用户名: 密码: 验证码:
基于蜻蜓翅膀的温室结构仿生设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室农业是农业生产中重要的种植方法,它通过人工设施控制环境因素,使作物获得最适宜的生长条件,从而加长生产季节,获得最佳的产出。温室的发展不仅可以减少耕地使用,同时也可降低水资源及化学肥料的使用量,是实现环境友好型农业的重要手段。温室结构形式的优劣直接影响到温室性能的高低,在提高温室的生产率和能源利用率,降低成本,保障安全稳定生产等方面具有重要的意义,因此,结构设计和技术应用是当前国内外温室研究和发展中的一项重要课题。
     目前国内外学者对温室结构研究主要集于光环境及覆盖材料、通风系统等可控环境性能的研究,在温室结构安全可靠性方面的研究还较少。我国温室,一方面受到地域性的限制,使得进口温室在我国大多存在着通风不足、抗雪载能力差、透光性较差等问题。另一方面,温室研究的主要精力集中于环境,忽视了对温室结构安全性问题的研究,使得目前我国温室存在诸多安全隐患。近年来的多起由于大风或大雪导致温室结构倒塌的工程事故,造成了很大的经济损失,亟需开展我国自产温室的结构设计理论和技术研究。
     本文通过研究仿生学在建筑中的应用,依照技术推进型的思路,结合现代温室技术、农业机械化工程、计算机技术、仿生学和数学等学科的知识,对自然界中蜻蜓翅膀力学特征进行研究,并建立基于仿生的新型温室空间结构体系,为建筑仿生的研究范围和温室结构设计方法提供理论依据与参考。论文的主要研究工作与研究成果如下:
     (1)蜻蜓翅膀结构刚度的力学研究。建立蜻蜓翅膀的脉络模型,分析模型在不同载荷条件下的变形规律,研究主、次脉对结构刚度的影响及蜻蜓翅膀模型在各向集中力和均布载荷下的整体变形协调性能。得出主脉为蜻蜓翅膀的主承力结构,次脉对结构刚度影响不大,主次脉相结合,可提高结构的整体强度和承载能力。蜻蜓翅膀脉络结构在各向集中力的作用下,没有局部大变形的产生。
     (2)结合蜻蜓翅膀空间结构的特征,从蜻蜓翅膀结构中,分离出四种基本的网格结构:四边形网格、交错四边形网格、六边形网格及三、五、六边形组合网格,分别建立有限元模型模拟蜻蜓翅膀的主要空间结构。结合蜻蜓翅膀飞行时所受最小升力,模型分别施加相同的荷载F=10000bN×(1,2,3,4,5,6,7,8,9,10)作刚度分析,研究蜻蜓翅膀的空间结构对刚度的影响:
     ①蜻蜓翅膀褶皱结构的力学分析。根据主脉起皱的结构特点,取四边形和交错四边形两种网格模型,建立不同起皱高度(0,1,3,5,7,9,10,12dmm)的模型进行力学分析,可知在相同的起皱高度下,随着载荷的增加,变形也随之增加,但起皱高度越大,随载荷增大的变形量越小,受力相同时,交错四边形网格模型的变形量总是稍大于四边形网格模型;同时无膜网格模型的变形略大于有膜网格模型。
     ②蜻蜓翅膀起拱结构的力学分析。根据蜻蜓翅膀双向起拱的结构特点,取六边形网格及三、五、六边形组合网格,建立不同拱高(矢跨比分别为0,1/8,1/7,1/6,1/5,1/4,1/3)的力学模型,模型分别施加相同的荷载F作刚度分析。得出相同载荷条件下,两种网格模型的结构刚度都随起拱高度的增加而增大;载荷及拱高相同时,有膜网格的变形小于无膜网格,刚度明显增强;无论有膜、无膜,相同载荷条件下,六边形网格的变形总是大于组合网格模型,因此,网格密度越大,刚度就越大。
     (3)温室仿生结构的设计研究。基于蜻蜓翅膀结构的刚度特性,从翅膀结构力学性能的基本原理出发,结合现有的温室结构及尺寸特征,建立三种温室的新型仿生空间结构,温室结构的整体形状是以六边形网格构成的起拱结构,在起拱的基础上,用四边形网格起皱,形成主框架。通过对三个仿生结构在各种工况作用下的比较分析,可知模型二在空间结构的分布上较模型一和模型三更为合理,表现出良好的力学性能,因此选择模型二为确定的温室骨架结构,并对其进行进一步的力学设计:
     ①材料及尺寸设计。采用不同的复合材料对模型进行模拟,结合温室结构的载荷组合情况,对模型二进行静力分析,比较模型二在不同工况载荷作用下的挠度及应力的变化情况。结构的骨架及壳体均使用复合材料后,挠度明显降低,杆件的应力值也下降很多,材料弹性模量的提高可以增加结构的弯曲刚度。分组定义梁的不同尺寸及壳体厚度,在模型上施加1000N/m2的均布荷载做力学分析。随着梁的管径及壁厚的增加,结构的刚度有所增加,结构所用材料也增加;壳体的刚度随其厚度的增加也有较小幅度的增强。通过以上分析,综合考虑结构刚度的保证及原材料的节约,确定出温室结构适宜的材料及几何尺寸。
     ②应力刚化对结构刚度的影响。在模型二上施加1000N/m2的均布荷载,比较它在三种静力分析下的力学性能,可知在考虑应力刚化效应下进行小位移静力分析时,结构的最大挠度值降低了0.027m,仅为不考虑应力刚化效应时挠度值的89.5%,说明壳体受拉后对结构弯曲刚度有较大幅度的提高。大位移静力分析时挠度值略大于不考虑应力刚化效应的小位移静力分析。对结构分别施加F=200N/m2×(1,2,3,4,5,6,7,8,9,10)的均布载荷,做出挠度随载荷的变化曲线,分析曲线可知,随着荷载的加大,应力刚化效果也更加明显,结构挠度的降低幅度也越大。因此在结构设计时刚度不益过大,结构在一定的变形下,才会使梁和壳体共同作用下提高结构刚度的性能更好的发挥出来。
     ③约束条件对结构刚度的影响。对模型二增加两个支柱,进行竖向的位移约束,比对模型在不同的工况组合下,增加约束前后的最大挠度值和应力值的变化情况,可知结构增加约束后挠度值仅为原来的10%左右,最大拉、压应力也按照近似的比例大幅减小。可见,温室结构中支柱的增加可能减小结构的整体变形,对刚度的提高起着重要的作用。因此设计时,在结构尺寸保持不变的基础上,可以通过增加结构的约束来减小变形,满足安全性的要求,同时发挥结构的应力刚化效果,节约原材料。
     (4)连栋温室仿生结构的设计研究。对模型二沿长、跨方向进行镜像,建立对称的仿生模型Ⅰ,通过力学比较,可知在相同工况下,无论结构是否增加支柱约束,模型Ⅰ的最大挠度都小于模型二,两部分对称结构可互相牵制、协调,增加结构的整体刚度。综合利用对称结构及蜻蜓翅膀自身的结构优势,设计出两种新型大跨度连栋温室仿生结构,应用时可根据土地条件和实际需求,设计具体的连栋个数并增加支柱约束,以满足刚度的要求。
     本文创新点如下:
     (1)针对国内外温室结构设计的理论及技术研究,提出温室结构仿生设计的思路,对蜻蜓翅膀的整体刚度和空间结构性能进行了研究;
     (2)设计了三种温室仿生空间结构模型,并对仿生结构的力学性能进行了进一步的探索和研究;
     (3)对温室仿生结构的研究进行拓展,建立了对称的大跨度温室仿生结构,进行连栋温室结构的仿生设计研究。
     本文所提出的基于仿生的温室结构设计方法的研究,为设施农业的发展提供了新的思路和技术支撑。
Agriculture in greenhouse is an important planting method. It controls environmentalfactors through artificial facilities, helps crops obtain suitable growing conditions, thusextends their growing season and achieves best output. The development of greenhouse cannot only reduce the use of arable land, but also reduce the use of water resource andchemical fertilizer. So it can be an environmentally-friendly planting method. The Quality ofgreenhouse structure has direct effect on the performance of greenhouse. So the quality ofgreenhouse structure is of great importance in improving the productivity and energyutilization, reducing the cost, guaranteeing the safety and stabilizing the production. Becauseof this, the structure design and technology utilization have become an top topic in domesticand foreign greenhouse research and development.
     Now, all scholars focus on the research of luminous environment, covering material andventilation system. There is little research on the safety and reliability of the greenhousestructure. On the one hand, most imported greenhouse in China has deficient draught, poorsnow load stress, and poor light transmission; on the other hand, our research on greenhousepays close attention to the environmental factors, rather than the structure safety, whichleaves much potential safety hazard. During recent years, many engineering accidentshappened due to strong wind and heavy snow, which took a heavy toll. It urgently needs thetheory and technology research of greenhouse structure.
     From the utilization of bionics in architecture, according to the thought of technologypropeller, combined with modern greenhouse technology, mechanization of farming, ITtechnology, bionics and maths, this essay will study the mechanics of dragonfly’s wings,establish new space structure system of the greenhouse, thus offer theoretical foundation andreference for the bionics research and structure design of greenhouse. The main researchwork and results are as follows:
     (1) Mechanical research on the structural rigidity of the dragonfly’s wings. We willbuild finite element modeling, analyze the deformation regularity of the model, the effect ofmain vein and secondary vein on the structural rigidity, and the deformation compatibilityperformance of the model of dragonfly’s wings under different load pressure. Our result is:the main vein is the main load-bearing structure of the dragonfly wings, secondary veinshave little effect on the structural stiffness. Primary and secondary veins combining canimprove the overall strength of the structure and carrying capacity. Under the uniform loadand concentrated force, the dragonfly wing structure occurs only to the overall deformation,but the grid shape does not change.
     (2) Combined with characteristics of the spatial structure of dragonfly wings, we candivide into the four basic cantilever grid structure: quadrilateral mesh, staggeredquadrilateral mesh, hexagonal mesh and three, five, hexagonal combination of networkgrid as to the dragonfly wing structure. Respectively, we establish the spatial structure of thefinite element model to simulate dragonfly wings. Bearing the smallest lift, when combinedwith dragonfly wings’ flying model, we separately applied to the same load F=10000bN×(1,2,3,4,5,6,7,8,9,10) for the stiffness analysis, and study the effect of their wrinkle structureand bagging structure on the structural stiffness:
     ①The mechanical analysis of the dragonfly wings fold structure. According to the structuralcharacteristics of the main vein wrinkling, we take the quadrilateral and staggeredquadrilateral mesh to create different z fold (wrinkle height of0,1,3,5,7,9,10,12dmm)mechanical model separately applied to the same load F for large displacement staticanalysis. The observation z to the structural deformation maps and extract the maximum zdisplacement, structural analysis model in different folds. Coming to the same uniform load,the greater wrinkling of the height, the smaller the structural deformation; if corrugationheight is the same, with the increase of the load, deformation also increases, but the greaterthe wrinkle height, the smaller the amount of deformation load. At the same time, thestiffness of quadrilateral mesh structure is slightly larger than the cross-quadrilateral meshstructure; under the same load, the deformation of the membrane mesh structure is alwaysless than the membrane grid structure.
     ②The mechanical analysis of dragonfly wings bagging structure. According to thestructural characteristics of dragonfly wings bi-directional camber, we take a hexagonal gridand three, five, hexagonal combination of grid to establish different mechanical model ofvarious arch heights (vector span ratio of0,1/8,1/71/6,1/5,1/4,1/3), separately appliedthe same load F to the models for the stiffness analysis. We obtain that, under the same loadconditions, the structural rigidity of the two mesh increase with bagging height; when loadand arch height is the same, the deformation of the membrane grid is less than themembrane-free mesh, the stiffness is significantly enhanced; Whether with membrane orwithout membrane, under the same load conditions, the hexagonal network deformation isalways greater than the combination of mesh, we can see from that, the larger the meshdensity, the greater the stiffness.
     (3) Research on the design of the greenhouse bionic structure. Based on the stiffnesscharacteristics of dragonfly wing structure and the basic principles of the mechanics of thewing structure, combined with the existing greenhouse structure and size characteristics, theestablishment of three new bionic spatial structure of the greenhouse, the overall shape of thegreenhouse structure is a bagging structure of a hexagonal grid, on the basis of bagging, weutilize quadrilateral grid wrinkling to form the main frame. By comparative analysis ofvarious working conditions under the three bionic structures, we can see model two in itsspatial structure is more reasonable compared with model1and model3, which shows goodmechanical properties, and therefore is chosen for the greenhouse skeletal structure, andfurther analyzed mechanically:
     ①The design of material and size. We use different composite materials to simulatethe model, combining with the load combination of the greenhouse structure on model two,make static analysis of it and compare its own weight, deflection, stress and weight plus external loads. It shows that the structure of the skeleton and shell use of composite materials,the deflection was significantly reduced rod stress drop, the improvement of the elasticmodulus can increase the bending stiffness of the structure. Grouping to define the beam sizeand thickness of the shell model imposed1000N/m2uniformly distributed load for staticanalysis. It shows that, with the beam diameter and wall thickness increase, the deflectionand stress of the structure decreased, but the unit area of supplies also increased; the increaseof the thickness of the shell can improve the bending stiffness of the structure, but not much.Through the above analysis, considering the stiffness of the assurance and raw materialssavings, we determine the appropriate material and geometry of the greenhouse structure.
     ②The effect of stress stiffening on structural rigidity. If1000N/m2of uniformlydistributed load applied to model two, compared with the three kinds of mechanicalproperties through static analysis, we know that, considering the stress stiffening effects ofthe small displacement, the maximum deflection of the structure reduces0.027m, only89.5%of the deflection value without considering the stress stiffening effect, the shelltension dramatically increased the bending stiffness of the structure. We make largedisplacement static analysis, taking into account higher order terms, the deflection value isslightly larger than without considering the small displacement static analysis of the stressstiffening effect. F=200N/m2×(1,2,3,4,5,6,7,8,9,10) uniform load imposed on thestructure, respectively, to make the deflection with the load curve analysis of the curveindicated with of with load increase, the stress stiffening effect is more pronounced, thegreater the decrease of the structural deflection. The stiffness in the structural design shouldnot be too great. In a certain degree of deformation, the beam and shell together will improvethe stiffness, thus achieve the better performance.
     ③The effect of constraint conditions on the structural stiffness. If adding two pillarsof the vertical displacement constraints to model2, the maximum deflection and stressvalues change in different operating conditions, we can see the deflection of the structure toincrease constraint is only about10%of the maximum tensile of the original, andcompressive stress also decreased substantially in accordance with the approximateproportion of the greenhouse structure with the pillar of the vertical displacement constraints.It can significantly reduce the deflection of the entire structure, and plays an important rolein improving the stiffness. The design, based on the structure size is unchanged by addingstructural constraints to reduce the deformation, to meet the requirements of security, andmeanwhile, makes the most of the advantage of the stress stiffening effect and saves rawmaterials.
     (4) The design of multi-span greenhouse of biomimetic structure. along the lengthand cross-direction of model two, we build its mirror symmetry. By mechanical comparison,we can see in the same condition, regardless of the pillars of constraints added to thestructure, the maximum deflection of model1is less than model2, two partially symmetricstructure can contain each other’s coordination, increasing the overall stiffness of thestructure. If we comprehensively utilize the symmetry of its structural advantages and dragonfly wings, and design two new large-span and multi-span greenhouse biomimeticstructure to meet the stiffness requirement, which should be based on land conditions, actualneeds, actual number of multi-span and the pillars of constraints.
     The innovation of this essay is: for domestic and international greenhouse structuraldesign theory and technology research, it puts forward the ideas of biomimetic design ofgreenhouse structure, and studies the overall stiffness of dragonfly wings and spatialstructure performance; designs several new types of bionic spatial structure of thegreenhouse and carries out further exploration and research on the mechanical properties;expands the biomimetic structure of the greenhouse, builds symmetrical large-span bionicstructure, and study the biomimetic design of multi-span greenhouse structure.
     The research on greenhouse structural design based on biomimetics offers new researchideas and reference for the development of industrialized agriculture.
引文
[1]许安祥.我国温室农业的发展现状与趋势[J].排灌机械,2000,18(1):4-6.
    [2]孙振.设施农业是现代农业的重要标志[J].山西农业科学,2009,37(9):84-89.
    [3]张天柱.温室工程规划设计与建设[M].北京:中国轻工业出版社,2010.
    [4]史晓君,于海业.温室结构仿生设计的可行性研究[J].农机化研究,2011,33(7):73-77.
    [5]梁宗敏.连栋温室结构抗风可靠度设计理论研究[D].北京:中国农业大学,2004.
    [6]孙德发.连栋塑料温室结构设计理论及工程应用研究[D].杭州:浙江大学,2002.
    [7] Tiwari G N, Dubey A K, Goyal R K. Analytical study of an active wintergreenhouse[J]. Energy,1997,22(4):389-392.
    [8] Kendirli B. Structural analysis of greenhouses: A case study in Turkey[J]. Buildingand Environment,2006,41:864-871.
    [9]申泰雄,姚玉林,包颖.设施农业的国内外现状与我省的发展对策[J].农机化研究,1999,21(1):5-10.
    [10]冯广和.世界各国现代温室的发展[J].农村实用工程技术:温室园艺,2003,24(5):29-31.
    [11]冯广和.国内外现代温室的发展[J].新疆农机化,2004,10(3):50-51.
    [12]王琦,徐克生.现代温室发展趋势[J].农业机械与木工设备,2004,32(10):8-9.
    [13]刘步洲,陈端生.发展中的中国设施园艺[J].农业工程学报,1989,5(3):38-41.
    [14]周长吉.现代温室工程[M].北京:化学工业出版社,2003.
    [15]程子良.京鹏,创立设施农业的民族品德[J].中国农村科技,2009,16(10):56-58.
    [16]宋希强.我国温室发展概况[J].南国园艺,2000,28(4):48.
    [17]朱明,周长吉.我国设施农业的新发展[EB/OL]. http://www. amic.agri.gov. cn/Desktop Modules/Infos11/Infos/ThisInfo. Aspx? ItemID=80656&c=216.2009,8-12.
    [18]高海秀.发展设施农业园艺工程的思考[J].农村工作通讯,2011,56(14):23-24.
    [19]王乃江.现代温室技术及应用[M].杨凌:西北农林科技大学出版社,2008.
    [20]胡建.几种常见类型温室的结构特点综述[J].现代化农业,2007,29(2):35-37.
    [21]周长吉,王应宽.中国现代温室的主要型式及其性能[J].农业工程学报,2001,17(1):16-21.
    [22]王双喜.设施农业装备[M].北京:中国农业大学出版社,2010.
    [23]陈碧华.我国温室的主要类型及建造中小型温室的方法[J].农民科技培训,2003,3(2):5-6.
    [24]王小琼.农业设施结构与材料[M].天津:天津科技翻译出版公司,2010.
    [25]贾凤伶.设施蔬菜基地建设规划管理研究[D].天津:天津大学,2010.
    [26]刘建,周长吉.日光温室结构优化的研究进展与发展方向[J].内蒙古农业大学学报:自然科学版,2007,28(3):264-268.
    [27] Kozai T. Studies on the solar irradiation in glasshouse(2[J]. Agric. Meteorol,1972,27:105-115.
    [28] Kozai T. Studies on the solar irradiation in glasshouse(3)[J]. Agric. Meteorol,1972,28:79-88.
    [29] Kozai T. Numerical experiments on light transmission into greenhouses(1)[J]. Agric.Meteorol,1973,29:179-187.
    [30] Kozai T. Numerical experiments on light transmission into greenhouses(1)[J]. Agric.Meteorol,1974,29:239-248.
    [31] Kozai T. A computer program for the calculation of the direct solar irradiation insingle-span greenhouse[J]. Agric.Meteorol,1975,31:89-94.
    [32] Kozai T, Goudriaan J, Kimura M. Light Transmission and Photosynthesis inGreenhouses[J]. Wagening Centre for Agricultural Publishing and Documentation,1978,99:48-54.
    [33] Kurate. K.,Tachibana.K. Greenhouses structure design with the optimizationtechnique[J]. Acta horticulture,1978,87:21-30.
    [34] Kurate.K.Role of reflection inlight transmisivity of Greenhouses[J]. Acta horticulture,1990,52:319-331.
    [35] Critten. D.L. A theoretical assessment of transmissivity of conventional symmetricroofed multi span E-W greenhouses compared with vertical south roofedgreenhouses under natural irradiance conditions[J]. Agric. Engng Res.,1987,32:173-183.
    [36] Critten.D.L. Light transmission losses due to structural members in multi spangreenhouse under diffuse skylight conditions[J]. Agric. Engng Res.,1987,38:193-207.
    [37] Critten.D.L. An improved theory for reflective losses from infinitely longgreenhouse[J]. Agric. Engng Res.,1987,38:301-311.
    [38] Von Elsner B, Briassoulis D, Waaijenberg D,et al. Review of Structural andFunctional Characteristics of Greenhouses in European Union Countries: Part I,Design Requirements [J]. Journal of Agricultural Engineering Research,2000,75(1):1-16.
    [39] Engel R D. Using simulation to optimize solar greenhouse design. In:Proceedings ofthe17th annual symposium on Simulation[J]. NJ, USA,1984:119-139.
    [40]刘志杰,郑文刚.中国日光温室结构优化研究现状及发展趋势[J].中国农学通报2007,24(2):449-453.
    [41] Tiwari G N, Dhiman N K. Design and optimization of a winter greenhouse for theLen-Type climate[J]. Energy Conversion and Management,1986,26(1):71-78.
    [42] Diaz Alvarez J R. Modeling of greenhouse structure and characteristics for an idealeconomic structure for growing vegetables, flowers or fruit crops[J]. Ciheam OptionsMediterraneennes,1999,31:29-43.
    [43]陈青云.单屋面温室光照环境的数值实验[J].农业工程学报,1993,9(3):96-101.
    [44]丁秀华,王凤珍,陈维志.辽宁省节能型日光温室采光面倾斜角度优化选择[J].辽宁农业科学,1998,39(2):28-32.
    [45]陈秋全,杨光勇,刘及东.北方高寒地区高效节能型日光温室优化设计[J].内蒙古民族大学学报,2003,18(3):257-259.
    [46]王永宏,张得俭.日光节能温室结构参数的选择与设计[J].机械研究与应用,2003,16(S1):101-103.
    [47]周长吉.“西北型”日光温室优化结构的研究[J].新疆农机化,2005,21(6):37-38.
    [48]胡波,张生田.西宁地区日光温室结构优化设计[J].农村实用工程技术,2001,22(9):122-122.
    [49]高志奎,魏兰阁.日光温室采光性能的实用型优化研究[J].河北农业大学学报,2006,29(1):1-5.
    [50]佟国红,李永奎,孟少春.利用动态规划设计温室前屋面最佳形状的研究[J].沈阳农业大学学报,1998,29(4):340-342.
    [51]周长吉.有立柱钢管骨架日光温室的结构优化[J].农业工程学报,1994,10(1):157-160.
    [52]刘俊杰,邹志荣.无柱式日光温室的骨架结构优化研究[J].宁夏工学院学报,1996,(S1):254-257.
    [53]李有,张述景,王谦.日光温室采光面三效率计算模式及其优化选择研究[J].生物数学学报,2001,16(2):198-203.
    [54]周长吉.日光温室结构优化设计及综合配套技术(四)日光温室围护结构——墙体的保温性能[J].农村实用工程技术,1999,20(4):7.
    [55]李小芳,陈青云.日光温室山墙对室内太阳直接辐射得热量的影响[J].农业工程学报,2004,20(5):241-245.
    [56]刘璎瑛.日光温室保温性能的试验研究及小气候模拟[D].南京:南京农业大学,2003.
    [57]赵岽,王铁良,山口智冶.辽沈Ⅳ型日光温室墙体保温性能试验研究[J].节能技术,2005,23(5):390-391.
    [58]任艳芳,何俊瑜,温祥珍.温室保温覆盖材料研究现状及进展[J].山西农业大学学报:自然科学版,2005,25(2):183-186.
    [59]刘杰.NJ-6型节能连栋温室光温环境研究[D].北京:中国农业大学,2001.
    [60]沈军.非对称连跨式节能温室温光性能的研究太原:山西农业大学,2003.
    [61]毛富强.制约郑州市设施园艺产业发展的相关问题研究[D].郑州:河南农业大学,2010.
    [62]齐飞.圆拱形屋面连栋温室雪荷载取值方法初探[J].农业工程学报,1998,14(增):83-88.
    [63]白义奎,明月.影响日光温室钢骨架结构安全及耐久性能因素分析[J].房材与应用,2005,33(5):14-15.
    [64]王笃利.温室基本风压和雪压取值方法的研究[D].北京:中国农业大学,2005.
    [65]周长吉.大型连栋温室设计风雪荷载分级标准初探[J].农业工程学报,2000,16(4):103-105.
    [66]谢小妍,陈凯.华南型单栋温室风荷载模拟实验研究[J].农业工程学报,2000,16(5):90-94.
    [67]邢禹贤,王秀峰.坡面塑料日光温室优化结构模拟设计[J].山东农业大学学报,1997,28(2):97-101.
    [68]侯丽薇,吴巍.日光温室结构性能的计算机辅助设计[J].光学精密工程,1999,7(6):81-84.
    [69]池荣虎.基于Rough集的日光温室结构优化设计方法的研究[D].杨凌:西北农林科技大学,2003.
    [70]郑金土,李扬.连栋塑料温室GLP-728结构的力学分析和优化设计初探[J].农业工程学报,2000,16(1):79-82.
    [71]董吉林,李亚灵,温祥珍.温室光环境模拟模型及结构参数设计系统[J].山西农业大学学报,2003,23(3):252-255.
    [72]滕光辉.虚拟现实技术在温室中的应用[J].农业工程学报,2003,19(4):254-258.
    [73]张世叶,韩德平.日光温室的骨架结构改进及有限元分析[J].山西农业大学学报(自然科学版),2002,22(3):249-253.
    [74]卢旭珍,邱凌.单面坡日光温室钢骨架有限元优化[J].农业机械学报,2005,36(3):150-151.
    [75]高福聚.浅议空间结构仿生工程学研究中的特征标度问题[J].空间结构,20017(1):44-51.
    [76]沈伟.蜻蜓翅膀结构仿生及新型伸臂空间网格结构体系研究[D].杭州:浙江大学,2006.
    [77]刘静.仿生建筑学在空间结构中的运用[D].天津:天津大学,2005.
    [78]沈丽虹.浅谈仿生建筑[J].山西建筑,2006,32(22):45-46.
    [79]徐晓琳.浅谈建筑仿生文化的发展趋势[J].四川建材,2006,32(2):71-73.
    [80]宋立岩,赵由才.仿生学在环境污染控制与治理中的展望[J].环境科学动态,2005,30(1):15-16.
    [81]黄志斌.高新技术仿生化发展的态势分析[J].自然辩证法研究,2001,17(10):38-41.
    [82]王凤伟.神秘的生物武器装备[J].云南国防,2002,12(3):46-47.
    [83]高福聚.空间结构仿生工程学的研究[D].天津:天津大学,2002.
    [84]杨志贤.甲虫鞘翅材料微结构、力学性能及联接机制的研究[D].南京:南京航空航天大学,2008.
    [85]马惠钦.昆虫与仿生学浅谈[J].昆虫知识,2000,37(3):170-173.
    [86]张欣.仿生艺术设计及其美学[D].武汉:武汉理工大学,2005.
    [87]徐鹏.当代仿生建筑文化的新趋势[J].山西建筑,2009,35(9):37-38.
    [88]张欣.仿生艺术设计及其美学[D].武汉:武汉理工大学,2005.
    [89]魏清桥.仿生学在空间结构中的妙用[J].建筑,2009,55(9):34-35.
    [90]葛明桥.材料学科研究的新领域—仿生材料[J].南通工学院学报2000,16(2):1-2.
    [91]蒋冬青.浅谈建材仿生[J].山东建材,1998,16(4):40-41.
    [92]林宣益.憎水保洁的微结构外墙乳胶漆:仿生学在建筑涂料中的应用[J].新型建筑材料,2000,12(5):7-9.
    [93]丁晓斐.浅谈仿生建筑创作方法[J].华中建筑,2007,25(1):155-159.
    [94]袁子瑶.生命体建筑构想[D].南京:东南大学,1998.
    [95]李丹.树·建筑[D].长沙:湖南大学,2008.
    [96]崔悦君.创新建筑——崔悦君和他的进化式建筑[M].北京:中国建筑工业出版社,2002.
    [97]陈小坚.建筑仿生学初探[D].南京:东南大学,1996.
    [98]熊伟.仿生与建筑创作[D].重庆:重庆大学,2003.
    [99]尹德钰,刘善维,钱若军.网壳结构设计[M].北京:中国建筑工业出版社,1996.
    [100] Paul Meakin. Fractal scaling and growth far from equilibrium[D]. CambridgeUniversity Press.Jun.,2000.
    [101] Remo Badii,Antonio Politi. Complexity-Hierarchical structures and scaling inphysics[M]. Cambridge University Press, Jun.,2000.
    [102]李燕,张玉坤.当代仿生建筑及其特质[J].城市建筑,2005,2(5):68-71.
    [103]王科奇.建筑仿生新论[J].华中建筑,2005,23(3):28-31.
    [104]完海鹰,黄炳生.大跨空间结构[M].北京:中国建筑工业出版社,2000.
    [105]邓凌云.变异——建筑形态创新研究[D].重庆:重庆大学,2004.
    [106]姚钢,郝赤彪.理性与表现——圣地亚哥·卡拉特拉瓦的创作理念[J].青岛理工大学学报,2007,28(4):43-46.
    [107]刘先觉.现代建筑理论[M].北京:中国建筑工业出版社,1999.
    [108]陈骥.钢结构稳定理论与设计[M].北京:科学出版社.2001.
    [109]孙大章.中国古代建筑史话[M].北京:中国建筑工业出版社,1987.
    [110]茅以升.中国古桥技术史[M].北京:北京出版社.1986.
    [111]岑海堂,汪苏.结构仿生新进展[J].机械设计,2003,20(11):1-4.
    [112]武秀军.建筑形式与仿生[D].哈尔滨:哈尔滨工业大学,2001.
    [113]李保峰.仿生学的启示[J].建筑学报,2002,49(9):24-26.
    [114](英)达西·汤普森.生长和形态[M].上海:上海科学技术出版社,2002.
    [115](德)卡尔·冯·弗里施.动物的建筑艺术[M].北京:科学普及出版社,1983.
    [116](德)英格伯格·弗拉格.托马斯·赫尔佐格(建筑+技术)[M].北京:中国建筑工业出版社,2003.
    [117]娄刚.景观仿生建筑设计形态浅析[J].陕西林业科技,2005,33(4):76-79.
    [118](英)伊恩·伦诺克斯·麦克哈格.设计结合自然[M].天津:天津大学出版社,2006.
    [119]陈志华.外国建筑史[M].北京:中国建筑工业出版社,1997.
    [120]沈丽虹.住宅小区规划设计中的仿生学理念探讨[J].太原理工大学学报,2008,39(S2):19-22.
    [121](美)斯托勒.朗香教堂——国外名建筑选析丛书[M].北京:中国建筑工业出版社,2001.
    [122]马国馨.国外著名建筑师丛书——丹下健三[M].北京:中国建筑工业出版社,1989.
    [123]李永春.曲线的革命——高迪的建筑艺术[J].设计艺术,2001,11(1):56-58.
    [124](美)克拉克,波斯.世界建筑大师名作图析[M].北京:中国建筑工业出版社,2006.
    [125]张欣.仿生艺术设计及其美学[D].武汉:武汉理工大学,2005.
    [126]刘峰.尊贵的回忆——世界著名建筑大师全传[M].武汉:华中科技大学出版社,2006.
    [127]张颖.灵感从自然中来——仿生建筑结构美学[J].中外建筑,2009,15(8):39-41.
    [128]黄丹麾.当代西方生态建筑的美学研究[J].中国美术馆,2008,5(6):35-38.
    [129]吴向阳.国外著名建筑师丛书[M].天津:百花文艺出版社,2005.
    [130]梁思成.中国建筑史[M].天津:百花文艺出版社,2005.
    [131]戴志中,杨震,熊伟.编著建筑创作构思解析:生态·仿生[M].北京:计划出版社.2006.
    [132]仓力佳.生态建筑的仿生研究[D].武汉:华中科技大学,2005.
    [133]卢昀伟.中西方建筑仿生差异比较与发展研究[D].天津:天津大学,2004.
    [134]谭仲毅在.树状结构施工技术研究与应用[D].重庆:重庆大学,2002.
    [135]卓新.基于仿生学的空间钢结构形体设计[J].钢结构,2003,18(1):9-10.
    [136]卓新,董石麟.海洋贝类仿生建筑的结构形体研究[J].空间结构,2004,10(4):19-22
    [137]周浩明,张晓东.生态建筑——面向未来的建筑[M].南京:东南大学出版社,2002.
    [138]郑翔敦,高辉.建筑仿生技术浅析[J].建筑知识,2005,25(1):46-48.
    [139]籍颖.仿生元素在中国建筑设计中的应用[J].河南科技,2011,32(8):118-121.
    [140]陈志华.天津博物馆空间曲线变截面箱形钢梁的设计应用研究[J].工业建筑,2005,42(12):79-82.
    [141]王忠平.国家大剧院室外景观水池管道施工优质高效完工[J].安装,2007(8):18-20.
    [142]傅学怡,顾磊,杨先桥.国家游泳中心“水立方”结构设计优化[J];建筑结构学报,2005,26(6):13-19.
    [143]赵彦如.蜻蜓膜翅结构特征和纳米力学行为及仿生分析[D].长春:吉林大学,2007.
    [144]张朝晖.ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.
    [145]张应迁,张洪才.ANSYS有限元分析从入门到精通[M].北京:人民邮电出版社,2010.
    [146]穆卓辉.波纹钢腹板组合T梁的力学性能研究[D].西安:长安大学,2008.
    [147]秦宇.ANSYS11.0基础与实例教程[M].北京:化学工业出版社,2009.
    [148]王晓东.基于ANSYS的高速列车制动盘数值模拟[D].成都:西南交通大学,2009.
    [149]莫伟刚.新型大跨空间屋盖结构体系仿生(蜻蜓翅膀结构)研究杭州:浙江大学,2007.
    [150]卢中君.小型扑翼飞行器气动模型及数字仿真[D].哈尔滨:哈尔滨科技大学,1990.
    [151]陈锦祥,倪庆清.甲虫前翅中的三维复合材料结构[J].复合材料学报,2003,20(6):61-66.
    [152]陈斌,彭向和,范镜泓.生物自然复合材料的结构特征及仿生复合材料的研究[J].复合材料学报,2000,17(3):59-62.
    [153] Chen J X, Ni Q Q. Fine structure of the trabeculae in the fore-wing of allomyrinadichotoma (Linne) and prosopocoilus inclinatus (Motschulskey)(Coleoptera:Scarabaeidae)[J]. Entomologia Sinica,2001,8(2):115-123.
    [154]童秉纲,孙茂.飞行和游动生物流体力学的国内研究进展概述[J].自然杂志,2005,27(4):9-16。
    [155] P. KREUZ, W. ARNOLD, A. B. KESEL. Acoustic microscopic analysis of thebiological structure of insect wing membranes with emphasis on their waxysurface[J]. Annals of Biomedical Engineering,2001,Vol.29:1054-1058.
    [156] R. Ake Norberg. The pterostigma of insect wings an inertial regulator of wing pith[J]. Eomp. Physical,1971,81:9-22.
    [157] R.J. Wootton, J. Kukalova-Peck, D.J.S. Newman, J. Smart engineering in themid-carboniferous: how well could palaeozoic dragonflies fly?[J] Science,Vol.282,1998.
    [158] Li Zhongxue. Bionic modeling of the vein-stiffening membrane structure of adragonfly hind wing[J].2007(submitted).
    [159] Wesley Ross McLendon. Investigation into dragonfly wing structure compositefabrication, Texas A and M University, College Station, TX.
    [160] F.Song,K.W.Xiao,K. Bai,Y.L. Microstructure and nanomechanical properties of thewing membrance of dragonfly[J]. Materials Science and Engineering,2007,457(5):254-260.
    [161] Kreuz P, Arnold W, Kesel A B. Acoustic microscopic analysis of the biologicalstructure of insect wing membranes with emphasis on their waxy surface [J].Annals of Biomedical Engineering,2001,29(12):1054-1058.
    [162] Corb S N, Kesel A,Berger J. Microsculpture of the wing surface in Odonata:evidence for cuticular wax covering [J]. Arthropod Structure and Development,2000,29(2):129-135.
    [163] Okamoto M, Yasuda K, Azuma A. Aerodynamic characteristics of the wings andbody of a dragonfly [J]. The Journal of Experimental Biology,1996,199:281-294.
    [164] Michelle Kwok, Rajat Mittal. Experimental investigation of the aerodynamics of amodeled dragonfly wing section [J]. Region I-MA Student Conference,2005,2:224-231.
    [165]宋德强,王浩.投影梳状条纹插值法测量蜻蜓的翅膀变形[J].中国激光,2001,28(5):476-480.
    [166]刘明,曾理江.透射型激光三角法测量蜻蜓翅膀形状[J].仪器仪表学报,2003,24(4):95-97.
    [167]宋德强,曾理江.昆虫自由飞行时翅膀攻角的光学测量[J].光学技术,2000,26(2):165-168.
    [168]蔡志坚,曾理江.昆虫运动的跟踪技术[J].光学技术,2002,28(3):217-220.
    [169] L Zeng, H Matsumoto,Kawachi K. High-resolution method for measuring thetorsional deformation of a dragonfly wing by combining a displacement probe withan acousto-optic deflector[J]. Optical Engineering,1996,35:507-513.
    [170] Wang H., Zeng LJ. Measuring wing kinematies, flight trajectory, and body attitudeduring forward flight and turning maneuvers dragonflies [J]. Exp. Biol.,2003,206:745-757.
    [171] Zhang S L, Zeng L J. Finite element analysis of dragonfly wing [A]. Proceedings of2nd International Symposium on Instrumentation Science and Technology[C]. Jinan,China,2004:257-261.
    [172]程鹏,桃兆涛.蜻蜓飞行姿态的实时模拟测量[J].实验力学,2002,17(3):315-319.
    [173]鲍麟,胡劲松,余永亮.昆虫翼拍动中受载变形的粘弹性本构模型[J].应用数学和力学.2006,27(6):655-662.
    [174]田嘉萌.蜻蜓翅膀结构仿生及新型薄壁空间网格结构体系研究[D].杭州:浙江大学,2006.
    [175]孙茂.微型飞行器的仿生流体力学研究[R].国家自然科学基金资助项目进展报告.2004.
    [176] Wootton R J. Functional morphology of insect wings [J]. Annual Review ofEntomology,1992,37:113~140.
    [177] Kreuz P, Arnold W, Kesel A B. Acoustic microscopic analysis of the biologicalstructure of insect wing membranes with emphasis on their waxy surface [J]. Annalsof Biomedical Engineering,2001,29(12):1054~1058.
    [178]张戈.新型空间悬挑结构仿生(蜻蜓翅膀)设计研究[D].杭州:浙江大学,2007.
    [179]李小芳.日光温室的热环境数学模拟及其结构优化[D].北京:中国农业大学,2005.
    [180]国家质量监督检验检疫总局.温室结构设计荷载(GB/T18622-2002)[M].北京:中国标准出版社,2002.
    [181]周履,范赋群.复合材料力学[M].北京:高等教育出版社,1991.
    [182]张双寅,刘济庆.复合材料结构的力学性能[M].北京:北京理工大学出版社,1992.
    [183]晏石林,杨学忠.复合材料建筑结构及其应用[M].北京:化学工业出版社,2006.
    [184] Shigeru, Sunada. The Relationship Between Dragonfly Wing Structure and TorsionalDeformation [J]. Theor. Biol.1998,193:39-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700