用户名: 密码: 验证码:
微纳米开关多物理场复合接触研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS开关在商业领域和国防领域的广泛应用,解决了大量的高频无线通信问题,促使了通讯系统及经济的迅猛发展。然而它的实际应用由于其易失效等弱点受到限制。研究两粗糙表面接触行为,对提高MEMS开关可靠性问题具有重要的理论意义和应用价值。
     接触电阻、接触热均为获得MEMS开关高性能、高可靠性的重要参数。目前,RF MEMS开关等效球体接触电阻理论模型和接触热理论模型,存在变形情况考虑单一、模型较理想化等问题。MEMS开关接触行为研究主要集中在使用实验方法来进行。在实验过程中,不可避免的存在方法复杂、时间久、经费大等问题,并且复杂的多物理场相互作用造成的很难准确获知MEMS开关接触行为。因此,需要建立一种具有广泛应用性、更符合实际情况的MEMS开关粗糙表面接触电阻模型和接触热模型;并找到一种新途径,研究MEMS开关多物理场耦合作用下复杂的接触行为。
     本文基于符合MEMS开关尺寸范围内应用的单粗糙峰接触电阻模型和单粗糙峰接触热模型,对两粗糙表面接触过程进行了详细分析,在完全粘着条件下,首次建立MEMS开关粗糙表面接触电阻模型和接触热模型。并首次提出了使接触电阻模型和接触热模型适用于不同材料及不同的粗糙表面粗糙度的参数k。
     对无量纲粗糙表面接触力、接触面积、接触电阻及接触热理论模型进行了数值求解。研究了粗糙表面塑性指数、k值条件下,无量纲接触力及无量纲接触面积对无量纲接触电阻、接触热的影响规律。完成了粗糙表面接触电阻模型与等效球体接触电阻模型、实验数据的对比;粗糙表面接触热模型与等效球体接触热模型对比。得到了等效球体接触电阻模型可认为粗糙表面接触电阻模型的一种特殊情况。验证了粗糙表面接触电阻模型和粗糙表面接触热模型,具有广泛的实际应用性。
     应用有限元软件ANSYS 12.0,建立RF MEMS开关粗糙表面接触有限元模型。模型中包含了影响RF MEMS开关接触特性的粗糙表面形貌特性、材料属性、环境温度、接触力以及接触电压等因素。完成热场、电场及力场多物理场耦合情况下的RF MEMS开关接触行为研究,为RF MEMS开关可靠性设计,提供了一种新的方法。
MEMS switch is widely used in the commercial regime and defense regime.As a result, lots of high frequency wireless communication problems is solved. Thedevelopment of MEMS switches have a profound impact on the development ofnational economy and communication system. However, its practical application islimited due to its failure mechanism. To improve the reliability of MEMS switch,learning about the contact behavior of two rough surfaces has important theoreticalsignificance and application value.
     Contact resistance and contact heat are important parameters, in order to obtainhigh performance and reliability of MEMS switch. Now, single asperity contactresistance model and contact heat model of RF MEMS switch are more idealizedand not close to the truth extremely.The research of contact behavior focused onexperimental method. However the experimental method is exposed to manybarriers. For example, it may take many months to fabricate and the method iscostly. Furthermore, it’s difficult to understand the complex phenomenon of thecontact interface of two rough surfaces accurately. Therefore, it is necessary to setup rough surface contact resistance model and rough surface contact heat model ofMEMS switch, which is a wide application and more tally with the actual situation.And, it is necessary to find a new method to research multi-physical coupling effectof MEMS switch.
     Based on single asperity model of contact resistance and contact heat whichused in the transition regime between ballistic and diffusive transport, roughsurfaces contact resistance and contact heat models are obtained, which are underthe full stick contact condition. The parameter k is put forward to make contactresistance model and contact heat model is suitable for different materials anddifferent rough surface roughness.
     Using simpson integration method to calculate the dimensionless rough surfacecontact force, the contact area, contact resistance and contact heat theory model.Thevariation regulation of contact resistance and contact heat is obtained, which isinfluenced by plasticity index , k-value, dimensionless rough surface contact forceand contact area. The rough surfaces contact resistance and contact heat model wereinvestigated with the experiment and single asperity model of contact resistance andcontact heat. They are more appropriate for realistic application. Single asperitymodel of contact resistance model can be think as a special case of dimensionlessrough surface contact resistance model. Using finite element software ANSYS 12.0, an integrated modelingframe-work that incorporates a 3-D surface roughness representation is set up.Some factors is contained in RF MEMS switch FEM contact model, whichinfluence contact characteristics. For instance, rough surface morphologycharacteristics, material properties, environmental temperature, contact force andcontact voltage. The variation regulation of the real areas of contact, contactresistance and contact heat is obtained, through finite element multi-physicsimulation.Consequently, A new method is provided for RF MEMS switchreliability design.
引文
[1] Lahiri S K, Saha H, Kundu A. Rf Mems Switch: An overview at- aglance[J].2009 International Conference on Computers and Devices for Communication,2009.
    [2] Rebeiz G M. Rf Mems Theory:Design and Technology[M]. New Jersey:Wiley,2003.
    [3]严早春. RF MEMS开关及其在移相器中的应用研究[D].合肥:合肥工业大学,2009.
    [4] Shanthraj P, Rezvanian O, Mohammed A. Zikry. ElectrothermomechanicalFinite-Element Modeling of Metal Microcontacts in MEMS[J]. Journal ofMicroelectromechanical Systems, 2011,20(2):371-382.
    [5]谌贵辉.磁致伸缩型RF MEMS开关性能仿真与制备工艺研究[D].成都:电子科技大学,2005.
    [6]宋明歆,许铁,殷景华.基于扭转RFMEMS开关的设计[J].哈尔滨理工大学学报,2008,13(1).
    [7]孙建海. RF MEMS开关器件的制作及研究[D].中科院电子学研究所,2006.
    [8] Kadin Y, Kligerman Y, Etsion I. Unloading an elastic–plastic contact of roughsurfaces[J]. Journal of the Mechanics and Physics of Solids. 2006,54:2652–2674
    [9] Li L, Etsion I, Talke F E. Contact Area and Static Friction of Rough SurfacesWith High Plasticity Index[J]. Journal of Tribology-transactions of The Asme,2010,132(3):031401-1-031401-10.
    [10]Johnson K L. Contact mechanics[M]. Cambridge University Press. 1985.
    [11]Greenwood J A, Williamson J B P. Contact of Nominally Flat Surfaces[J].. ProcR Soc London Ser A, 295:300–319.
    [12]Chang W, Etsion I, Bogy D. Elastic Plastic Model for the Contact of RoughSurfaces[J]. Trans ASME,J Tribol, 1987,109:257–262.
    [13]Kogut L, Etsion I. Elastic-Plastic Contact Analysis of a Sphere and a RigidFlat[J]. Trans ASME J, 2002,69:657–662.
    [14]Kogut L. Etsion I. .A Finite Element Based Elastic-Plastic Mode for the Contactof Rough Surfaces[J]. Tribol Trans, 2003,463:383–390.
    [15]Tayebi N, Polycarpou A A. Reducing the Effects of Adhesion and Friction inMicroelectromechanical Systems MEMS Through SurfaceRoughening:Comparison Between Theory and Experiments[J]. J Appl Phys,2005,98:073528-1-073528-13.
    [16]Suh A. Y. Lee S C, Polycarpou A A. Design Optimization of Ultra-Low FlyingHead Disk Interfaces Using an Improved Elastic-Plastic Rough SurfaceModel[J]. Trans ASME J Tribol, 2006,128:801–810.
    [17]Suh A Y, Mate C M, Payne R N, et al. Experimental and Theoretical Evaluationof Friction at Contacting Magnetic Storage Slider-Disk Interfaces[J]. Tribol Lett,2006,23:177–190.
    [18]Jackson R, Green I. A Finite Element Study of Elasto-Plasti HemisphericalContact Against a Rigid Flat. Trans[J]. ASME, J. Tribol, 2005,127:343–354.
    [19]Brizmer V, Zait Y, Kligerman Y, et al. The Effect of Contact Conditions andMaterial Properties on Elastic-Plastic Spherical Contact[J]. Journal ofMechanics of Materials and Structures. 2006,1(5):865-879.
    [20]杨楠,陈人融,孔宪梅.多粗糙峰弹塑性接触的有限元分析[J].摩擦学学报,2000,20(3):202~206.
    [21]佟瑞庭,刘更,刘天祥.二维多粗糙峰涂层表面的弹塑性接触力学分析[J].机械科学与技术,2007,26(1):21~24.
    [22]Cohen D, Kligerman Y, Etsion I. A Model for Contact and Static Friction ofNominally Flat Rough Surfaces Under Full Stick Contact Condition[J]. TransASME J Tribol, 2008,130:031401-1-031401-9.
    [23]Majumder S.Study of Contacts In An Electrostatically Actuated Microswitch[J].Sensors and Actuctors. 2001,93:19-26.
    [24]Chris B,Arthur S, Morris, et al. Cryogenic Performance of RF MEMS SwitchContacts[J]. Journal of Microelectromechanical Systems. 2008,17(6):1460-1467.
    [25]Holm R. Electric Contacts-Theory and Application[M].Springer-Verlag:Berlin,1967.
    [26]Jensen B D. Chow L W, Webbink R F, et al. The 17th IEEE InternationalConference on Micro Electro Mech[C]. 2004:137-140.
    [27]Brian D. Jensen, Linda L W. et al. Effect of Nanoscale Heating on ElectricalTransport in RF MEMS Switch Contacts[J]. Journal of MicroelectromechanicalSystems. 2005,14(5):935-946.
    [28]Adrien B. Thermal and Topological Characterization of Au,Ru and Au/RuBased MEMS Contacts Using Nanoindenter[J]. Micro Electro MechanicalSystems (MEMS), 2010 IEEE 23rd International Conference on, 2010,24-28:544-547.
    [29]Berman D, Walker M J,. Krim J. Contact Voltage-induced Softening of RFMicroelectromechanical System Gold-on-Gold Contacts at CryogenicTemperature[J]. Journal of Applied Physics.2010,108:044307-1-044307-8.
    [30]Hyouk K, SeongS J, Yong H P, Tae S K, et al. Investigation of the ElectricalContact Behaviors in Au-to-Au Thin-Film Contacts for RF MEMS Switches[J].J Micromech Microeng, 2008,18:105010-1-105010-9.
    [31]Brown C, Rezvanian O, Zikry M A, et al.Temperature Dependence of AsperityContact and Contact Resistance in Gold RF MEMS Switches[J]. J Micromech.Microeng. 2009,19:025006-1-025006-9.
    [32]Mandelbrot B B, Passoja D E, Paullay A J. Fractal characte of fracture surfacesof metals[J]. Nature, 1984,308(5961):721–722.
    [33]Streitenberger P, Forster D, Kolbe G, et al. The fractal geometr ofgrain-boundaries in deformed and recovered zinc[J]. Metallur-gica Et Materialia,1995,33(4):541–546.
    [34]Hornbogen E.Fractal Analysis of Grain-Boundaries in Hot-Worked Polycrystals[J]. Fur Metallkunde, 1987,78(9):622–625.
    [35]Dickrell D J, Dugger M T, Hamilton M A, et al. Direct Contact-AreaComputation for MEMS Using Real Topographi Surface[J]. J Microelectromech.2007,6(5):1263–1268.
    [36]Budakian R, Putterman S J. Time Scales for Cold Welding and Thorigins ofStick-Slip Friction[J]. Phys Rev B, Condens Matter, 2002,65(23):235429-1–235429-5.
    [37]Gregori G, Clarke D R. The Interrelation between Adhesion, Contact creep, andRoughness on the Life of Gold Contacts in Radio-Frequency Microswitches[J].J Appl Phys, 2006,100(9):094904-1–094904-10.
    [38]Adrien B. Validation of Bending Tests by Nanoindentation for Micro-ContactAnalysis of MEMS Switches[J]. J Micromech Microeng, 2010,20:085025-1-085025-8.
    [39]Fabienne P. RF MEMS Electrical Contact Resistance Calculation usingMechanical Contact Simulations and Analytical Models[J]. InternationalCollaborative Aerospace Development Micro Nanotechnologies: From conceptsto systems, 2009
    [40]Adrien B. An Experimental Characterization of Au-, Ru-, Rh-and Ni- BasedMicrocontacts for MEMS[J]. Design Test Integration and Packaging ofMEMS/MOEMS(DTIP), 2010 Symposium on.2010,5-7:397-402.
    [41]Kogut L, Etsion I. A Finite Element Based Elastic-Plastic Mode for the Contactof Rough Surfaces Tribol Trans. 2003,46:383–390.
    [42]Brizmer V, Kligerman Y, Etsion I. The Effect of Contact Conditions andMaterial Properties on the Elasticity Terminus of a Spherical Contact.International Journal of Solids and Structures. 2006,43(18-19):5736-5749.
    [43]Jackson R L, Green I. A Finite Element Study of Elasto-Plastic HemisphericalContact against a Rigid Flat[J]. Journal of Tribology. 2005.127(2):343-354
    [44]Nikolic B, Allen P B. Electron Transport through a Circular Constriction[J].Phys Rev B Condens Matter, 1999,60(6):3963–3969.
    [45]Linda L W, Chow, Katsuo K. Understanding and Control of Unstable ContactResistance in RF MEMS Gold-Gold Direct Contact Switches[J]. Micro ElectroMechanical Systems(MEMS),2010 IEEE 23rd International Conference on.2010, 24-28:771-774.
    [46]Beale J P, Pease R F W. Apparatus for Studying Ulreasmall Contacts[J].Proceedings of the 38th IEEE Holm Conference on Electrical Contact, PA, 1992.
    [47]Ning Yu, Andreas A. Polycarpou. Extracting Summit Roughness ParametersFrom Random Gaussian Surfaces Accounting for Asymmetry of the SummitHeights[J]. Trans. ASME, J. Tribol, 2004, 126:761-766.
    [48]McCool J I. Relating Profile Instrument Measurements to the FunctionalPerformance of Rough Surfaces[J]. J. Tribol. Trans. ASME, 1987, 109:264-270.
    [49]Milenko B, Valery V K, Nikolai K M.电接触理论、应用于技术[M].许良军,芦娜,林雪燕,孔志刚,译.北京:机械工业出版社, 2010
    [50]李隆球.硬盘悬架窝点与挠臂的接触力学及微动磨损机理研究[D].黑龙江:哈尔滨工业大学,2010.
    [51]Cohen, D, Kligerman Y, Etsion I. A Model for Contact an Static Friction ofNominally Flat Rough Surfaces Under Full Stick Contact Condition [J]. Trans.ASME, J. Tribol, 2008, 130:031401.
    [52]Ronald A C, John W M, La Vern A S. Improved Micro-Contact ResistanceModel that Considers Material Deformation, Electron Transport and Thin FilmCharacteristics[J]. McBride, John,Schoepf, Thomas J.and Braunovic,Milenko(eds.) Proceedings of the Fifty Fifth IEEE Holm Conference onElectrical Contacts:USA,2009:295-299.
    [53]Abbott E J, Firestone F A. Specifying Surface Quality-A Method Based onAccurate Measurement and Comparison[J]. Mechanical Engineering. 1933,55(4):569-576.
    [54]Brian D J, Kuangwei H, Linda L. W C, et al. Low-force Contact Heating andSoftening Using Micromechanical Switches in Diffusive-BallisticElectron-Transport Transition[J]. Applied Physic Letters, 2005,86:023507-1-023507-2.
    [55]Majumdar A, Bhushan B. Fractal Model of Elastic-Plastic Contact BetweenRough Surfaces[J]. Journal of Tribology, 1991,113:1-11.
    [56]Yan W,Komvopoulos K. Contact Analysis of Elastic-Plastic FractalSurfaces[J]. Jurnal of Applied Physics. 1998, 84(7):3617-3624.
    [57]Chung J C, LinJ F. Fractal Model Developed for Elliptic Elastic-Plastic AsperityMicrocontacts of Rough Surfaces[J].Trans. ASME, J. Tribol, 2004,126:646-654.
    [58]Tabor D. The Hardness of Metals[M]. Clarendon Press: Oxford, UK, 1951.
    [59]Duvivier P Y, Mandrillon V, Inal K. Time Dependence Investigation of theElectrical Resistance of Au / Au Thin Film Micro contacts[J]. ElectricalContacts (HOLM), 2010 Proceedings of the 56th IEEE Holm Conference on,2010, 4-7:1-7.
    [60]Todorov T. N, Philos. Mag. B, 1998, 77:965.
    [61]Ardito R, Corigliano A, Frangi A. Finite Element Modelling of AdhesionPhenomena in MEMS[J]. Thermal, Mechanical & Multi-Physics Simulation,and Experiments in Microelectronics and Microsystems (EuroSimE), 2010 11thInternational Conference on, 2010, 26-28:1–6.
    [62]金鑫,张之敬.基于制造特性的微小型构件表面形貌数值模型[J].北京理工大学学报,2005,25(3):189-193.
    [63]梁春.基于三维真实粗糙表面的弹塑性接触有限元分析[D].江苏:江苏大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700