用户名: 密码: 验证码:
土壤供氮特征及其对烤烟氮素营养的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国主要烟叶产区贵州省金沙县,利用15N示踪技术,对不同种植方式及不同有机添加物下烤烟氮素吸收、累积分配规律进行了研究,并结合田间原位培养试验,分析了土壤氮素矿化及氮素平衡与烤烟氮素营养的关系。通过田间原位培养与室内培养相结合的方法,探讨了烤烟生长期间不同条件下的土壤氮素矿化规律,并对土壤氮素矿化量及矿化势进行模拟研究。主要研究结果如下:
     1旱地轮作土壤烤烟干物质及氮素累积动态呈慢-快-持平型,水旱轮作土壤烤烟干物质及氮素累积动态呈慢-缓慢持续增加型。旱地轮作土壤有利于烤烟生长前期对土壤氮素的吸收,水旱轮作土壤增加了烤烟生长后期对土壤氮的吸收。
     2在有机添加物与无机氮肥配施条件下,烤烟对有机添加物中氮的吸收规律基本符合优质烟的需氮规律,其中烤烟对菜籽饼肥、稻草秸秆、油菜秸秆所含氮素的利用率分别为19.5%、15.5%、8.1%,所配施无机氮肥的利用率分别为41.1%、42.7%和35.7%,菜籽饼肥、稻草秸秆、油菜秸秆对烤烟氮素累积量的贡献分别为1.0%、2.4%、2.7%。
     3不同轮作方式及添加有机物条件下氮素平衡结果显示,烤烟生长期间的氮输入总量为156.3-405.5kg.hm-2,其中矿化氮量为输入总氮量的22.6%-54.3%,平均为34.5%,约为输入总氮量的1/3;肥料氮的利用率为31.4%-42.7%;植烟土壤氮素表观损失率在37.5%-57.2%,平均为46.9%,约为输入总氮量的一半。烤烟氮素累积量与输入氮总量呈显著正相关,因此在调控土壤氮素供应时,应考虑矿化氮、起始氮和肥料氮等的综合影响。
     4在烤烟生长期间,不施肥植烟土壤矿化氮供应存在两个高峰,一是在烤烟旺长期(烤烟移栽后49天左右),二是在烤烟打顶后(烤烟移栽后77天左右)。在烤烟生长期间,随着时间的推进矿化氮累积量增加,至烤烟移栽后91天左右,矿化氮累积量趋于平缓。土壤有机质含量对土壤氮矿化速率动态的影响不显著,肥料的施用导致土壤氮矿化动态波动幅度变大,在烤烟生长前期形成净固定,在烤烟生长后期对土壤净矿化产生显著正激发效应。饼肥施入土壤后21天已开始产生净矿化,稻草秸秆与油菜秸秆在施入土壤49天开始矿化释放无机氮,增加了烤烟生长后期的土壤氮矿化速率,形成前低后高的矿化速率动态。
     5变温培养下土壤氮素矿化动态与恒温培养显著不同,变温下土壤矿化氮的累积动态以积温模型的拟合效果最好。指数模型能够较好描述土壤有机氮矿化对土壤水分含量的反应。在土壤氮素矿化积温模型和水分函数的基础上,建立基于温度与水分的土壤氮素矿化模型,可以利用有效积温和土壤含水量来预测田间土壤氮素矿化量。
     6对我国主要植烟区土壤样品的分析显示,我国植烟土壤的潜在供氮能力较高,矿化势平均为130.6mg.kg-1左右,其中贵州省植烟土壤的矿化势平均为170.2mg.kg-1左右。不同区域土壤、不同类型土壤的潜在供氮能力差异显著。土壤氮矿化势与土壤有机质含量呈显著正相关,据此建立简单回归模型可依据土壤有机质含量粗略预测土壤氮矿化势。
Laws of absorption, accumulation and distribution of nitrogen in flue-cured tobacco under different cropping patterns were studied by 15N tracing technique in Jinsha County, Guizhou Province which is main tobacco-producing areas of China. Combined with in situ incubation field experiments, the relationship between soil nitrogen mineralization and tobacco nitrogen nutrition and tobacoo-soil system nitrogen balance were researched. The soil nitrogen mineralization and its simulation were studied by indoor cultivation methods with a combination of in situ incubation experiments during growing stage of flue-cured tobacco. The main findings are as follows:
     1 The accumulation dynamics of dry matter and nitrogen in flue-cured tobacco were slow- fast– stable type on dryland soil with maize-tobacco rotation and slow - slowly continued increase type on paddy soil with rice-tobacco rotation. It is conducive to uptake soil nitrogen for flue-tobacco on dryland soil with maize-tobacco rotation before topping (60 days after transplanting) and uptake soil nitrogen for flue-tobacco on paddy soil with rice-tobacco rotation after topping.
     2 The nitrogen utilization efficiency of rapeseed cake, rice straw and rape straw were 19.5%, 15.5%, 8.1% respectively, and the inorganic fertilizer nitrogen utilization efficiency were 41.1%, 42.7% and 35.7% under the combined application of organic additives and inorganic nitrogen fertilizer. The contribution rate of rapeseed cake, rice straw, rape straw to accumulated nitrogen of flue-cured tobacco were 1.0%, 2.4%, 2.7% respectively by the combined application of organic additives and nitrogen fertilizer. Flue-cured tobacco for organic nitrogen absorption meet with the nitrogen needs laws of high-quality tobacco, indicating that the combined application organic additives and inorganic nitrogen fertilizer reduces the nicotine content of tobacco, an increase of sugar/nicotine ratio and improved the quality of tobacco. In which the role of rice and rape straw is greater than the rapeseed cake can be used as measures to lower nicotine.
     3 Nitrogen accumulation in flue-cured tobacco with the total nitrogen input was a significant positive correlation during the growth stage of flue-cured tobacco. The total nitrogen input for the 156.3-405.5kg.hm-2, in which the soil nitrogen mineralization capacity account for 22.6% -54.3%, with an average of 34.5%, that is, soil nitrogen mineralization accounted for 1/3 of the total nitrogen input. Utilization efficiency of nitrogen fertilizer for the 31.4% -42.7%, tobacco nitrogen use efficiency in paddy soil above that of in dry land crop rotation soil. The apparent loss of nitrogen with total nitrogen input was also significantly positive correlation, tobacco apparent loss rate of nitrogen was for 37.5% -57.2%, with an average of 46.9 percent, about half of total nitrogen input.
     4 In flue-cured tobacco growth period, the supply of soil nitrogen mineralization in two peaks, one at the flue-cured tobacco rapid growing stage (49 days after transplanting), the second is after topping stage (77 days after transplanting). During growth of the flue-cured tobacco, with the advance of time the cumulative increase in nitrogen mineralization, to flue-cured tobacco for about 91 days after transplanting, the cumulative amount of nitrogen mineralization tends to slow. Soil organic matter content on soil nitrogen mineralization rate dynamics was not significant, the use of nitrogen fertilizers leads to soil nitrogen mineralization dynamics large fluctuations. The soil mineral nitrogen was net fixed in early growth stage of flue-cured tobacco and net mineralization were excited to have a significant effect in the late growth stage. Rapeseed Cake applied 21 days after the soil has begun to generate a net mineralization, rice straw and rapeseed straw in the soil applied 49 days to start the release of inorganic nitrogen, to increase the soil nitrogen mineralization rate in the late growth satge, forming a mineralization rate dynamic which lower in early growth stage and higher in late growth stage.
     5 Soil nitrogen mineralization dynamics under fluctuated temperature markedly differ from soil nitrogen mineralization under constant temperature incubation. The accumulated temperature model could fit the best of the dynamic accumulation of mineralized nitrogen under fluctuated culture temperature. Index model can better describe the response of soil organic nitrogen mineralization to soil moisture content. A soil nitrogen mineralization model was created based on temperature and soil moisture, could to predict soil nitrogen mineralization in field by using the effective temperature and soil moisture content data.
     6 Mineralization potential of planting tobacco soil was for about 130.6mg.kg-1 in china, with higher N-supplying. Soil N-supplying potentials were significant differences among in different regions and different soil types, in which mineralization potential of soil on average 170.2mg.kg-1 in Guizhou Province. National Tobacco soil sample analysis results showed that there were significant relationship between soil nitrogen mineralization potential and soil organic matter content, so a model was established on soil organic matter content to predict the soil nitrogen mineralization potential.
引文
[1]左天觉著,朱尊权译.烟草的生产、生理和生物化学[M].上海:远东出版社,1993:1~313.
    [2] Elliot J.M., Court W.A.. The effects of applied nitrogen on certain properties of flue~cured tobacco and somke characteristics of cigarettes. Tob.sci. 1978,22:54~58.
    [3] McCants C.B., Woltz W.G. . Growth and mineral nutrition of tobacco. Adv. Agron. 1967,19:211~65.
    [4]史宏志,韩锦峰,刘国顺等.不同氮素营养的烟叶氨基酸含量与香吃味品质的关系[J].河南农业大学学报,1997,31(4):319~322.
    [5] Collins W.K., Hawks S.N., Jr. Principles of Flue~cured Tobacco Production. NC State University, Raleigh, NC 27695. 1993.
    [6]苏德成.烟草生长发育过程的氮素[A].见:国家烟草专卖局科技教育司编.跨世纪烟草农业科技展望和持续发展战略研讨论文集.北京:中国商业出版社,1999,80~84
    [7]史宏志,韩锦锋.烤烟碳氮代谢几个问题的探讨[J].烟草科技,1998(2):11~16.
    [8]曹志洪,李仲林,周秀如,凌云霄,王恩沛,赵振山.烤烟干物质累积及土壤环境对烟碱含量的影响.烟草科技,1989,(5)29~33.
    [9]韩锦峰,郭培国,黄元炯等.应用N示踪法探讨烟草对氮素利用的研究[J].河南农业大学学报,1992,26(3):224~227.
    [10]焦永鸽.红壤供氮特性及对烤烟氮素营养的贡献[D].中国农业科学院: ,2008.
    [11]谷海红,刘宏斌,王树会,李天福,张云贵,焦永鸽,李志宏.应用(15)~N示踪研究不同来源氮素在烤烟体内的累积和分配[J].中国农业科学, 2008,41(9):2693~2702.
    [12]蓟红霞.土壤条件对烤烟生长、养分累积和品质的影响[D].中国农业科学院研究生院,硕士论文,北京,2006.
    [13]窦逢科,张景略.烟草品质与土壤肥料.郑州:河南科学技术出版社,1992,1~100.
    [14]王鹏.土壤与氮营养对烤烟氮吸收分配及品质影响[D].中国农业科学院: 2007.
    [15]胡国松,郑伟,王震东,等.烤烟营养原理[M].科学出版社,2000.
    [16]郭群召,姜占省,张新要,刘卫群.不同有机质含量土壤对烤烟生长发育和氮素积累及上部叶化学成分的影响[J].中国农学通报, 2006,22(5):254~257.
    [17]符云鹏,杨双剑,方明等.氮用量对湘西晒红烟生长发育、产量及品质的影响[J].烟草科技,2005,4:42~45
    [18]魏成照,钱晓刚,杨宏敏,等.烟草对氮吸收利用的研究[J].耕作与栽培,1995,3:37~41
    [19]宋承鉴,宋月家.广西植烟土壤特征分析[J].中国烟草科学,1994(2):5~9.
    [20]陈江华,李志宏,刘建利等.全国主要烟区土壤养分丰缺状况评价[J].中国烟草学报,2004,10(3):l4~l8.
    [21]李志宏,徐爱国,龙怀玉,雷秋良,张任莲,张维理.中国植烟土壤肥力状况及其与美国优质烟区比较[J],中国农业科学,2004,37(增刊):36~42.
    [22]赵兴,刘卫群,张维理等.中国烟草平衡施肥技术研究现状与展望[J].中国烟草学报,2003(S):30~35.
    [23]刘卫群,李天福,郭红祥等.配施芝麻饼肥对烟株氮素吸收及其在烟碱、蛋白质和醚提物中分配的影响[J].中国烟草学报,2003a,9(1):30~34.
    [24]武雪萍,钟秀明,刘增俊.饼肥在植烟土壤中的矿化速率和腐殖化系数分析[J].中国土壤与肥料,2007,5:32~35
    [25]刘卫群,陈江华,刘建利.有机肥使用技术与烟叶品质关系[J].中国烟草学报,2003b,(增刊):9~18.
    [26]朱洪勋,张翔,孙春河.有机肥与氮肥配施的增产效应及对土壤肥力的影响.华北农学报, 1996 ,11(增),202~207.
    [27]黄平俊.施氮及采收方式对烤烟主要挥发性香气物质含量的影响[D].河南农业大学,硕士论文,河南郑州,2005.
    [28]张新要,李天福,刘卫群,等.配施饼肥对烤烟叶片含氮化合物代谢及酶活性的影响[J].中国烟草科学,2004,(3):31~34
    [29]刘卫群,王卫民,陈良存,郭群召.土壤供氮状况与叶片烟碱含量关系的研究[J].河南农业大学学报,2005,39(1):26~29.
    [30]瞿兴,王毅,左天龙,等.秸秆和氮肥配合施用对高肥力土壤烤烟产量和品质的影响[J].华中农业大学,2004,23(4):426~430.
    [31]曹鹏云,鲁世军,张务水.植烟土壤有机质含量与有机肥施用概况[J].中国烟草学报,2004,10(6):40~42.
    [32]汪景宽,刘顺国,李双异.长期地膜覆盖及不同施肥处理对棕壤无机氮和氮素矿化率的影响.水土保持学报,2006,20(6):107~110.
    [33]翟琨,向东山.贵州省植烟土壤氮素释放特征研究Ⅱ~~不同栽培措施对黔南烟区土壤供氮动态的影响[J].安徽农业科学,2006,34(5):953~978.
    [34]刘国顺,位辉琴,杨兴有,邢小军.不同覆膜期限对烟田土壤含水率及氮、磷、钾含量的影响[J].水土保持学报,2006,20(4):72~76.
    [35]邢世和,刘春英,熊德中,周碧青.不同改土物料对烤烟养分吸收及碳、氮代谢的影响[J].植物营养与肥料学报,2006,12(5):694~700.
    [36]窦玉青,陈刚,王树声等.氮素调理剂对烟叶质量及土壤速效氮的影响[J].中国烟草科学,2006,(3):6~9.
    [37]李章海,徐晓燕,季学军等.不同栽培条件对烤烟上部烟叶烟碱和总氮含量的影响[J].中国烟草科学,2005,(1):28~30.
    [38]罗海波,钱晓刚,何腾兵,刘方.增施氮肥和环割对烤烟光合速率的影响[J].土壤,2003,35(3):259~261.
    [39]中国农业科学烟草研究所.中国烟草栽培学【M】.上海:上海科学技术出版社.2005.
    [40]李天福,王彪,王树会.云南烤烟轮作的现状分析与保障措施.中国烟草科学, 2006,(2):48~51.
    [41] Yadav R.L., B.S. Dwuvedu, K.,Prasad O.K., TomarN.J. Shurpali P.S. Pandey. 2000b. Yield trendsand changes in soil organic~C and available NPK in a long–term rice–wheat system under integrated use of manures and fertilizers. Field Crops Research,68:219~246.
    [42] Timsina J. and D.J. Connor . Productivity and management of rice–wheat cropping systems: issues and challenges.Field Crops Res. 2001,69:93~132.
    [43]李跃武,黄其华.南方水稻田生产国际型优质烤烟探讨. Tobacco Science & Technology. 1999 (137):37~39.
    [44] Nicolardot B., Fauvet G., Cheneby D.. Carbon and nitrogen cycling through soil microbial biomass at various temperatures.Soil Biol Biochem 1994, 26:253~261.
    [45] Stark J.M. and Firestone M.K.. Kinetic characteristics of ammonium~oxidizer communities in a California oak woodland~annual grassland. Soil Biology Biochemisty.1996.28:1307~1317.
    [46] Stanford Gand Epstein E. Nitrogen mineralization water relation in soils. Soil Sci. Sol. Am. Proc.1974(38):103~106.
    [47] Addiscott T.M.. Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soils with differing histories. Journal of Soil Science. 1983(34): 2, 343~353.
    [48] Ellert B.H.and Bettany J.R.Temperature Dependence of Net Nitrogen and Sulfur Mineralization. Soil Sci Soc Am J 1992,56: 1133~1141.
    [49]吴建国,艾丽,朱高,田自强等.祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素[J].草地学报2007,15(1):20~28.
    [50]周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J].植物生态学报,2001,25(2):204~209.
    [51] Sierra J., Temperature and soil moisture dependence of Nmineralization in intact soil cores. Soil Biology & Biochemistry 1997.29, 1557~1563.
    [52] Katterer T., M..Reichstein, O. Andre′n, and A. Lomander. Temperature dependence of organic matter decomposition: A critical review using literature data analyzed with different models. Biol.Fertil. Soils 1998,27(3):258~262.
    [53] Hegarty T.W. Temperature relations of germination in the field. In Seed ecology. W.Hedydecker. Proc.19th Easter School.Penn State Univ. Press,University Park,PA,pp,44~432.
    [54]王常慧,邢雪荣,韩兴国.温度和湿度对我国内蒙古净氮矿化的影响.生态学报,2004, 24 (11): 2472~2476.
    [55] Wilson D.J., Jefferioes R.L.. Nitrogen mineralization, plant growth and goose herbivory in an Arctic coastal ecosystem.Journal of Ecology1996,84(6):841~851.
    [56] Campbell C. A., Biederbeck V. O. and Warder F. G.Influence of Simulated Fall and Spring Conditions on the Soil System: III. Effect of Method of Simulating Spring Temperatures on Ammonification, Nitrification, and Microbial PopulationsSoil Sci Soc Am J. 1973 (37): 382~386.
    [57] Biederbeck V.O. and Campbell C.A. Influence of Simulated Fall and Spring Conditions on the Soil System. I. Effect on Soil Microflora.Soil Sci Soc Am J. 1971(35): 474~479.
    [58] Bonito, G.M., Coleman, D.C., Haines, B.L., Cabrera, M.L. Can nitrogen budgets explain differencesin soil nitrogen mineralization rates of forest stands along an elevation gradient. Forest Ecology and Management2003,176 (1~3):63~574. .
    [59] Evans C.A.,Miller E.K. and Friedland A.J.Nitrogen mineralization associated with birch and fir under different soil moistureregimes.Can.J.For.Res. 1998,28:1890~1898.
    [60] Bernhard~Reversat F. Soil nitrogen mineralization under a Eucalyptus plantation and anatural Acacia forest inSenegal.For.Ecol.Manage.,1988,23:233~244.
    [61] Sahrawat K. L. Soil and fertilizer nitrogentrans formations under alternate folding drying moisture regimes. Plant and Soil1980,55(2):225~223.
    [62] Scott N.A. and Binkley D. Foliage litter quality and annual net N mineralization : comparison across North American froest sites.Oecologia1997,111:151~159. [ 63 ] Stanford G. and Epstein E.. Nitrogen mineralization water relation in soils. Soil Sci. Sol.Am.Proc.1974,38:103~106.
    [64] Hopmans P., Flinn D.W.,Farrell P.W. Nitrogen mineralization in a sandy soil under native eucalypt forest and exotic pine plantations in relation to moisture content.Communications in Soil Science and Plant Analysis.1980(11):71~79.
    [65] Goncalves J.L.M. and Carlyle J.C.. Modelling the infuence of moisture and temperature on net nitrogen mineralization in a forested sandy soil. Soil Biology & Biochemistry 1994.26:1557~1564.
    [66] Jamieson N., Monaghan R. and Barraclough D.. Seasonal trends of Nmineralization in a natural calcareous grassland. Global Change Biology1999,5:425~431.
    [67] Marrs R.H., Thompson J, Scott D, Proctor J.. Nitrogen mineralization and nitrification in terra firme forest and savanna soils on Ilha de Maraca, Roraima, Brazil. Journal of Tropical Ecology. 1991,7(1):123~137.
    [68] Orchard V.A.and Cook F.J.Relationships between soil respiration and soil moisture. Soil Biology and Biochemistry.1983(15)447~453.
    [69] Skopp J., Jawson M.D.and Doran J.W..Steady~State Aerobic Microbial Activity as a Function of Soil Water Content.Soil Sci Soc Am J .1990. 54: 1619~1625.
    [70]沈玉芳,李世清,邵明安.半湿润地区土垫旱耕人为土不同土层氮矿化的水温效应研究[J].植物营养与肥料学报,2007,13 (1):8~14.
    [71] O’Connell A. M., Rance S. J., Predicting nitrogen supply in plantation eucalypt forests[J], Soil Biology and Biochemistry, 1999, 31: 1943~1951.
    [72]李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,2003b,40(2):232~237.
    [73]李菊梅,李生秀.可矿化氮与各有机氮组分的关系[J].植物营养与肥料学报, 2003a , 9(2): 158~164.
    [74]沈其荣,史瑞和.不同土壤有机氮的化学组分及其有效性的研究[J].土壤通报,1990,(2):54~57.
    [75]黄思光,李世清,张兴昌,邵明安,杨改河.土壤微生物体氮与可矿化氮关系的研究.水土保持学报.2005,19(4):18~22.
    [76] Hassink J.. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization[J], Soil Biology and Biochemistry1994, 26: 1221~1231
    [77] Gordillo R. M., Cabrera M. L.. Mineralizable nitrogen in broiler litter. II. Effect of selected soil characteristics [J], Journal of Environmental Quality,1997, 26 (6): 1679~1686.
    [78] Hassink T., Bonwman L.A., Zwark K. B., et al. Relationship between habitable pore space, soil biota and mineralization rates in grassland soils[J]. Soil and Biochem. 1993, 25: 47~55.
    [79]李江涛,张斌,彭新华,赖涛.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(6):912~917
    [80] Grewal JS, Yandvinder Singh, Bijay Singh, et al. Effet of source and nest size of N fertilizers and temperature on nitrification in a coarse textured ,alkaline soil[J]. nur. Cyc Agroecosyst, 1999, 54: 199~207.
    [81]戴晓艳,须湘成,陈恩凤.不同肥力棕壤和黑土各粒级微团聚体氮素矿化势[J].沈阳农业大学学报,1990,21(4):327~330
    [82] Mladenoff DJ. Dynamics of nitrogen mineralization and nitrification in bemlock and hard wood treefall gaps. Ecology1987,68(5):1171~1180
    [83] Curtain D, Campbell CA and Jalil A.Effects of acidity on mineralization: PH~dependence of organic matter mineralization in weakly acidic soils. Soil.Biochem. 1998,30(1):57~64.
    [84] Pathak H., Rao D.L.N., Carbon and nitrogen mineralization form added organic matter in saline and alkali soils. Soil.Rial Rinchem1998,30(6):695~702.
    [85]金雪霞,范晓晖,蔡贵信等.菜地土壤氮素矿化和硝化作用的特征[J].土壤, 2004,36 (4):382~386.
    [86]李辉信,胡锋,刘满强等.红壤氮素的矿化和硝化作用特征[J].土壤,2000,4:193~214.
    [87]徐万里,刘骅,张云舒.新疆盐渍化土壤氮素矿化和硝化作用特征[J].西北农林科技大学学报(自然科学版),2007,35(11):141~145 [ 88 ]Klemmedson J.O. Nitrogen mineralization in limed and gypsum amended substrates from ameliorated acid forest soils[J]. Soil Sci 1989, 147 (1) : 55~63.
    [89] Loiseau P. ,Soussana J.F. Effects of elevated CO2 temperatureand N fertilization on fluxes in a grassland ecosystem[J]. GlobalChange Biol 2000,6 : 953~965.
    [90]王启现,王璞,翟志席等.施氮期对夏玉米土壤无机氮变化及净矿化量的影响[J].干旱地区农业研究,2004,22(2):11~16.
    [91]甘建民,孟盈,郑征,等.施肥对热带雨林下种植砂仁土壤氮矿化和硝化作用的影响[J].农业环境科学学报,2003,22(2):174~177.
    [92]李世清,李生秀.作物生长期间土壤可矿氮的变化[J].土壤侵蚀与水土保持学报, 1996,2(3):73~77,96.
    [93]范成五.不同有机质肥料的有机氮矿化研究[J].贵州农业科学,2006,34(增刊):57~58.
    [94]鲁彩艳,牛明芬,陈欣等.不同施肥制度培育土壤氮矿化势与供氮潜力[J].辽宁工程技术大学学报,2007,26(5):773~775.
    [95]张庆忠.北方一季作农田非生长季土壤矿化氮消长规律[D].沈阳农业大学硕士论文.辽宁沈阳.2002 .
    [96]吕殿青,张树兰干,杨学云.外加碳、氮对土壤氮矿化、固定与激发效应的影响[J].植物营养与肥料学报.2007,13(2):223~229
    [97]郝晓晖,肖宏宇,苏以荣等.长期不同施肥稻田土壤的氮素形态及矿化作用特征[J].浙江大学学报(农业与生命科学版).2007,33(5):544~550.
    [98]刘晓宏,郝明德.添加无机氮磷与有机肥对土壤有机氮矿化的影响[J].中国生态农业学报.2002,10(1):54~56.
    [99] Aoyama M., Nozawa J., Microbial biomass nitrogen and mineralization~immobilization processes of nitrogen in soils incubated with various organic materials[J], Soil Science and Plant Nutrition 1993, 39:23~32.
    [100]刘世平,陆建飞,单玉华,皇历分,庄恒扬.稻田轮耕土壤氮素矿化及土壤供氮量的研究.扬州大学学报(农业与生命科学版).2003,24(2):36~39.
    [101] Fierer N. and J. P. Schimel. Effects of drying~rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 2002,34:777–787.
    [102] Stanford G..and S.J. Smith. Nitrogen mineralization potentials of soils[J]. Soi1 Sci. Soc, Amer.Proc. 1972, 36: 465~472.
    [103]丘华昌,陈家宙.旱地土壤的供氮潜力.植物营养与肥料学报. 1995,2(1):33~39..
    [104]孟盈,薛敬意,沙丽清,唐建维.西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究.植物学报. 2001,25(1):99~104.
    [105]李中玉,祝廷成等.羊草地土壤氮的总矿化、硝化和无机氮消耗速率研究.中国农业科学. 2002,35(11):1428~1431.
    [106] Moore A.D., Mikkelsen, R.L., Israel D.W.. Nitrogen mineralization of anaerobic swine lagoon sludge as influenced by seasonal temperatures. Communications in Soil Science and Plant Analysis,2004,35(7~8):991~1005.. [ 107 ]陈祥伟,陈立新,刘伟琦.不同森林类型土壤氮矿化的研究[J].东北林业大学学报.1999,27(1):5~9.
    [108]张璐,沈善敏,廉鸿志,宇万太.有机物料中有机碳、氮矿化进程及土壤供氮力研究.土壤通报.1999,28(2):71~73.
    [109] Owen J.S., Wang M.K., Sun H.L., King H.B., Wang C.H., Chuang C.F. Comparison of soil nitrogen mineralization and nitrification in a mixed grassland and forested ecosystem in central Taiwan . Plant and Soil. 2003,251(1):167~174.
    [110]巨晓棠,李生秀.壤可矿化氮对作物吸氮量的贡献.干旱地区农业研究.1996,14(6):30~33.
    [111] Allen S.C., Jose S., Nair P.K.R., Brecke B.J., Nair V.D., Graetz D.A., Ramsey C.L. Nitrogen mineralization in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States.Biology and Fertility of Soils, 2005,41(1):28~37. [ 112 ] Wei-Xing Zhua, Margaret M.Carreiro. Temporal and spatial variations in nitrogentransformations in deciduous forest ecosystems along an urban–rural gradient. Soil Biology & Biochemistry 2004,36: 267~278.
    [113] Keller J.K., White J.R., Bridgham S.D., Pastor, J..Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality .Global Change Biolog.2004, 10:1053~1064.
    [114]李世清,李生秀,李凤民.石灰性土壤剖面氮素的矿化和硝化作用[J].兰州大学学报(自然科学版),2000,36(1):98~104.
    [115]汪建飞,于群英等.设施栽培条件下土壤有机质和氮素变化规律研究.安徽农业科学. 2003,31(2):191~193.
    [116]白优爱,巨晓棠,陈清,李晓琳.商品有机肥及蔬菜残体在菜地土壤中的氮素矿化研究.中国农业科技导报.2003,5(2):45~49.
    [117] Merrill A.G., Zak D.R., Factors controlling denitrification in upland and werland forest. Canadian Journal of Forest Reseach 1992,22:1597~1604 .
    [118] Goobaerts P., Chiang C.N..Temporal persistence of spatial patterns for mineralizable nitrogen and selected soil properties. Soil science society of America Journal .1993, 57:372~381.
    [119]叶优良,张福锁.土壤供氮能力指标的研究.土壤通报.2001,32(6):273~276
    [120]杜建军,王新爱,王夏晖,李生秀,高亚军,胡田田.旱地土壤氮素、有机质状况及与作物吸氮量的关系.华南农业大学学报. 2005,26(1):11~15.
    [121]张金波,宋长春,杨文燕.三江平原土地耕作队土壤氮矿化势和硝化势的影响.土壤通报.2005,36(1):137~139.
    [122]武俊喜,陈新平,贾良良,张福锁,V. Romheld.冬小麦/夏玉米轮作中高肥力土壤的持续供氮能力.植物营养与肥料学报.2004,10(1):1~5.
    [123] Taggart I.P. and K.A.Smith. Estimation of potentially mineralizable nitrogen in soil [J], Plant and Soil 1993, 157: 175~184.
    [124]刘育红,吕军.稻田土壤氮素矿化的几种方法比较[ J ].土壤通报,2005,36(5):676~678.
    [125]李生秀,付会芳等.几种测氮方法在反映土壤供氮能力方面的效果[J].土壤.1990, 22(4):194~197.
    [126]金发会.黄土高原土壤供氮能力测定方法的比较研究[D].硕士论文,陕西杨陵,2007.
    [127]付会芳,李生秀.土壤氮素矿化与土壤供氮能力Ⅱ:矿化氮量与作物吸氮量的关系.西北农业大学学报.1992,20(1):53~58.
    [128]吕珊兰,杨熙仁,张耀东,武冬梅.山西土壤氮矿化势与供氮量的预测[J].中国农业科学,1996,29(1):21~26.
    [129]李明锐,沙丽清.西双版纳不同土地利用方式下土壤氮矿化作用研究的应用[J].生态学报,2005,16(1):54~58.
    [130]沙丽清,孟盈,冯志立等.西双版纳不同热带森林土壤氮矿化和硝化作用研究[ J].植物生态学报,2000,24(2):152~156. [ 131 ]杨小红,董云社,齐玉春等.内蒙古羊草草原土壤净氮矿化研究[J].地理科学进展,2005,24(2):30~37.
    [132]巨晓棠,晁逢春,李春俭,江荣风,张福锁,石俊雄,刘建利,陈江华.土壤后期供氮对烤烟产量和烟碱含量的影响[J].中国烟草学报,2003,9(B11):48~53.
    [133] Eno C. Nitrate production in the field by incubating the soil in polyethylene bags[J]. Proceedings of Soil Science Society of America1960, 24: 277~279.
    [134] Pastor J., Aber J. D., McClaugherty C. A. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 1984, 65: 256~268.
    [135] Lemee G. Investigations suila mineralizalion delazole et son evolution annnelle dans des, humus foresties in situ[J]. Oecol Plant 1967, 2: 285~324.
    [136] Hubner C., Red G., Wurst F. In situ methodology for studying N~mineralization in soils using anion exchange resins[J]. Soil Biology and Biochemistry, 1991,23: 701~702.
    [137]Distefano J.F. and J.L. Gholz. A proposed use of ion exchanges resin to measure nitrogen mineralization and nitrification in intact soil cores [J]. Commun. Soil Sci. Plant Anal. 1986,17:989~998.
    [138] Capehahart T., Grice V.. World tobacco production trends. Presented to the Tobacco Marketing Cost study Committee 1994, 23~24 March, Asheville, NC.
    [139] Cambell J.S.. Trends in tobacco leaf usability.Beitr.Tabakforsch. Int., 1995a, 16:185~195.
    [140] Creek L., Capehart T., Grice V.. US tobacco statistics.1994, 1935~92. USDA/ERS star. Bull. No869.Washington DC 20005~4788.
    [141]张维理,刘建利,徐爱国,张云贵,李志宏.我国烟草土壤肥料信息系统的开发与应用.中国烟草学报,2003年(增刊):1~8.
    [142]纪成灿,王胜雷,许锡祥.提高上部叶可用性和降低上部叶比例的农业措施.中国烟草科学. 2001, (4):19~22.
    [143]王广山,陈卫华,薛超群,胡辰曦.烟碱形成的相关因素分析及降低烟碱技术措施.烟草科技. 2001, (2):38~42.
    [144]邓云龙,孔光辉,武锦坤.云南烤烟中上部叶片含氮化合物代谢规律研究.云南大学学报(自然科学版). 2001, 23(1):65~70.
    [145]李志宏,徐爱国等.中国植烟土壤肥力状况及其与美国优质烟区比较[J].中国农业科学,2004,37(增刊):36~42
    [146]晁逢春.氮对烤烟生长及烟叶品质的影响[D].中国农业大学: 2003.
    [147]郭群召.氮及土壤氮素矿化对烤烟生长及品质的影响[D].河南农业大学: ,2004.
    [148]林文,郑景生,姜照伟等.水稻根系研究方法[J].福建稻麦科技.1997,15(4):18~21.
    [149]李跃武,黄其华.南方水稻田生产国际型优质烤烟探讨. Tobacco Science & Technology. 1999 (137):37~39.
    [150]刘泓.有机肥与化肥配施对烤烟K吸收和干物质积累的影响[J].福建农业大学学报,1998,27(3):257~260 .
    [151]李忠佩,林心雄.田间条件下红壤水稻土有机碳的矿化量研究[J].土壤. 2002, 34 (6):310~314..
    [152]习向银.烟碱氮素来源和供氮对烤烟生长、氮素吸收、烟碱含量的影响[D].中国农业大学: 2005. [153 ]赵明宇,韩晓日,郭鹏程.不同施肥条件下土壤固定态按含量的动态变化[J].土壤通报,1996,27(2):79~81.
    [154]万大娟,张杨珠,杨曾平.作物生育期间旱地土壤固定态铵的动态变化与释放[J].湖南农业科学2006,(6):70~75.
    [155]? Stanford G. and Smith S.J.. Nitrogenmineralization potentials of soils. Soil Sci. Soc. Amer. Proc. 1972,36: 465~470.
    [156]? Campbell C.A.,Stewart D.W.,Nicholaichuk W. and Biederbeck V.O.. Effecting of growing season soil temperature ,moisture and NH4+-N on soil nitrogen. Can. J. Soil Sci. 1974,54: 403~412. [ 157 ]Oyanedel C.andJ.Rodriquez.Estimation of N mineralization in soils. Cienc. invest.Agrar.1977,4:33~44.
    [158] Marion G.M. and P.C. Miller. Nitrogen mineralization in tussock tundra soil.Arctic Alpine Res. 1982,14:287~293.
    [159]? Griffin G.F. and A.F. Laine. Nitrogen mineralization in soils previously amended with organic wastes .Agron. J. 1983, 75:124~129.
    [160] Tabatabai, M.A and A.A .Al~Khafaji.Comprison of nitrogen and Sulfur mineralization in soils.Soil Sci.Soc.Am.J.1980, 44: 1000~1006.
    [161]Broadbent F.E.. Empirical modeling of soil nitrogen mineralization. Soil Sci.1986 (141):208~213.
    [162]?N. G. Juma, E. A. Paul, and B. Mary.. Kinetic Analysis of Net Nitrogen Mineralization in Soil.Soil Sci Soc Am J. 1984, 48: 753~757.
    [163]? Wu T Y, Ma B L, Liang B.C.. Quantification of seasonal soil nitrogen mineralization for corn production in eastern Canada. Nutr Cycl Agroecosyst 2008, 81:279–290
    [164] Stanford G., Frere, M.H., Vander Pol, R.A. Effect of fluctuating temperatures on soil nitrogen mineralization. Soil Science .1975,119:222–226.
    [165] Dharmakeerthi R.S., Kay B.D., Beauchamp E.G.. Factors contributing to changes in plant available nitrogen across a variable landscape. Soil Sci Soc Am J. 2005, 69:453~462
    [166] Kay B. D., Mahboubi A. A. , Beauchamp E. G. and. Dharmakeerthi R. S. Integrating Soil and Weather Data to Describe Variability in Plant Available Nitrogen. Soil Sci. Soc. Am. J. 2006,70:1210–1221.
    [167] Sierra J. .Temperature and soil moisture dependence of Nmineralization in intact soil cores. Soil Biology & Biochemistry 1997,29:1557~1563.
    [168]杜建军,王新爱,王夏晖,李生秀,高亚军,胡田田.旱地土壤氮素、有机质状况及与作物吸氮量的关系[J].华南农业大学学报(自然科学版). 2005,26(01):11~15.
    [169]唐玉琢,袁正平,肖永兰,蒋建容,张杨珠.不同稻作制下红壤性水稻土氮矿化特性的研究[J].湖南农业大学学报(自然科学版).1991(S1):233~241.
    [170]叶优良,张福锁等.土壤供氮能力指标的研究[J].土壤通报. 2001, 32(6) :273~277.
    [171]白志坚,赵更生.陕西省主要耕种土壤的氮矿化势[J].土壤通报. 1981 (4):26~29.
    [172]吕珊兰,杨熙仁,张耀东,吴冬梅.山西土壤氮矿化势与供氮量的预测[J].中国农业科学. 1996.29(1):21~26.
    [173]朱兆良,文启孝主编.见:中国土壤氮素[M].南京:江苏科学技术出版社,1992:37~59.
    [174]李志宏,徐爱国,龙怀玉,雷秋良,张任莲,张维理.中国植烟土壤肥力状况及其与美国优质烟区比较[J].中国农业科学. 2004(37(增刊)): 36~42.
    [175] Cambardella C.A., T.B. Moorman, J.M. Novak, T.B. Parkin, D.L. Karlen, R.F. Turco, and A.E. Konopka. Field-scale variablity of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994,58: 1501~1511.
    [176] Robertson G.P., J.R. Crum, and B.G. Ellis. The spatial variablity of soil resources following long-term disturbance. Oecologia .1993, 96:451~456.
    [177] Parkin T.B., J.J. Meisinger, S.T. Chester, J.L. Starr and J.A. Roberson. Evaluation of statistical estimation methods for lognormally distributed variables. Soil Sci. Soc. Am. J. 1988, 52: 323~329.
    [178] Mahmoudjafari M., G.J. Kluitenberg, J.L. Havlin, J.B. Sisson, and A.P. schwab.Spatial variability of Nitrogen mineralization at the field scale. Soil Sci. Soc. Am. J. 1997,61:1214~1221.
    [179]解宏图,郑立臣,何红波,张旭东.东北黑土有机碳、全氮空间分布特征[J].土壤通报. 2006,37(6):1058~1061.
    [180]王淑平,周广胜,高素华,郭建平.中国东北样带土壤氮的分布特征及其对气候变化的响应[J].应用生态学报.2005,16(2):279~283.
    [181]严德翼,周建斌,邱桃玉等.黄土区不同土壤类型及土地利用方式对土壤氮素矿化作用的影响[J].西北农林科技大学学报(自然科学版).2007,35(10) :103~109.
    [182]陈家宙,丘华昌.5种旱地土壤的供氮特点及其与土壤性质的关系[J].华中农业大学学报. 1996,15(03):237~241.
    [183]马宏瑞,赵之重.青海农区钙层土氮矿化势和供氮速率常数的估测.1997,15(2):25~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700