用户名: 密码: 验证码:
面向高立苗率要求的栽植机构参数优化与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
育苗移栽具有对气候的补偿作用和使作物生育提早的综合效益。但是由于我国旱地栽植机械发展较慢,移栽作业仍以人工为主,移栽机械化程度最高的棉花也不足30%。随着我国大力发展效益农业,能够实现高立苗率和低损伤率的旱地高速移栽机械已成为发展趋势。栽植机构是将钵苗植入大田的最终机构,是移栽机的两大核心机构之一,其作业性能直接影响整台移栽机的作业性能和竞争力。因此对栽植机构进行理论和试验研究,为旱地高速移栽机械的研发提供理论基础和设计依据,具有重要的实用价值和理论意义。
     栽植机构的理想要求是高立苗率和低损伤地高速栽植。传统的保证立苗率的“零速度”移栽理念在实际作业时很难实现,且传统的栽植机构不能满足高速移栽要求,针对这些问题,本论文提出通过保证栽植嘴理想轨迹、姿态、速度和挖出的穴口形状等运动学特性来提高立苗率和降低损伤率的新思路,并在该思路指导下开展基于非圆齿轮行星传动的栽植机构研究。本文主要的研究内容和结果如下:
     1)研究国内外各种类型栽植机构的工作原理并分析其存在的问题,总结满足高立苗率和低损伤地高速移栽对栽植机构的要求,为此本文提出基于非圆齿轮行星传动的栽植机构(以下简称非圆齿轮行星轮系栽植机构),并按不同类型的非圆齿轮(椭圆类非圆齿轮、偏心圆类非圆齿轮、傅里叶类非圆齿轮、巴斯噶蜗线类非圆齿轮)传动进行组合设计,共构成25种不同栽植机构;在分析非圆齿轮副传动特性的基础上,建立了栽植机构的运动学数学模型和动力学数学模型,并编写了运动学和动力学特性辅助分析软件,得到栽植机构的运动学和动力学特性。
     2)为减少栽植过程中钵苗损伤,提高移栽成功率,以西兰花钵苗为移栽对象,设计正交试验研究不同穴盘规格、不同含水率和不同苗龄西兰花钵苗的机械特性,包括土钵的抗压强度、钵苗相对栽植嘴壁面的摩擦系数和钵苗与栽植嘴碰撞时不回弹的相对速度,分析这些因素对钵苗损伤的影响,采用综合评分法并从经济角度考虑,获得适合西兰花钵苗机械化栽植作业的物理特性:128穴盘、5~6片真叶、含水率50%和128穴盘、2~3片真叶、含水率63%,并为构建栽植作业时栽植嘴的理想姿态和速度提供依据。
     3)分析栽植作业过程中钵苗与栽植嘴的相对运动,结合西兰花钵苗的物理机械特性和栽植机构的运动学模型,建立钵苗相对栽植嘴的运动微分方程,并编写西兰花钵苗运动辅助分析软件,得到作业过程中西兰花钵苗与栽植嘴之间的相对运动和相互作用力,为栽植机构动力学特性分析的假设条件提供理论依据。结果表明:在进行栽植机构动力学特性分析时,可忽略钵苗的影响。
     4)以西兰花钵苗物理机械特性为约束条件,并结合栽植农艺要求,建立一个作业循环内栽植嘴理想轨迹、姿态、速度和挖出的穴口形状等运动学特性要求的理论模型。以理想运动学特性要求为目标,根据所建立的栽植机构运动学模型和西兰花钵苗的运动微分方程,建立栽植机构运动学特性多目标参数优化模型;采用matlab遗传算法工具箱对每一种非圆齿轮行星轮系栽植机构进行运动学优化,找到满足理想运动学特性要求的每种栽植机构的参数范围。
     5)以所建立的栽植机构动力学模型为基础,构建动力学特性评价准则,以运动学的优化结果为约束条件建立动力学特性多目标参数优化模型;同样采用遗传算法进行动力学寻优,得到最佳栽植机构类型及其对应的机构参数:第一级齿轮副为偏心圆类非圆齿轮,第二级齿轮副为椭圆类非圆齿轮,机构参数为栽植嘴的初始安装角θ=114.256,两级非圆齿轮转动中心连线的夹角γ=30.834,齿轮3初始相位角α=25.467,齿轮6初始相位角β=1.375,太阳轮3偏心圆半径R3=30.916mm,太阳轮3偏心距e3=5.583mm,太阳轮3变性系数m31=1.542,中间轮6椭圆长轴半径A6=30.694mm,中间轮6偏心率k6=0.031,中间轮6变性系数m61=1.26。
     6)根据优化得到的最佳栽植机构类型及其对应的机构参数,进行栽植装置样机的结构设计和三维模型。研制栽植装置运动学和动力学特性测试试验台,测试空载时栽植装置的运动学(轨迹、速度)和动力学特性,验证所建立的数学模型的正确性;研制栽植装置模拟田间栽植试验台,基于课题组研制的轮胎摩擦驱动旋转式环形土槽进行栽植装置的模拟田间栽植试验,测试株距、栽植深度、栽植嘴张开时刻和西兰花钵苗的穴盘规格、苗龄、含水率对栽植装置田间作业性能的影响。结果表明:当株距在280mm~380mm之间,栽植深度在45mm~55mm之间,选用128穴盘,苗龄为2~3片真叶,含水率为63%的钵苗时立苗率较高,约为95%。
Seedling transplantation can compensate the climate and improve the comprehensivebenefit to crop growth in early. However, because of dry land transplanting machinery developsslowly in China, transplanting is still mainly manually performed, even the mechanicaltransplanting rate of cotton is less than30%, which in fact has the highest degree ofmechanization. With the vigorous development of China's profitable agriculture, transplanter thatcan achieve a high seedling erectness rate and low damage rate in high speed has become thetrend of development. Transplanting mechanism is ultimate mechanism that has seedling plantedin the field, it is one of the two core mechanisms of the transplanting machine, whose behaviordirectly affects the performance and competitiveness of the whole transplanter. Therefore, thetheoretical and experimental research on transplanting mechanism, which can provide thetheoretical basis and design basis for the research and development of high speed transplanter,has important practical value and theoretical significance.
     The ideal requirements of planting mechanism are high seedling erectness rate and lowdamage rate in high speed. The traditional planting concept "zero-speed" is very difficult toachieve those goals in actual practice, and the traditional transplanting mechanism can not meetthe high-speed transplanting requirements either. Aiming at these problems, this paper putsforward one kind of new ideas that by ensuring the kinematic characteristics of desired trajectory,gesture, velocity of planting nozzle and the shape of the opening to improve the seedlingerectness rate and reduce the damage rate, and under the guidance of this idea, research ontransplanting mechanism based noncircular gear planetary transmission was carried out. Themain research contents and results are as follows:
     1) Study the working principle of various types of transplanting mechanism both home andabroad, and analyze their problems. Summarize the requirements for planting mechanism thatcan meet the condition of high seedling erectness rate and low damage rate. Thus transplantingmechanism of non-circular gear planetary transmission was proposed in this paper. Mechanismsynthesis was carried out according to the different types of non circular gear (noncircular gearof ellipse, eccentric-circle, Fourier plot, Pascal curve) transmission.25different types oftransplanting mechanism was proposed in total. On the basis of the analysis of noncircular gearpair transmission characteristics, the kinematics and dynamics models of the transplantingmechanism were established. Kinematics and dynamics auxiliary analysis software was alsodeveloped, getting the kinematics and dynamics characteristics of transplanting mechanism.
     2) In order to reveal the mechanism of seedling’s injury, broccoli was chosen as the researchobject, an orthogonal test was designed to study the mechanical characteristics of broccoli seedling with different tray specifications, different water content and different ages, includingthe anti-press strength of soil bowl, the friction coefficient between seedling and planting nozzlewall, and the relative velocity which keeps the seedling do not rebound after colliding theplanting nozzle. Analyze the influence of these factors imposed on the seedling injury, using thecomprehensive evaluating method and considering in financial terms, the physical characteristicsof broccoli seedling were obtained which were suitable for mechanical transplanting operation:128hole plate,5~6leaves, water content of50%and128hole plate,2~3leaves, water content of63%, and they provide a basis for the subsequent construction of ideal gesture of planting nozzleand speed of plant operation.
     3) Analyze the relative movement in the process of transplanting between seedling andplanting nozzle, combined with the kinematics model of transplanting mechanism and thephysical and mechanical properties of broccoli seedling, the differential equations of seedling’smotion relative to the planting nozzle was established, kinematics aided analysis software wasdeveloped, and get the kinematics characteristics of broccoli finally.
     4) Using the physical and mechanical properties of broccoli seedling as the constraintconditions, and combining with the agronomic requirements, theoretical model of desiredtrajectory, gesture, velocity of planting nozzle and the shape of the opening in one working cyclewas built. A multi-objective optimization model of kinematic characteristics of plantingmechanism aimed at ideal kinematic characteristics was established, based on the kinematicmodel of planting mechanism and the kinematic differential equations of broccoli seedling.Using Matlab genetic algorithm toolbox to optimize each kind of non-circular gear planetarysystem transplanting mechanism, finding the parameter range that can meet kinematicscharacteristics requirement for each transplanting mechanism.
     5) Based on the dynamics model established before, the criteria for evaluation of dynamiccharacteristics were constructed, based on kinematic optimization results as constraint conditions,dynamic multi-objective optimization model was established. The best type of transplantingmechanism and its corresponding parameters were obtained by similarly using the geneticalgorithm for dynamic optimization: the eccentric type of non-circular gear was used as the firstgear pair, and the elliptical non-circular gear was used as the second gear pair, the mechanismparameters are as follows: the initial installation angle of planting nozzle θ=114.256, theangle between the center line of two non-circle gear pair γ=30.834, the initial phase angle ofgear3α=25.467, the initial phase angle of gear6β=1.375, the eccentric circle radius of thesun gear3R3=30.916mm, the offset of sun gear3e3=5.583mm, the deformation coefficient of sun gear3m31=1.542, the radius of ellipse major axis of mid-gear6A6=30.694mm, theeccentricity ratio of mid-gear6k6=0.031, the deformation coefficient of mid-gear6m61=1.26.
     6) The structure of the mechanism was designed according to the optimum type and thecorresponding optimized mechanism parameters offered by the optimization, and3D model wasbuilt; Test stand has been developed, it can test the kinematics(trajectory, velocity) and dynamiccharacteristics of the transplanting mechanism under the condition of no-load, verifying thecorrectness of the established mathematical model; experiment of simulating the field plantingwas conducted on the rotating test stand, testing the effect of space, depth, specification ofbroccoli seedling,seedling stage and the rate of water content that was composed on the fieldoperation performance of transplanting mechanism. The results showed that the seedlingerectness rate could reach a comparative high level about95%when it met the followingcondition: the space was about280mm~380mm, the depth was about45mm~55mm,128holeplate,2~3leaves, water content of63%.
引文
[1] http://wenwen.soso.com/z/q59793022.htm
    [2]熊耐新,全腊珍,邹运梅,等.我国棉花移栽机的现状与发展趋势[J].湖南农机,2010,37(1):1~3.
    [3]王君玲,高玉芝,李成华.蔬菜移栽生产机械化现状与发展方向[J].农机化研究,2004(2):22~28.
    [4] Shaw, L. N. Automatic transplanter for vegetables[J].Proceedings of Florida State Horticultural Society,1997,110:262~263.
    [5]封俊,顾世康,曾爱军,等.栽植机的性能评价指标与检测方法[J].农业工程学报,1998,14(2):73~77.
    [6] Satpathy, S. K.,Garg, I. K..Effect of selected parameters on the performance of a semi-automaticvegetable transplanter[J].Agricultural Mechanization in Asia, Africa and Latin America,2008,39(2):47~51.
    [7]查跃华.两种型式油菜移栽机的研制及应用效果分析[J].中国农机化,2003(3):28~29.
    [8]金诚谦,吴崇友,袁文胜.链夹式移栽机栽植作业质量影响因素分析[J].农业机械学报2008,39(9):196~199.
    [9]胡军,封俊,曾爱军.大葱移栽机的设计与试验研究[J].黑龙江八一农垦大学学报,2006,18(2):42~45.
    [10]孙荣国,李成华,张伟.挠性夹盘式移栽机移栽过程中钵苗运动分析[J].农机化研究,2006,(2):45~47.
    [11]耿端阳,董锋,汪遵元.2ZG-2型钵苗移栽机栽直率研究[J].现化化农业,1999,(8):28~29.
    [12] G.V. Prasanna Kumar,H. Raheman.Development of a walk-behind type hand tractor powered vegetabletransplanter for paper pot seedlings[J].Biosystems Engineering,2011,(110):189~197.
    [13]周德义,孙裕晶,马成林.移栽机凸轮摆杆式扶苗机构设计与分析[J].农业机械学报,2003,34:(5):57~59.
    [14]顾世康,封俊,曾爱军,等.导苗管式栽植机的改进设计与试验[J].农业工程学报,1998,14(3):123~128.
    [15]封俊,顾世康,曾爱军,等.导苗管式栽植机的试验研究(Ⅱ)栽植机的性能评价指标与检测方法[J].农业工程学报,1998,14(2):73~77.
    [16]王薇,姜燕飞,卢宏宇.蔬菜移栽机导苗管的机构设计[J].农村牧区机械化,2007,(2):27~28.
    [17]潘启明,刘明刚.基于ADAMS的移栽机用凸轮摆杆扶苗机构设计及运动仿真分析[J].林业机械与木工设备,2009,37(9):33~36.
    [18]孙裕晶,马成林,周德义.组合振动导苗筒式移栽机研究[J].农业机械学报,2005,36(6):141~142.
    [19]孙裕晶,马成林,左春柽.组合振动式导苗机构试验研究[J].农业机械学报,2001,32(6):30~33.
    [20]王文明,窦卫国,王春光,等.2ZT-2型甜菜移栽机栽植系统的参数分析[J].农业机械学报,2009,40(1):69~73.
    [21]封俊,秦贵,宋卫堂,等.移栽机的吊杯运动分析与设计准则[J].2002,农业机械学报,33(5):48~50.
    [22]张祖立,王君玲,张为政,等.悬杯式蔬菜移栽机的运动分析与性能试验[J].农业工程学报,2011,27(11):21~25.
    [23]刘磊,陈永成,毕新胜,等.吊篮式移栽机栽植器运动参数的研究[J].石河子大学学报:自然科学版,2008,26(4):504~506.
    [24]陈建能,王伯鸿,任根勇,等.蔬菜移栽放苗机构运动学建模及特性分析[J].农业机械学报,2010,41(12):48~53.
    [25] Fa Liu, Jianping Hu, Yingsa Huang. Design and simulation Analysis of Transplanter’s PlantingMechanism[C].International Federation for Information Processing,2011,456~463.
    [26] W.C.Choi, D.C.Kim, I.H.Ryu, K.U.Kim.Development of seedling pick-up device for vegetabletransplants[J]. ASAE,2002,45(1):13~19.
    [27] C. Gutiérrez, R. Serwatowski, C. Gracia, J. M. Cabrera and N. Salda a.Design, building and testing of atransplanting mechanism. for strawberry plants of bare root on mulched soil[J]. Spanish Journal ofAgricultural Research,2009,7(4):791~799.
    [28] Brewer, H. L.Conceptual modeling automated seeding transfer from growing trays to shippingmodulus[J]. Trans. ASAE,1994,37(4):1043~1051.
    [29] Tsuga, K. Development of fully automatic vegetable transplanter[J]. Japan Agricultural ResearchQuarterly,2000,34(1):21~28.
    [30]陈建能,赵雄,王英,等.钵苗移栽机多杆式移栽装置:中国,ZL201010210180.8[P].2011-08-24.
    [31]陈建能,王伯鸿,任根勇,等.多杆式零速度钵苗移栽机构运动学分析与仿真软件,2011SR013448,2011-03-18
    [32]陈建能,王伯鸿,张翔,等.多杆式零速度钵苗移栽机构运动学模型建立与参数分析[J].农业工程学报,2011,27(9):7~12.
    [33]陈建能,黄前泽,李吉业,等.钵苗移栽机旋转式植苗机构的运动学仿真与优化软件,2011SR091161,2012-02-18
    [34]陈建能,黄前泽,李吉业,等.钵苗移栽机椭圆齿轮行星系植苗机构运动学建模与分析[J].农业工程学报,2012,28(5):6~12.
    [35] K. N. Singh, R. E. Garrett, P. Chen. Physical and Viscoelastic Properties of RiceSeedlings[J].Transactions of theASABE,1973,16(3):528~532.
    [36] M. Uchigasaki, S. Miyamoto, K. Serata, S. Tojo, et al.Evaluation of Seedling Quality Using MechanicalVibration Analysis[C]. World Congress of Computers in Agriculture and Natural Resources, Proceedingsof the2002Conference. Brazil: Iguacu Falls,2002.
    [37]宋建农,王苹,魏文军,王立臣.水稻秧苗抗拉力学特性及穴盘拔秧性能的力学试验研究[J].农业工程学报,2003,19(11):10~13.
    [38] Y. Yang, K. C. Ting, G. A. Giacomelli.Factors affecting performance of sliding-needles gripper duringrobotic transplanting of seedlings [J].Applied Engineering inAgriculture,1991,7(4):493~498.
    [39]方超.穴盘苗自动化移钵体系的结构设计与仿真分析[D].浙江:浙江大学,2012.
    [40]韩绿化,毛罕平,缪小花,等.基于穴盘苗力学特性的自动取苗末端执行器设计[J].农业机械学报,2013,44(11):260~265.
    [41]韩绿化,毛罕平,胡建平,等.穴盘苗自动移栽钵体力学特性试验[J].农业工程学报,2013,29(2):27~29.
    [42]韩绿化,毛罕平,缪小花,等.基于穴盘苗力学特性的自动取苗末端执行器设计[J].农业机械学报,2013,44(11):260~265.
    [43]缪小花,毛罕平,韩绿化,等.黄瓜穴盘苗拉拔力及钵体抗压性能影响因素分析[J].农业机械学报,2013,44(增刊1):27~32.
    [44] Takahiro SAITO, Jaw-Kai WANG, Fusakazu AI, et al.Physical Requirements of Seedling Blocks Usedin an Automatic Vegetable Transplanter[J].Japanese Journal of the Society of Agricultural Structures,1983,19(1):22~28.
    [45]孙裕晶,马成林,左春柽,等.组合振动式导苗机构试验研究[J].农业机械学报,2001,32(6):30~33.
    [46]彭旭,宋建农,皇雅斌,等.蔬菜钵苗在导苗管中的动力学分析[J].农机化研究,2006(8):54~59.
    [47]向卫兵,罗锡文,王玉兴.基于ANSYS/LS-DYNA的钵苗运动模拟[J].农机化研究,2007(12):42~44.
    [48]张志祥.台州西兰花产业现状分析与发展对策研究[D].浙江:浙江大学,2004.
    [49]齐继文,赵瑞,王菊.蔬菜穴盘育苗技术[J].吉林蔬菜,2009,(02):9.
    [50]邓振伟,于萍,陈玲.SPSS软件在正交试验设计、结果分析中的应用[J].电脑学习,2009,(05):15–17.
    [51] Takahiro SAITO, Jaw-Kai WANG, Fusakazu AI, et al.Physical Requirements of Seedling Blocks Usedin an Automatic Vegetable Transplanter[J].Japanese Journal of the Society of Agricultural Structures,1983,19(1):22~28.
    [52]韩绿化,毛罕平,胡建平,等.穴盘苗自动移栽钵体力学特性试验[J].农业工程学报,2013,29(2):27~29.
    [53]黄醒春.岩石力学[M].北京:高等教育出版社,2005.
    [54]柴寿喜,石茜.干密度和含水率对稻草加筋土强度与变形的影响[J].煤田地质与勘探,2013,41(1):46–49.
    [55]任露泉.土壤粘附力学[M].北京:机械工业出版社出版,2011.
    [56]哈尔滨工业大学理论力学教研室.理论力学Ⅱ[M].北京:高等教育出版社,2005.
    [57] Valentin L. Popov. Contact Mechanics and Friction Physical Principles and Application[M].New York:Springer-Verlag Berlin Heidelberg,2010:59–65.
    [58]何思明,吴永,李新坡.颗粒弹塑性碰撞理论模型[J].工程力学,2008,25(12):19–24.
    [59]东南大学,浙江大学,湖南大学,等.土力学[M].北京:中国建筑工业出版社,2010.
    [60]王宁,王建新,宋崎,黄大唯,宋英,周小初.正交设计多指标综合评分法优化救心速释片处方[J].中成药,2003,25(3):179–182.
    [61]张瑞,吴序堂,聂钢,等.高阶变性椭圆齿轮的研究与设计[J].西安交通大学学报,2005,39(7):726~730.
    [62]吴序堂,王贵海.非圆齿轮及非匀速比传动[M].北京:机械工业出版社,1997:3~8.
    [63]贺敬良,吴序堂,李建刚.变性椭圆齿轮连杆机构的运动特性及齿轮副设计[J].机械工程学报,2004,40(1):62~65.
    [64]李革,赵匀,俞高红.椭圆齿轮行星系分插机构的机理分析和参数优化[J].农业工程学报,2000,16(4):78—81.
    [65]陈建能,赵匀.高速插秧机椭圆齿轮行星系分插机构的参数优化[J].农业机械学报,2003,34(5):46-49.
    [66]谭伟明,陈就,安军,等.偏心齿轮的共轭非圆齿轮的设计[J].佛山科学技术学院学报,2003,21(1):23~26.
    [67]俞高红,张玮炜,孙良,等.偏心齿轮-非圆齿轮行星轮系在后插旋转式分插机构中的应用[J].农业工程学报,2011,27(4):100~104.
    [68]高林第.变性偏心圆-非圆行星系分插机构分析、设计与参数优化[D].杭州:浙江理工大学,2011:12~14.
    [69]廖伟,赵匀,方明辉.巴斯噶蜗线齿轮在分插机构上的应用和参数优化[J].浙江理工大学学报,2009,26(3):547~550.
    [70]任廷志,程爱明,景奉儒.蜗线齿轮及其共轭齿轮的几何分析与仿真[J].机械工程学报,2006,42(9):71~77.
    [71]李革,李辉,杨爱茜,方明辉.傅里叶节曲线非圆齿轮系分插机构运动学分析[J].农业工程学报,27(8):126~131.
    [72]任廷志,刘才.节曲线向径按余弦规律变化的齿轮与非圆齿轮共轭的研究[J].机械工程学报,2004,40(10):181~184.
    [73]王伯鸿.蔬菜钵苗多杆式植苗机构的建模分析、参数优化和试验研究[D].浙江:浙江理工大学,2011.
    [74]彭旭,宋建农,皇雅斌,等.蔬菜钵苗在导苗管中的动力学分析[J].农机化研究,2006(8):54~59.
    [75]赵匀.农业机械分析与综合[M].北京:机械工业出版社,2008.
    [76]梅凤翔,刘桂林.分析力学基础[M].西安:西安交通大学出版社,1987.
    [77]陈建能.椭圆齿轮行星系分插机构的动力性能分析、参数优化及实验验证[D].浙江:浙江大学,2004.
    [78]张策.机械动力学[M].北京:高等教育出版社,2008.
    [79]俞高红.圆柱齿椭圆齿行星系分插机构的动力学分析与优化[D].浙江:浙江大学,2006.
    [80]赵匀,程革,武俊生.刚体相对运动微分方程及其应用[J].农业机械学报,1992,23(3):56~60.
    [81]陈松庆.摆动从动件圆柱凸轮机构的探讨[J].机械设计与制造,1991,(5):28~31.
    [82]黄前泽.钵苗移栽机行星轮系植苗机构关键技术研究及试验[D].浙江:浙江理工大学,2012.
    [83]林锉云,董加礼.多目标优化的方法与理论[M].吉林:吉林教育出版社,2008.
    [84]陈乔礼.应用于多目标优化问题的非支配排序差[D].湖北:武汉科技大学,2007.
    [85] Srinivas N,Deb K.Multiobjective optimization using nondominated sorting in geneticalgorithms[J].Evolutionary Computation,1994,2(3):221~248.
    [86] ZhaoYun,Chen Jianneng,Yu Yaxin,et al.Research on quadratic optimization method and its applicationon optimizing mechanism parameter [J].Chinese Journal of Mechanical Engineering,2006,19(4):519~523.
    [87]何琰.分插机构复优化方法的研究及软件集成[D].浙江:浙江理工大学,2009.
    [88]谢庆生,罗延科,李屹.机械工程模糊优化方法[M].北京:机械工业出版社,2002.
    [89]刘书华.准双曲面齿轮模糊优化设计[J].机械设计,2000,17(6):46~48.
    [90]张静,李柏林,刘永均.平面连杆机构的模糊优化设计[J].机床与液压,2008,36(4):273~275.
    [91]黄洪钟.机械设计模糊优化原理及应用[M].北京:科学出版社,1997:15~64.
    [92]丁伟.基于多目标遗传算法的轴流压气机气动优化设计技术研究[D].西安:西北工业大学,2006.
    [93]王小平,曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [94]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [95]雷英杰,张善文,李续武,等.Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2014.
    [96]华林,余世浩.UG II软件实用教程[M].北京:机械工业出版社,2003.
    [97]葛正浩,杨妮.UG NX5.0三维机械设计[M].北京:化学工业出版社,2008.
    [98]孙良.混合齿旋转后插式分插机构的动力学研究和试验[D].杭州:浙江理工大学,2008.
    [99]刘丽敏,李革,赵匀,等.旋转式分插机构动力学试验台的研制[J].农机化研究,2005,(4):134~136.
    [100]陈建能,李革,赵匀,等.椭圆齿轮行星系分插机构动力学特性的试验[J].农业机械学报,2006,37(1):40~41,46.
    [101]丁玲.影响水稻抛栽立苗的因素[J].信阳农业高等专科学校学报,2007,17(3):116~117.
    [102]吴建富,潘晓华,石庆华.免耕抛秧稻的立苗特性与立苗技术研究[J].作物学报,2009,35(5):930~939.
    [103]http://www.nongji360.com/company/shop7/product_2015_12746.shtml

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700