Metals, 1994, 6: 30-39.
    4. Dimiduk DM. Gamma Titanium Aluminide Alloys - An Assessment Within the Competition of Aerospace Structural Materials [J]. Mater Sci Eng A, 1999, 263(2): 281-288.
    5. Brady MP, Brindley WJ, Smialek JL, et al. The Oxidation and Protection of Gamma Titanium Aluminides [J]. J Metals, 1996, 48(11): 46-50.
    6. Clemens H, Kestler H. Processing and Applications of Intermetallic Gamma-TiAl-Based Alloys [J]. Adv Eng Mater, 2000, 2: 551-570.
    7. Hayes RW, B London. On the Creep Deforamtion of a Cast Near Gamma TiAl Alloy Ti-48Al-1Nb [J]. Acta Metall Mater, 1992, 40(9): 2167-2175.
    8. Beddoes J, Wallace W, Zhao L. Current Understanding of Creep Behaviour of Near Gamma-Titanium Aluminide [J]. Int Mater Rev, 1995, 40(5): 197-217.
    9. Shan DB, Xu WC, Lu Y. Study on Precision Forging Technology for a Complex-Shaped Light Alloy Forging [J]. J Mater Process Technol, 2004, 151(1-3): 289-293.
    10.闫蕴琪,张振祺,周康.γ-TiAl金属间化合物研究现状与未来展望[J].材料导报, 2002, 2(14): 31-33.
    11.谢斌涛.板坯表层塑性变形工艺与组织研究[D].哈尔滨:哈尔滨工业大学硕士论文, 2008:1-3.
    12.姚泽坤,郭鸿镇,苏祖武.压气机和涡轮双性能盘的制造方法[J].航空科学技术, 1997, 2: 9-11.
    13.汤鑫,曹腊梅,盖其东,等.高温合金双性能整体叶盘铸造技术[J].航空材料学报, 2006, 26(3): 93-98.
    14. Kim YW. Gamma Titanium Aluminide: Their Status and Future [J]. J Metals, 1995, 47(7): 39.
    15. Ren TL, Shan DB, Chen Y, et al. Surface Plastic Deformation Distribution and Microstructural Evolution in the Compound Rolling of Ti-50Al Billet [J]. Mater Des, 2010, 31(7): 3457-3462.
    16.曲涛. Ti-Al基合金的组织和性能研究[J].本溪冶金高等专科学校学报, 2000, 4(2): 6-10.
    17.李向阳,林建国,黄正.γ-TiAl基合金的显微组织与机械性能[J].稀有金属材料与工程, 1994, 23(5): 9-13.
    18. Yamaguchi M, Inui H. High-Temperature Structural Intermetallics [J]. Acta Mater, 2000, 48: 307-322.
    19.王泾文.铬镍双相合金的热疲劳性能[J].现代铸铁, 2003, 1: 14-15.
    20.徐亚伟,王华明. Mo2Ni3Si/γ双相合金的显微组织及室温干滑动磨损行为研究[J].金属学报, 2006, 7(42): 722-726.
    21.曲耀辉,黄伯云,吕海波. TiAl有序合金研究综述[J].稀有金属材料与工程, 1991, 20: 3-10.
    22. Naka S, Thomas K, Han T. Potential and Prospects of Some Intermetallic Compounds for Structural Applications [J]. Mater Sci Technol, 1992, 8(4): 291-298.
    23. Uenishi K, Kobayashi KF. Processing of intermetallic compounds for structural applications at high temperature [J]. Intemetallics, 1996, 4: 95-101.
    24. Kim YW, Dimiduk DM. Progress in the Understanding of Gamma Titanium Aluminides [J]. J Metals, 1991, 43(8): 40-47.
    25. Kim YW. Intermetallic Alloys Based on Gamma Titanium Aluminide [J]. J Metals, 1989, 41(7): 24-30.
    26.章德铭,陈贵情,韩杰才,等.γ-TiAl基高温结构材料研究评述[J].中国稀土学报, 2005, 23: 163-166.
    27. Clemens H, Appel F, Bartels A, et al. Processing and Application of Engineeringγ-TiAl based alloys [C]. Hamburg: Proceeding of the 10th World Conference on Titanium, 2003: 2123-2136.
    28. Kim YW, Dimiduk DM. Effect of Boron Addition on Grain Refinement and Lamellar Formation in Wrought-Processed Gamma TiAl Alloys [J]. Metals and Materials Society, 2001: 625-632.
    29.张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社, 2001: 716-718, 258, 440-448.
    30. Maziasz PJ,Liu CT. Development of Ultrafine Lamellar Structures in Two-Phaseγ-TiAl Alloys [J]. Metall Trans A, 1998, 20: 105-112.
    31. Leyens C, Peters M. Titanium and Titanium Alloys [M]. Germany: Wiley-VCH, 2005: 84, 104, 128, 326, 330,85.
    32.田金华.γ-TiAl基合金组织细化及抗氧化性研究[D].哈尔滨:哈尔滨工业大学硕士论文, 2007: 35-37.
    33.何双珍.热处理细化铸态TiAl基合金显微组织的研究[D].长沙:中南大学硕士论文, 2003: 23-26.
    34. Wang JN. New Processing Technology and Microstructure Control of TiAl-based Alloys [C]. Beijing: National Nature Science Foundation Committee, 2000: 73-75.
    35.彭超群,黄伯云,贺跃辉.热处理对TiAl基合金相变和显微组织的影响[J].材料科学与工艺, 2002, 3(10): 331-336.
    36.彭超群,黄伯云,贺跃辉.快速加热循环热处理对TiAl基合金显微组织的影响[J].材料工程, 2002, 2: 27-37.
    37.陈进,黄伯云,曲选辉.热处理对TiAl基合金的组织结构和室温力学性能的影响[J].中南矿冶学院学报, 1993, 3(24): 378-383.
    38.盛文斌,张志敏.快速冷却TiAl基合金显微组织演变的研究[J].铸造, 2007, 4(56): 349-352.
    39. Zhou L. Progress of High-content Nb-TiAl Based Alloy Project [R]. Key Fundamental Problems Research of High-Performance Intermetallic Structural Materials. Beijing: National Nature Science Foundation Committee, 2007, 14(3): 251-255.
    40.傅恒志.铸钢和铸造高温合金及其熔炼[M].西安:西北工业大学出版社, 1985: 75-77.
    41.周振平.定向凝固技术的发展[J].中国铸造装备与技术, 2003, (2): 20-27.
    42.傅恒志,郭景杰,刘林,等.先进材料定向凝固[M].北京:科学出版社,2008: 10, 490, 646, 702.
    43.傅恒志.铸钢和铸造高温合金及其熔炼[M].西安:西北工业大学出版社, 1985: 75-77.
    44.张国庆,尹志民.定向结晶及单晶技术发展态势[J].贵金属, 1999, 20(3): 42-47.
    45.陈国良,林均品.有序金属间化合物结构材料[M].北京:冶金工业出版社, 1998: 35-38
    46. Kishida K, Johnson DR. Deformation and Fracture of PST Crystals and Directionally Solidified Ingots of TiAl-Based Alloys [J]. Intermetallics, 1998, 6(7-8): 679-683.
    47. Keller MM, Jones PE, Porter WJ, et al. Effects of Processing Variables on the Creep Behavior of Investment Cast Ti-48Al-2Nb-2Cr [J]. J Metals, 1997, 49(5): 42-44.
    48.苏彦庆,刘畅. Ti-45Al合金的定向凝固组织[J].稀有金属材料与工程, 2005, 5: 768-771.
    49. Johnson DR, Inui H, Yamaguichi M. Crystal Growth of TiAl Alloys [J]. Intermetallics, 1998, 6: 647-652.
    50.李成功,傅恒志,于翘.航空航天材料[M].北京:国防工业出版社, 2002: 16-18.
    51. Fox AG, Tabbernor MA. The Bonding Charge-Densityof Beta NiAl [J]. Acta Metall Mater, 1991, 39: 669.
    52. Frommeyer G, Kinppscheer S. Enhanced Superplasticity of Fine-Grained Gamma TiAl (Mo, Cr, Si) alloys [C]. Hamburg: Proceeding of the 10th World Conference on Titanium, 2003: 2249-2256.
    53. Martin PL, Hardwick DA, Clemens DR, et al. Structural Intermetallics [C]. Warrendale PA: TMS, 1997: 387-389.
    54. Clemens H, Kestler H, Eberhardt N, et al. Gamma Titanium Aluminides [C]. Warrendale PA: TMS, 1995: 127-130.
    55.张浩.层片组织TiAl基合金高温变形行为研究[D].哈尔滨:哈尔滨工业大学博士论文, 2010: 27-30.
    56.徐文臣,单德彬,张浩,等.一种γ-TiAl基合金棒材的制备方法.中国: ZL.200910071615.2 [P]. 2009-10-07.
    57. Koeppe C, Bartels A, Seeger J, Mecking H. Gernal-Aspects of the Thermalmechanical Treatment of 2-Phase Intermetallic TiAl Compounds [J]. Metall Trans A, 1993, 24(8): 1795-1806.
    58. Semiatin SL. Gamma titanium aluminides [C]. Warrendale PA: TMS, 1995: 509.
    59.陈玉勇,杨非,孔凡涛,等. TiAl合金的热加工、组织和性能[J].中国材料进展, 2010, 3: 12-17.
    60.缪家士,林均品,王艳丽,等.高铌钛铝基合金板材的高温包套轧制[J].稀有金属材料与工程, 2004, 4: 436-438.
    61. Stark A, Batels A, Gerling R, et al. Microstructure and Texture Formation during Hot Rolling of Niobium-Rich Gamma TiAl Alloys with Different Carbon Contents [J]. Adv Eng Mater, 2006, 8(11): 1101-1108.
    62. Schillinger W, Bartels A, Gerling R, et al. Texture Evolution of the Gamma- and the Alpha/Alpha(2)-Phase during Hot Rolling of Gamma-TiAl based Alloys [J]. Intermetallics, 2006, 14(3): 336-347.
    63. Bartels A, Kestler H, Clemens H. Deformation Behavior of differently Processed Gamma-Titanium Aluminides [J]. Mater Sci Eng, 2002, 329: 153-162.
    64. Nishitani SR, Oh MH, Nakamura A, et al. Cold-Rolling of Ti-Rich TiAl Polysynthentically Twinned Crystals [J]. J Mater Res, 1990, 5(3): 484-487.
    65. Inkson BJ, Clemens H, Marien J. Gamma+Alpha(2)+B2 Lamellar Domains in Rolled TiAl [J]. Scripta Mater, 1998, 38(9): 1377-1382.
    66. Miao JH, Lin JP, Wang YL, et al. High Temperature Pack Rolling of a High-Nb TiAl Alloy Sheet [J]. Rare Metal Mat Eng, 2004, 3: 436-438.
    67. Gerling R, Bartels A, Clemens H, et al. Structural Characterization and Tensile Properties of a High Niobium Containing Gamma TiAl Sheet Obtained by Powder Metallurgical Processing [J]. Intermetallics, 2004, 12(3): 275-280.
    68. Semiatin SL, Seetharaman V. Deformation and Microstructure Development during Hot-Pack Rolling a Near-Gamma Titanium Aluminide Alloy [J]. Metall Mater Trans A, 1995, 26(2): 371-381.
    69. Aust E, Niemann HR. Machining of Gamma-TiAl [J]. Adv Eng Mat, 1999, 1: 53-57.
    70.何鹏,冯吉才,王明,等.一种真空扩散连接TiAl金属间化合物的方法.中国: 200710144686.1 [P]. 2007-11-28.
    71. Lu K, Lu J. Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment [J]. Mater Sci Eng A, 2004, 375-377:38-45.
    72. K Lu, J Lu. Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach [J]. J Mater Sci Tech, 1999, 15(3): 193-197.
    73.贺志勇,刘小萍,王振霞,等.γ-TiAl金属间化合物表面改性技术研究现状[J].材料导报, 2007, 21(2): 83-85.
    74. Lino Y. Improvement of Oxidation Resistance of TiAl Alloy by Electric Discharge NiCrAlY Coating [J]. Int J Modern Phys B, 2003, 17(8-9): 1158-1163.
    75.关春红,唐兆麟,王福会,等. TiAlCr涂层对TiAl金属间化合物抗熔融硫酸盐热腐蚀的影响[J].中国有色金属学报, 1999, 19(4): 794-799.
    76. Wang FH, Guan CH. Effects of Sputtered TiAlCr Coatings on Oxidation and Hot-Corrosion Resistance of Ti24Al14Nb3V [J]. J Mater Sci Tech, 2001, 17(5): 501-506.
    77.郝建民,介万奇. SiO32-对TiAl合金微弧氧化陶瓷层的影响[J].稀有金属材料与工程, 2005, 34(9): 1455-1459.
    78. Tang ZL, Wang FH, Wu WT. Effect of Al2O3 and Enamel Coatings on 900oC Oxidation and Hot Corrosion Behaviors of Gamma-TiAl [J]. Mater Sci Eng A, 2000, 276: 70-75.
    79.朱小鹏,雷明凯,马腾才.离子注入Cr、Y、Nb对TiAl金属间化合物高温氧化性能的影响[J].核技术, 2001, 24(1): 27-32.
    80.朱小鹏. Y、Er离子注入对TiAl金属间化合物高温氧化性能的影响[J].中国有色金属学报, 2001, 11(6): 1021-1025.
    81. Schumacher G. Microalloying effects in the oxidation of TiAl materials [J]. Intermetallics, 1999, (7): 1113-1120.
    82.贺志勇,刘小萍,王振霞,等.γ-TiAl金属间化合物表面改性技术研究现状[J].材料导报,2007, 21: 83-86.
    83.王利捷,郝建民,李波. TiAl基合金的离子渗碳研究[J].热加工工艺, 2005, (9): 50-52.
    84.梁伟,石巨岩,马晓霞.钛铝基合金渗硅层结构及抗高温氧化性能初探[J].材料热处理学报, 2003, 24(2): 16-19.
    85.梁伟.渗硅TiAl基合金的氧化动力学[J].材料热处理学报, 2005, 26(3) : 47-50.
    86.王福会,唐兆麟. TiAl金属间化合物的高温氧化与防护研究进展[J].材料研究学报, 1998, 12(4): 337-344.
    87.郭朝丽. TiAl基合金等离子表面改性工艺与抗氧化性能的研究[D].太原:太原理工大学硕士论文, 2007: 1-17.
    88.王华明,郭淑平,史岗. TiAl金属间化合物激光表面改性工艺研究[J].航空制造工程, 1997, (5): 31-32.
    89.徐滨士.纳米表面工程[M].北京:化学工业出版社, 2004: 350-362.
    90. Wu X, Tao N, Hong Y, et al. Microstructure and Evolution of Mechanically-induced Ultrafine Grain in Surface Layer of Al-Alloy Subjected to USSP [J]. Acta Mater, 2002, 50(8): 2075-2084.
    91. Wang ZB, Tao NR, Tong WP, et al. Defusion of Chromium in Nanocrystalline Iron Produced by Means of Surface Mechanical Attrition Treatment [J]. Acta Mate, 2003, 51(14): 4319-4329.
    92.刘刚,周蕾.工程金属材料的表面纳米化技术(一) [J].纳米技术, 2006, 3(1): 56-60.
    93. Zhu KY, Vassel A, Brisset F, et al. Nanostructure Formation Mechanism of Alpha-Titanium Using SMAT [J]. Acta Mater, 2004, 52: 4101-4110.
    94. Tao NR, Wang ZB, Tong WP, et al. An Investigation of SurfaceNanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment [J]. Acta Mater, 2002, 50: 4603-4606.
    95.张聪慧,刘研蕊,兰新哲.钛合金表面高能喷丸纳米后的组织与性能[J].热加工工艺, 2006, 35 (2): 5-7.
    96.王长顺,刘刚.低碳钢的表面纳米化组织及其性能[J].钢铁, 2006, 41(12):61-63.
    97.王静宜,谈育旭. LD10合金滚压强化层的TEM分析及其强化机制探讨[J]. 1991, 11: 20-24.
    98.张建中,冯忠信,张定栓,等.表面形变强化对中碳钢疲劳强度的影响及强化机理[J].西安交通大学学报, 1982, 16(1): 23-30.
    99.余淑荣,张建斌,樊丁. TA2马氏体滚压强化研究[J].中国表面工程, 2003, 6 (63): 21-26.
    100.张士宏, Arentofe M.金属塑性加工的物理模拟[J].塑性过程学报, 2000, 7(1): 46-50.
    101.戴亮,姚泽坤.不同截面形状结构条件等温成形规律的物理模拟[J].锻压技术, 2004, 6: 23-26.
    102.张力,李升军. DEFORM在金属塑性成形中的应用[J].机械工业出版社,2009: 9.
    103.田华,陈军.金属体积成形仿真技术的发展概况[J].模具技术, 2005, 1: 14-18.
    104.崔丽华,王宝雨,胡正寰.有限元模拟在塑性成形中的应用与发展[J].机械制造, 2005, 43(494): 17-18.
    105.刘玉红,李付国.体积成形过程的三维刚塑性有限元模拟技术研究[J].上海交通大学学报, 1996, 30(9): 127-133.
    106.赵腾伦. ABAQUS 6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007:5.
    107.王仲仁.弹性与塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,1997: 108.
    108.汪大年.金属塑性成形原理[M].北京:机械工业出版社, 2004: 96.
    109.苑世剑,何祝斌.材料塑性加工力学[M].哈尔滨:哈尔滨工业大学出版社, 2008:102-105.
    110.杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社, 2007: 1-8.
    111.任涛林.矩形坯料表层塑性变形工艺与组织演变规律研究[D].哈尔滨:哈尔滨工业大学硕士论文, 2006: 1, 3, 11.
    112. Christine M. Treatment of blasting [EB/OL]. (2002-10-1) [2010-12-30]. http://www.raw4x4europe.com/images_2/shot-peening.jpg.
    113.方博武.受控喷丸与残余应力理论[M].济南:山东科学技术出版社, 1991: 20-25.
    114. Liu CT, Schneibel JH, Maziasz PJ, et al. Tensile Properties and Fracture Toughness of TiAl Alloys with Controlled Microstructures [J]. Intermetallics, 1996, 4(6): 429-440.
    115. Klocke F, Lier J. Roller Burnishing of Hard Turned Surfaces [J]. Int J Mach Tool Manu, 1998, 38(5): 419-423.
    116. Luo H, Wang L, Zhang C. Study on the Aluminum Alloy Burnishing Processing and the Existence of the Outstripping Phenomenon [J]. J Mater Process Technol, 2001, 116(1): 88-90.
    117. AM Hassan. Effects of Ball and Roller Burnishing on the Surface Roughness and Hardness of Some Non-Ferrous Metals [J]. J Mater Process Technol, 1997, 72(3): 385-391.
    118. Yu X, Wang L. Effect of Various Parameters on the Surface Roughness of an Aluminum Alloy Burnished with a Spherical Surfaced Polycrystalline Diamond Tool [J]. Int J Mach Tool Manu, 1999, 39: 459-469.
    119. Némat M, Lyons AC. An Investigation of the Surface Topography of Ball Burnished Mild Steel and Aluminum [J]. Int J Adv Manu Tech, 2000, 16(7): 469-473.
    120. Hassan AM, Al-Jalil HF, Ebied AA. Burnishing Force, Number of Ball Passes for the Optimum Surface Finish of Brass Components [J]. J Mater Process Technol, 1998, 83(1-3): 176-179.
    121. Wagner K, V?lkl R, Engel U. Tool Life Enhancement in Cold Forging by Locally Optimized Surfaces [J]. J Mater Process Technol, 2008, 201(1-3): 2-8.
    122. Majzoobi GH, Azizi R, AlaviNia A. A Three-Dimensional Simulation of Shot Peening Process Using Multiple Shot Impacts [J]. J Mater Process Techno, 2005, 164: 1226-1234.
    123. Meguid SA, hagal SG, Stranart JC. Finite Element Modeling of Shot-Peening Residual Stresses [J]. J Mater Process Technol, 1999, 92: 401-404.
    124. Hong T, Ooi JY, Shaw B. A Numerical Simulation to Relate the Shot Peening Parameters to the Induced Residual Stresses [J]. Eng Fail Anal, 2008, 15: 1097-1110.
    125. Franchim AS, Campos VS de, Travessa DN, et al. Analytical Modeling forResidual Stresses Produced by Shot Peening [J]. Mater Des, 2008, 7: 40-44.
    126. Dai K, Villegas J, Stone Z, et al. Finite Element Modeling of the Surface Roughness of 5052 Al Alloy Subjected to a Surface Severe Plastic Deformation Process [J]. Acta Materialia, 2004, 52: 5771-5782.
    127. Frija M, Hassine T, Fathallah R, et al. Finite Element Modeling of Shot Peening Process: Prediction of the Compressive Residual Stresses, the Plastic Deformations and the Surface Integrity [J]. Mater Sci Eng A, 2006, 426: 173-180.
    128. Wang T, Platts MJ, Levers A. A Process Model for Shot Peen Forming [J]. J Mater Process Technol, 2006, 127: 159-162.
    129. Torres MAS, Voorwald HJC. An Evaluation of Shot Peening, Residual Stress and Stress Relaxation on the Fatigue Life of AISI 4340 Steel [J]. Int J Fatigue, 2002, 24(8): 77-86.
    130. Guagiliano M. Relating Almen Intensity to Residual Stresses Induced by Shot Peening; a Numerical Approach [J]. J Mater Process Techno, 2001, 110: 277-286.
    131. Hu WL, He ZB, Fang Y. Uniform Principle on Stress, Strain and Yield Locus for Analyzing Metal Forming Processes: The Contribution of Prof. Z. R. Wang [J]. J Mater Process Technol, 2004, 151: 27-32.
    132. Shaw L, Dai K. Comparison Between Shot Peening and Surface Nanocrystallization and Hardening Processes [J]. Mater Sci Eng A, 2007, 463: 46-53.
    133.任涛林,谢滨涛,许文臣,等. Q235钢滚珠滚压表面变形分布规律及微观组织演变[J].锻压技术, 2010, 34(6): 47-50.
    134. Ding HS, Chen RR, Guo JJ, et al. Directional Solidification of Titanium Alloys by Electromagnetic Confinement in Cold Crucible [J]. Mater Lett, 2005, 59:741-745.
    135. Randle V, Engler O. Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping [M]. New York: Gorden and Breach Science Publisher, 2000: 10-12.
    136.周玉.材料分析方法[M].北京:机械工业出版社, 2006: 70-75.
    137. Simkin BA, Ng BC, Bieler TR, et al. Orientation Determination and Defect Analysis in the Near-Cubic Intermetallic Gamma-TiAl using SACP, ECCI, and EBSD [J]. Intermetallics, 2003, 11(3): 215-223.
    138. Lindemann J, Buque C, Appel F. Effect of Shot Peening on Fatigue Performance of a Lamellar Titanium Aluminide alloy [J]. Acta Mater, 2006, 54: 1155-1164.
    139. Altenberger I, Scholtes B, Martin U. Cyclic Deformation and Near Surface Microstructures of Shot Peened or Deep Rolled Austenitic Stainless Steel AISI304 [J]. Mater Sci Eng A, 1999, 264: 1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700