用户名: 密码: 验证码:
硬盘悬架窝点与挠臂的接触力学行为及微动磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术的发展促进了信息存储技术的发展。硬盘作为信息存储的主要载体之一,在近十年得到了迅猛发展,主要表现在磁存储容量加大、读写速度加快及磁头飞行高度大幅度减低以致于几乎贴近磁盘盘面等。硬盘处于正常工作时,无论是在正常工作时还是受到的外部冲击时,悬架的窝点与挠臂的万向支架部分都会产生弹塑性变形或微小位移滑动,长期存在这种交替变形或相对滑移,会使得窝点与挠臂发生微动疲劳和微动磨损,这种磨损不仅会降低浮动块与悬架窝点本身的寿命,也大大降低硬盘使用寿命。更为严重的是微动磨损所产生的磨屑或颗粒掉在盘面上成为硬盘致命的污染源,造成读写出错率的增加甚至碟片的物理损伤而导致整个硬盘失效。然而目前对窝点与挠臂的接触行为研究甚少,对其径向及切向微动磨损机理并不明确,现有的接触理论主要集中在实心球的接触行为研究而不能应用于空心球壳结构的窝点。因此,本文采取了理论分析、有限元模拟及实验等相结合的方法,研究了窝点挠臂之间的接触力学及微动磨损机理,具体的研究内容包括以下几个方面:
     建立了可涵盖磁头组件在寻道、加载/卸载及紧急停靠等不同运行状态时的有限元模型,得出了加载条件、摩擦系数、材料属性、几何参数及外部冲击与振动对悬架窝点与挠臂的微动行为的影响规律,得出了窝点与挠臂相对位移与上述主要参数的函数关系,为后续进行微动磨损试验及优化悬架设计奠定了基础。
     用理论分析及有限元模拟相结合的方法,研究了全滑移及全粘着条件下,空心球壳与刚性平面的弹性接触行为及屈服时的相关理论,提出了一无量纲化空心球壳参数λ,该球壳参数与球壳形状及材料性质有关。全滑移条件下,空心球位置只和球壳参数有关,而全粘着条件下,球壳屈服点位置除了与球壳参数有关外,还受泊松比的影响。得出了球壳发生屈服时临界载荷、临界位移及临界接触面积与无量纲化球壳参数λ/λp及泊松比的函数关系,并给出了经验公式。分析了窝点与挠臂在全滑移接触条件下,材料属性及几何参数对屈服时的关键参数及其弹塑性接触时的平均接触应力的影响规律,在一定条件下,窝点与挠臂仍可以等效为实心球与刚性平面的接触。
     建立了球形非理想光滑表面与刚性平面接触的理论模型,得出了非理想光滑表面塑性指数及无量纲化载荷对分离距离、有效接触面积、切向力、最大静摩擦系数等关键参数的影响规律。建立了球形非理想光滑表面粗糙峰、球形基体及整体产生变形时的数学模型,提出了过渡载荷的定义方法,得出了非理想光滑表面塑性指数及无量纲化载荷对粗糙峰及基体变形的影响规律,提出了用于评价粗糙峰变形对球形非理想光滑表面整体变形的影响判定准则。
     在基于纳米压痕仪的基础上,建立了可进行高精度的微纳米尺度径向微动磨损循环试验系统,并在该系统上进行窝点与挠臂的微纳米径向微动机理及实验研究。得出了径向微动循环次数、窝点表面形貌对径向微动的影响规律。当窝点与挠臂接触时,最大位移及残余位移都发生在初始阶段,随着循环周次的增加,最大位移及残余位移不断减小并趋向于一稳定值,即弹性安定,耗散能也会趋于一稳定值,即进入稳定磨损阶段。粗糙峰的塑性变形是窝点发生微纳米径向微动磨损的主要原因。验证了理论研究所得到的球形非理想光滑表面弹塑性接触时,无量纲化载荷与无量纲化位移及塑性指数的关系,过渡载荷等相关理论。
     建立了一种可同时控制切向微动试验环境温度、湿度、微动频率及微动振幅等试验条件的微纳米切向微动试验系统。并在该系统上进行窝点与挠臂微纳米切向微动机理及实验研究。得出了窝点与挠臂切向微动载荷-摩擦力曲线及最大摩擦系数随循环次数的演化规律及机理。研究了微动频率、环境温度及湿度对窝点与挠臂切向微动磨损的影响规律。随着微动频率的增加,摩擦力增加,但相对位移减小,耗散能及累计耗散能减小,微动磨损磨痕区域减小。所研究的温度范围内,温度对微动磨损影响不太明显;在高温度及高湿度结合条件下,最大摩擦系数相对减小,在一定程度上可减小切向微动磨损。得出了不锈钢窝点与挠臂切向微动时表面可发生氧化的规律,金涂层挠臂试样在微动时摩擦力较小、耗散能较低,具有良好的抗切向微动损伤的能力。
Nano-technology has promoted the development of information storage technology. As one of the main carriers of information storage, hard disk drive has obtained a great progress in the last ten years. For example, the magnetic storage capacity bacomes larger and larger, the read/write speed becomes faster and faster, as well as the flying height is decreaser and decreaser and is even in contact with the disk. There is an elastic-plastic deformation and relative motion exsited in the dimple/gimbal interface due to the air bearing force and track following, not only during the operational of the hard disk drvie, but also subjecting to external shocks. The existence of such alternative elastic-plastic deformation or slip can generate fretting wear and fretting fatigue, which will not only reduce the own lifetime of the suspension and flexure, but also greatly reduce the durability of the hard disk drive. More seriously, the wear particles generated in the dimple/gimbal interface fall on the disk, causing an increase in the read-write error rate, physical damages of the disk or even the failure of the whole hard disk drive. However, only a few of the work has been done on the contact between the dimple and the flexure. The mechanism of the radial and tangential fretting wear of the dimple/flexure interface is still unclear. Existing contact theory only focused on the contact behavior of solid sphere and could not be used to analyze the dimple, which is a spherical shell. Therefore, the contact behavior and fretting wear mechanism between a dimple and a flexure will be investigated thoeretically and experimentally. The main content of the research includes:
     A finite element model, which can be used to simulate the track following, load/unload and emergency parking, of a magetic head assembly was developed. The effect of load conditions, friction coefficient, material properties, geomtrical properties and external impact and vibration on the relative motion between the dimple and the flexure was obtained. The simulation results of the realative motion as functions of the previous parameters could be used for the optimization of the subsequent fretting wear test and suspension design.
     The elastic contact behavior and the theory of the yield inception for the contact between a spherical shell and a rigid flat were investigaed using theoretical analysis and finite element method in perfectly slip and full stick contact conditions. A dimesionless shell paramterλ, which is functions of the shell geometry and material properties, was proposed. In the perfectly slip condition, the location of the yield inception is a universal function of the shell parameter, however, the location of the yield inception is not only a function of the shell parameter, but also is affected by the Poisson’s ratio. The critical load ratio, critical interference ratio and the crtical contact area ratio were found to be a univeral function of the dimensionless shell parameterλ/λp and Poisson’s ratio, respectively. The effect of the material properties and geometrical parameters on the critical parameters at yield inception, e.g. critical load and critical interference, and the mean contact pressure of the elastic-plastic contact, in a dimple contacting a flexure was obtained in a perfectly slip contact condition. The results show that the model of a solid sphere in contact with a rigid flat can be used to study the contact of the dimple and the flexure.
     A contact model between a rough sphere and a rigid flat was developed. The effect of plasticity index and dimensionless normal load on the dimensionless separation, real contact area, tangential load and the maximum friction coefficient was indentified. The displacement of the asperities, bulk and the total displacement were calculated separately and are functions of plasticity index and normal load of a rough spherical contact. A transition normal load, which is a function of plasticity index and dimensionless interference of the bulk, was presented. A criterion, which was used to study the effect of the displacement of the asperities on the total displacement, was provided.
     A radial nano-fretting wear test rig, which can be used to perform high precision radial fretting wear test, was built based on a nano-indenter. A number of radial fretting tests were performed in the test rig and the radial wear mechanism of the dimple and the gimbal was indentified. The effects of the numbers of load/unload cycles and the surface profile of the dimple on the fretting wear was studied. The maximum and the residual displacement occurred on the first load/unload cycles, and decrease with an increase the number of load/unload cycles, eventually reaches a constant value, namely, elastic shakedown. The dissipated energy shows the similar behavior as the maximum displacement and reaches a constant value, i.e., the radial fretting was in a steady state. The experimental results show a good correlation with the theoretical results presented in previous chapters.
     A tangential nano-fretting test rig, in which the temperature, humidity and fretting frequency can be adjusted, was built. The tangential fretting wear experiments of the dimple and flexure were performed and the wear mechanism was obtained. The evolution of the friction loop and the maximum friction coefficient as a function of the cycles was identified. The effect of the fretting frequency, humidity and temperature on the fretting wear of the dimple and the flexure was investigated. The friction coefficient increases and the energy dissipation decreases with an increase in the fretting frequency. The effect of temperature studied in this work on the fretting wear is negligible; however, the maximum friction coefficient becomes smaller in the combined high temperature and high humidity environment. The wear mechanism that the steel can be oxidized during the fretting wear was found. As also found, the gold coated flexure material shows small frication confident and low dissipated energy, i.e. it has a good fretting wear resistant property.
引文
1 H. N. Bertram. Theory of Magnetic Recording. Cambridge University Press. 1994.
    2 J. Xu, J. D. Kiely, Y. T. Hsia and F. E. Talke. Dynamics of Ultra Low Flying Sliders during Contact with a Lubricated Disk. Microsystem Technology. 2007, 13(8-10): 1371-1375
    3 H. J. Richter, A. Y. Dobin, O. Heinonen, K. Z. Gao, R. J. M. v. d. Veerdonk and R. M. Brockie. Recording on Bit-patterned Media at Densities of 1Tb/in2 and Beyond. IEEE Transactions on Magnetics. 2006, 42, 2255-2260
    4 D. A. Thompson, J. S. Best. The Future of Magnetic Data Storage Technology. IBM Journal of Research and Development. 2000, 44(3): 907-910
    5 F. E. Talke. A Review of‘Contact Recording’Technologies. Wear. 1997, 207(1-2): 118-121
    6孙维平.磁记录技术的新发展.信息记录材料. 2004, 5(l): 34-44
    7 A. C. Glover. The Magnetic Disk, Random Access Memory. Raodi Enginneers, Journal of the British Institution. 1960, 20(1): 22-24
    8 R. M. White. Introduction to Magnetic Recording. IEEE Press. 1985: 243-248
    9 B. Bhushan. Tribology and Mechanics of Magnetic Storage Devices. Second Edition, Springer. 1996
    10 R. Wood, Y. Hsu and M. Schultz. Perpendicular magnetic recording technology. 2007 Hitachi Global Storage Technologies, 2007.
    11 A. S. Hoagland. History of Magnetic Disk Storage based on Perpendicular Magnetic Recording. IEEE Transactions on Magnetics.2003, 29(4): 1871-1875
    12 R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Elhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, X. Yang and R. E. Rottmayer. Heat-assisted Magnetic Recording. IEEE Transactions on Magnetics. 2006, 42(10): 2417-2421
    13 M. H. Kryder, E. C. Gge, T. W. Cjallener, R. E. Rottmayer, G. Ju, Y. Hsia and M. F. Erden. Heat Assited Magnetic Recording. Proceedings of the IEEE. 2008, 96(11): 1810-1835
    14 W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X.Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigher and E. C. Gage. Heat-assisted Magnetic Recording by a Near-Field Transducer with Efficient Optical Energy Transfer. Nature Photonics. 2009, 3: 220-224
    15 L. Pan, D. B. Bogy. Data Storage: Heat-assisted Magnetic Recording. Nature Photonics. 2009, 3: 189-190
    16 E. A. Dobisz, Z. Z. Bandic, T. Wu and T. Albrecht. Patterned Media: Nanofabrication Challenges of Future Disk Drives. Proceedings of the IEEE. 2008,96(11): 189-190
    17 A. Kikitsu. Prospects for Bit Patterned Media for High-density Magnetic Recording,”Journal of Magnetism and Magnetic Material. 2009, 321(6): 526-530
    18 K. Nagato, H. Tani and Y. Sakane. Study of Gas Cluster Ion Beam Planarization for Discrete Track Magnetic Disks. IEEE Transactions on Magnetics. 2008, 44(11): 2476-3479
    19 K. H. Kim, Y. Lee and S. Kim. Numerical Quasi-Static Analysis of Ultralow Flying Slider During Track-Seeking Motion Over Discrete Track Media. Source: IEEE Transactions on Magnetics. 2009, 45(11): 4990-4993
    20 X. D. Che, Y. Tang, H. J. Lee, S. Y. Zhang, K. S. Moon, N. Y. Kim, S. Y. Hong, N. Takahashi, M. Moneck, and J. Zhu. Recording Performance Study of PMR Media with Patterned Tracks. IEEE Transactions on Magnetics. 2007, 6(43): 2292-2294
    21 R. Ravaud, G. Lemarquand, V. Lemarquand and C. Depollier. Analytical Calculation of the Magnetic Field Created by Permanent-Magnet Rings. IEEE Transactions on Magnetics. 2008, 44(8): 1985-1989
    22 H. J. Richter, A. Y. Dobin1, R. T. Lynch, D. Weller1, R. M. Brockie, O. Heinonen, K. Z. Gao, J. Xue, R. J. M. v. d. Veerdonk, P. Asselin and M. F. Erden. Recording Potential of Bit-Patterned Media. Applied Physics Letters. 2006, 88(22): 222512
    23 K. Nagato, H. Tani, Y. Sakane, N. Toyoda, M. Nakao and T. Hamaaguchi. Numerical Simulation of the Head/Disk Interface for Patterned Media. IEEE Transaction on Magnetics. 2009, 45(11): 5002-5005
    24 H. Kitahara, Y. Uno, H. Suzuki, T. Kobayashi, H. Tanaka, Y. Kojima, M.Kobayashi, M. Katsumura, Y. Wada, and T. Iida. Electron Beam Recorderfor Patterned Media Mastering. Japanese Journal of Applied Physics. 2010, 49(6): 06GE02
    25 A. N. Murthy, M. Duwensee, F. E. Talke. Numerical Simulation of the Head/Disk Interface for Patterned Media. Tribology Letters. 2010, 38(1): 47-55
    26 H. J. Richter, A. Y. Dobin, O. Heinonen, K. Z. Gao, R. J. M. v. d. Veerdonk, R. T. Lynch, J. Xue, D. Weller, P. Asselin, M. F. Erden and R. M. Brockie. Recording on Bit-Patterned Media at Densities of 1 Tb/in2. IEEE Transactions on Magnetics. 2006, 42(10): 2255-2260
    27 D. Litvinov, D. Smith, J. Owen, P.l Ruchhoeft, D. Weller and S. Khizroev. Recording Physics, Design Considerations, and Fabrication of Nanoscale Bit-Patterned Media. IEEE Transactions on Nanotechnology. 2008, 4(7): 463-476
    28 D.Weller, A. Moser. Thermal Effect Limits in Ultrahigh-Density Magnetic Recording. IEEE Transaction on Magnetic. 1999, 35(6): 4423–4439
    29 J. P. Wang, T. Rahman and H. Wang. Fabrication and Characterization of a New Type Recording Media. Matthew Gibbons INSIC EHDR. 2010, 5
    30 H. Li, F. E. Talke. Numerical Simulation of the Head/Disk Interface for Bit Patterned Media. IEEE Transaction on Magnetics. 2009, 11(45): 4984-4989.
    31 A. N. Murthy, I. Etsion and F. E. Talke. Analysis of Surface Textured Air Bearing Sliders with Rarefaction Effects. Tribology Letters. 2007, 28(3): 251–261
    32 M. Duwensee, S. Suzuki, J. Lin, D. Wachenschwanz and F. E. Talke, Air Bearing Simulation of Discrete Track Recording Media. IEEE Transaction on Magnetics. 2006, 42(10): 2489–2491
    33 M. Duwensee, S. Suzuki, J. Lin, D. Wachenschwanz and F. E. Talke. Simulation of the Head Disk Interface for Discrete Track Media. Microsystem Technologies. 2007, 13(8): 1023–1030,
    34 K. Sendur, W. Challener. Patterned medium for heat assisted magnetic recording. Applied Physics Letters. 2009, 94: 032503-1-3
    35 Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Muton and N. Yoshikawa. Future Options for HDD Storage. IEEE Transactions on Magnetics. 2009, 45(10): 3816-3822
    36 S. Kilian, U. Zander and F. E. Talke. Suspension Modeling and Optimizationusing Finite Element Analysis. Tribology International. 2003, 36(4-6): 317-324
    37 T. Frank, W. Neidhart and F. E. Talke. Optimization of a Hard disk Drive using Finite Element Analysis. Invited Paper, Special Publication of the ASME/STLE Proceedings. 2000
    38 Y. -P. Yang, C. -C. Kuo. Passive and Active Design of Hard Disk Suspension Assemblies using Multi-objective Optimization Techniques. CMAME. 1997, 145:47-66
    39 Q. H. Zeng, D. B. Bogy. Numerical Simulation of Shock Response of Disk-suspension-slider Air Bearing Systems in Hard Disk Drives. Microsystem Technologies. 2002, 8(4): 289-296
    40 T. Sanada, H. Watanabe and A. Ushimaru. Development of High-speed & High-accuracy roll & Pitch Angle Adjustment Machine for HDD Suspension. Journal of Laser Micro Nanoengneering. 2009, 4(2):141-143
    41 S. Felix, J. B. Nie and R. Horowitz. Enhanced Vibration Suppression in Hard Disk Drives Using Instrumented Suspensions. IEEE Transactions on Magnetics. 2009, 45(11): 5118-5122
    42 H. R. Ao, H. D. Wei and H. Y. Jiang. Simulation of Head-Disk Interface and Ramp/Lift-Tab Interfaces during Load/Unload Process of Hard Disk Drive. Journal of Advanced Mechanical Design Systems and Manufacturing. 2010, 4(1): 23-31
    43 J. Best et al. The femto slider in Hitach Hard Disk Drvies. 2007
    44 T. Pitchford. Head/disk Interface Tribology Measurements for 100 Gb/in2. Proceedings of the Symposium on Interface Techniques towards 100 Gb/in2. J. Trib. ASME. 1999: 83-90
    45 J. Y. Juang, D. Chen and D. B. Bogy. Alternate Air Bearing Slider Designs for Areal Density of 1 Tb/in2. IEEE Transactions on Magnetics. 2006, 42(2): 241-246
    46 T. Shiramatsu, M. Kurita, K. Miyake, M. Suk, S. Ohki, H. Tanaka, S. Saegusa. Drive-integration of Active Flying-height Control Slider with Micro Thermal Actuator. IEEE Transactions on Magnetics. 2006, 42(10): 2513-2515
    47 K. Miyake, T. Shiramatsu, M. Kurita, H. Tanaka, M. Suk, S. Saegusa. Optimized Design of Heaters for Flying Height a Ustment to Preserve Performance and Reliability. IEEE Transactions on Magnetics. 2007, 43(6):2235-2237
    48 B. Liu, S. K. Yu, W. D. Zhou, C. H. Wong, W. Hua. Low Flying-height Slider with High Thermal Actuation Efficiency and Small Flying-height Modulation Caused by Disk Waviness. IEEE Transactions on Magnetics. 2008, 44(1): 145-150
    49 T Shiramatsu, T. Atsumi, M. Kurita, Y. Shimizu and H. Tanaka. Dynamically Controlled Thermal Flying-Height Control Slider. IEEE Transaction on Magnetics. 2008, 11(44): 3695-3697
    50 N. Liu, J. L. Zheng and D. B. Bogy. Predicting the Flying Performance of Thermal Flying-height Control Sliders in Hard Disk Drives. Journal of Applied Phisics. 2010, 108(1): 016102
    51 H. Zheng, H. Li and F. E. Talke. Numerical Simulation of a Thermal Flying Height Control Slider with Dual Heater and Insulator Elements. IEEE Transactions on Magnetics. 2009, 45(10): 3628-3631
    52 R. W. Wood, J. Miles and T. Olson. Perpendicular Magnetic Recording. IEEE Transactions on Magnetics. 2002, 38(4): 1711–1718
    53 A. A. Polycarpou, A. Y. Suh. Design Optimisation of Sub-5 nm Head-Disk Interfaces using a Two-Degree-of-Freedom Dynamic Contact Model with Friction. International Journal of Product Development. 2008, 5(3-4): 268-291
    54 S. C. Lee, B. D. Strom. Characterization of Thermally Actuated Pole Tip Protrusion for Head-Media Spacing Adjustment in Hard Disk Drives. Journal of Tribology. 2008, 130(2): 22001-22009
    55 A. I. Vakis, S. C. Lee and A. A. Polycarpou. Dynamic Head-Disk Interface Instabilities with Friction for Light Contact (Surfing) Recording. IEEE Transactions on Magnetics. 2009, 11(45): 4966-4971
    56 H. Zheng, H. Li, and F. E. Talke. Numerical Simulation of a Thermal Flying Height Control Slider With Dual Heater and Insulator Elements. IEEE Transactions on Magnetics. 2009, 45(10): 3628-3631
    57 J. Zheng, D. Bogy. Investigation of FH stability for TFC in Contact with Rough Rubed Disks. ASME Information Storage and Processing Systems Conference. 2010
    58 K. L. Johnson. Contact mechanics. Cambridge University Press. 1985
    59 E. J. Abbott, F. A. Firestone. Specifying Surface Quality-A Method Based onAccurate Measurement and Comparison. Mechanical Engineering. 1933, 55(4): 569-576
    60 W. R. Chang, I. Etsion and D. B. Bogy. An Eastic-plastic Model for the Contact of Rough Surface. ASME Journal of Tribology. 1987, 109: 25-263
    61 Y. Zhao, D. Maietta and L. Chang. An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow. J. Tribol. ASME. 2000, 122(1): 86–93
    62 L. Kogut, I. Etsion. Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat. Journal of Applied Mechanics. 2002, 69(5): 657-662
    63 R. L. Jackson, I. Green. A Finite Element Study of Elasto-Plastic Hemispherical Contact against a Rigid Flat. Journal of Tribology. 2005. 127(2): 343-354
    64 V. Brizmer, Y. Kligerman and I. Etsion. The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact. International Journal of Solids and Structures. 2006, 43(18-19): 5736-5749
    65 V. Brizmer, Y. Zait, Y. Kligerman and I. Etsion. The Effect of Contact Conditions and Material Properties on Elastic-plastic Spherical Contact. J. Mech. Mater. Struct. 2006, 1(5): 865-879
    66 V. Brizmer, Y. Kligerman and I. Etsion. Elastic–Plastic Spherical Contact under Combined Normal and Tangential Loading in Full Stick. Tribology Letters. 2007, 25(1): 61-70
    67 R. D. Mindlin. Compliance of Elastic Bodies in Contact. ASME Journal of Applied Mechanics. 1949, 16: 259-268
    68 A. Ovcharenko, G. Halperin, I. Etsion and M. Varenberg. A Novel Test Rig for In Situ and Real Rime Optical Measurement of the Contact Area Evolution during Pre-sliding of a Spherical Contact. Tribology Letters. 2006, 23(1): 55-63
    69 Ovcharenko, G. Halperin, G. Verberne and I. Etsion. In Situ Investigation of the Contact Area in Elastic-plastic Spherical Contact during Loading-unloading. Tribology Letters. 2007, 25(2): 153-160
    70 A. Ovcharenko, G. Halperin and I. Etsion. In Situ and Real-time Optical Investigation of Junction Growth in Spherical Elastic-plastic Contact. Wear. 2008, 264(11-12): 1043-1050
    71 A. Ovcharenko, G. Halperin and I. Etsion. Experimental Study of Adhesive Static Friction in a Spherical Elastic-Plastic. J. Trib. ASME. 2008, 130(2):021401
    72 E. Reissner. Stresses and Small Displacements of Shallow Spherical Shells. J. Math. Phys. 1947, 25(3): 279-300
    73 P. Naghdi. Note on the Equation for Shallow Spherical Shells. Quart. Appl. Math. 1956: 369-380.
    74 D. Updike, A. Kalnins. Axisymmetric Behavior of an Elastic Spherical Shell Compressed between Rigid Plates. Trans. ASME J. Appl. Mech. 1970, 37: 635-640
    75 D. Updike, A. Kalnins. Contact Pressure between an Elastic Spherical Shell and a Rigid Flat. Trans. ASME J. Appl. Mech. 1972, 39: 1110-1114
    76 D. Updike, A. Kalnins. Axisymmetric Post-buckling and Non-symmetric Buckling of a Spherical Shell Compressed between Rigid Plates. Trans. ASME J. Appl. Mech.1972, 39: 172-178
    77 N. Schwartz, R. Mackay and J. Sackman. A Theoretical and Experimental Study of the Mechanical Behavior of the Cornea with Application to the Measurement of Intraocular Pressure. Bulletin of Math. Biophysics. 1966, 28(4): 585-643
    78 P. Gupta, N. Gupta. An Experimental and Computational Study of the Crushing of Metallic Hemispherical Shells between Two Rigid Flat Plates. J. Strain Anal. Eng. 2006, 41(6): 453-466
    79 P. Gupta, N. Gupta. A Study of Axial Compression of Metallic Hemispherical Domes. J. Mat. Proc. Tech. 2009, 209(4): 2175-2179
    80 L. Pauchard, S. Rica. Contact and Compression of Elastic Spherical Shell: the Physics of A‘Ping Pong’Ball. Philos. Mag. B. 1998, 78(2): 225-233
    81 J. Greenwood, J. Williamson. Contact of Nominally Flat Surfaces. Proc. R. Soc. London A. 1996, 295(1442): 300-319
    82 D. Cohen, Y. Kligerman and I. Etsion. A Model for Contact and Static Friction of Nominally Flat Rough Surfaces under Full Stick Contact Condition. Trans. ASME, J. Tribol. 2008, 130(3): 031401
    83 Y. Jeng, S. Peng. Static Friction Model of Elastic-Plastic Contact Behavior of Surface with Elliptical Asperities. Trans. ASME, J. Tribol. 2009, 131(2): 021403
    84 F. S. Wang, J. M. Block, W. W. Chen, Ashlie Martini, K. Zhou, L. M. Keer and Q. J. Wang. A Multilevel Model for Elastic-Plastic Contact between a Sphere and a Flat Rough Surface. Trans. ASME, J. Tribol. 2009, 131(2): 021409
    85 L. Pei, S. Hyun, J. Molinari and M. Robbins. Finite Element Modeling of Elasto-Plastic Contact between Rough Surfaces. J. Mech. Phys. Solids. 2005, 53(4): 2385-2409
    86 L. Kogut, I. Etsion. A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces. Tribol. Trans. 2003, 46(3): 383-390
    87 J. Abdo, K. Farhang. Elastic-Plastic Contact Model for Rough Contacts Based on Plastic Asperity Concept. Int. J. Non-linear Mech., 2005, 40(4): 495-506.
    88 A. Hariri, R. Mrad. Modeling of Elastic/Plastic Contact between Nominally Flat Rough Surfaces Using an n-Point Asperity Model. Trans. ASME, J. Tribol., 2006, 128(6): 876-885
    89 R. Jackson, I. Green. A Statistical Model of Elasto-plastic Asperity Contact between Rough Surfaces. Tribol. Int. 2006, 39(9): 906-914
    90 H. Eid, G. Adams. An Elastic-Plastic Finite Element Analysis of Interacting Asperities in Contact with a Rigid Flat. J. Phys. D: Appl. Phys., 2007, 40(23): 7432-7439
    91 G. A. Greenwood, J. H. Tripp. The Elastic Contact of Rough Spheres. ASME Trans. J. Appl. Mech. 1967, 34: 153-159
    92 J. Kagami, K. Yamada and T. Hatazawa. Contact between a Sphere and Rough Plates. Wear. 1982, 87(1-2): 93-105
    93 J. Jamari, D. J. Schipper. Experimental Investigation of Fully Plastic Contact of a Sphere against a Hard Flat. Trans. ASME, J. Tribol. 2006, 128: 230-235
    94 J. Jamari, D. J. Schipper. Deformation Due to Contact between a Rough Surface and a Smooth Ball. ASME J. Tribol., 2007, 262(1-2): 138-145
    95 D. Cohen, Y. Kligerman and I. Etsion. The Effect of Surface Roughness on Static Friction and Junction Growth of an Elastic-Plastic Spherical Contact. Trans. ASME, J. Tribol. 2009, 131(2): 021404
    96 D. Dowson. History of Tribology. Longman. 1979
    97 W. R. Chang, I. Etsion and D. B. Bogy. Static Friction Coefficient Model for Metallic Rough Surfaces. Trans. ASME, J. Tribol. 1988,110(1): 57-63
    98 D. Tabor. Friction-The Present State of Our Understanding. ASME J. Lubr. Technol. 1981, 103(2): 169-179
    99 L. Kogut, I. Etsion. A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact. Trans. ASME, J. Tribol. 2003, 125(3): 499-506
    100 L. Kogut, I. Etsion. A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces. Trans. ASME, J. Tribol., 2004, 126(1): 34-40
    101 N. Yu, S. Pergande and A. A. Polycarpou. Static Friction Model for Rough Surfaces with Asymmetric Distribution of Asperity Heights. Trans. ASME, J. Tribol., 2004, 126(3): 626-629
    102 L. Chang, L. Zhang. A Mathematical Model for Frictional Elastic-Plastic Sphere-on-Flat Contacts at Sliding Incipient. Trans. ASME, J. Appl. Mech. 2007, 74(1): 100-106
    103 E. L. Deladi, M. B. de Rooij and D. J. Schipper. Modeling of Static Friction in Rubber-Metal Contact. Tribol. Int. 2007, 40(4): 588-594
    104 W. Chen, Q. Wang. A Numerical Static Friction Model for Spherical Contacts of Rough Surfaces, Influence of Load, Material, and Roughness. Trans. ASME, J. Tribol., 2009, 131(2): 021402
    105 R. B .Waterhouse. Fretting corrosion. Pergamon Press. 1972
    106 J. Ding, I. R. McColl, S. B. Leen and P. H. Shipway. A Finite Element Based Approach to Simulating the Effects of Debris on Fretting Wear. Wear. 2007, 263 (1-6): 481-491
    107周仲荣,罗唯力,刘家浚.微动摩擦学的发展现状与趋势.摩擦学学报. 1997, 17(3): 272-280
    108 E. M. Eden, W. N. Rose and F. L. Cunningham. The Endurance of Metals. Proc. Instn. Mech. Eng. 1911, 4: 839-974
    109 G. A. Tomlinson. The Rusting of Steel Surface in Contact. Proceedings of the Royal Society of London. 1927, 115(771): 472-483
    110 R. B. Waterhouse. Fretting Corrosion. Pergamon Press. 1972
    111 D. W. Hoeppner, G. L. Goss. Research on the Mechanism of Fretting Fatigue Corrosion Fatigue: Chemistry, Mechanics, and Microstructure. Nation Association of Corrosion Engineers. 1972: 617-626
    112 K. Endo, H. Goto. Initiation and Propagation of Fretting Fatigue Cracks. Wear. 1976, 38(2): 311-324
    113 R. B. Waterhouse. The Role of Adhesion and Delamination in the Fretting Wear of Metallic Materials. Wear, 1977, 45(3): 355-364
    114 N.P. Suh. An Overview of the Delamination Theory of Wear. Wear. 1977, 44(1):1-16
    115 M. Godet. Third-Bodies in Tribology. Wear, 1990, 136(1): 29-45
    116 Z. R. Zhou, S. Fayeulle and L. Vincent. Cracking Behavior of Various Aluminium Alloys during Fretting Wear. Wear. 1992, 155(2): 317-330
    117 Z. R. Zhou, L. Vincent. Mixed Fretting Regime. Wear. 1995, 181-183: 531-536
    118 S. Fouvry, P. Kapsa and L. Vincent. Analysis of Sliding Behavior for Fretting Loadings Determination of Transition Criteria. Wear. 1995, 185(1-2): 35-46
    119 S. Fouvry, P. Kapsa, H. Zahouani and L. Vincent. Wear Analysis in Fretting of Hard Coatings through a Dissipated Energy Concept. Wear. 1997, 203-204: 393-403
    120 M. Varengerg, I. Etsion and G. Halperin. Slip Index: a New Unified Approach to Fretting. Tribology Letters. 2004, 17(3): 569-573
    121 M. Varenberg, I. Etsion and E. Altus. Theoretical Substantiation of the Slip Index Approach to Fretting. Tribology Letters. 2005, 19(4): 263-264
    122 R. Chen, A. Iwabuchiand and T. Shimizu. The Fretting Wear of a SiC Particle-Reinforcement A356 Aluminum Alloy Matrix Composite. Wear. 2000: 110-119
    123 H. Murthy, D. B. Garcia, J. F. Matlik and T. N. Farris. Fretting fatigue of single Crystal/Polycrystalline Nickel Subjected to Blade/Disk Contact Loading. Acta Astronautica. 2005, 57(1):1-9
    124 H. K. Kim, Y. H. Lee and Y. H. Jung. A New Approach for a Wear Depth Prediction using Contact Tractions. Fracture and Strength of Solids VI, PTS 1and 2. 2006, 306-308: 435-440
    125 Y. W. Park, K. Y. Lee. Fretting Corrosion of Tin-plated Contacts: Evaluation of Surface Characteristics. Tribology International. 2007, 40(3): 548-559
    126 S. Ito, M. Shima, T. Jibiki and H. Akita. The Relationship between AE and Dissipation Energy for Fretting Wear. Tribology International. 2009, 42(2): 236-242
    127 A. Tewari, B. Basu and R. K. Bordia. Model for Fretting Wear of Brittle Ceramics. Acta Material. 2009, 57(7): 2080-2087
    128 D. Nowell. Simulation of Fretting Wear in Half-Plane Geometries-Part II: Analysis of the Transient Wear Problem Using Quadratic Programming. Journal of Tribology Transactions of the ASME. 2010, 132(2): 021402
    129 A. M. Korsunsky, K. Kim. Dissipated Energy and Friction Coefficient Evolution during Fretting Wear of Solid Lubricant Coatings. Tribology International. 2010, 43(5-6): 861-867
    130 K. Y. Choi, S. S. Kim, I. A. Source. Modeling of Fretting Wear Based on Solution of Wear Contact Problem. Tribology Letters. 2010, 37(1): 69-74
    131 D. Godfrey, J. M. Bailey. Coefficient of Friction and Damage to Contact Area during the Early Stages of Fretting, I-Glass, Copper, or Steel against Copper. Natl Advisory Committee for Aeronautics. 1953, TN-3011
    132 I. M. Feng, B.G. Rightmire.The mechanism of fretting.Mass.Inst.Of Tech., Cambridge, Mass. Ad4463
    133 Y. Berthier, L. Vincent and M. Godet.Velocity Accommodation in Fretting. Wear. 1988, 125(1-2): 25-38
    134 Y. Berthier, L. Vincent and M. Godet. Fretting Fatigue and Fretting Wear. Tribology Inernational. 1989, 22(4): 235-242
    135张晓峰,方亮,邢建东,吴国清.二体磨损与三体磨损之间的关系.西安公路交通大学学报. 2000, 20(3): 93-97
    136方亮,杜道山,张晓峰,刘维民,薛群基.三体磨料磨损中塑变磨损的实验规律.摩擦学学报. 2002, 22(4): 233-237
    137韩晓明,高飞,符蓉.铜基粉末冶金材料摩擦第三体的特征.2009年全国青年摩擦学学术会议论文集:190
    138杜道山,方亮,李从心.三体磨料塑变磨损中磨粒运动方式的研究.润滑与密封. 2004, (6):66-68
    139朱旻昊,周仲荣,刘家浚.摩擦学白层的研究.摩擦学学报. 1999, 19(3):281-287
    140 R. Anand, N. M. Shreyes. Modeling of White Layer Formation under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel. International Journal of Machine Tools and Manufacture. 2008, 48(3-4): 402-414
    141 J. Beard. Palliative for fretting fatigue. Fretting Fatigue, ESIS Vol.18. edited by R. B. Waterhouse, T. C. Lindley, London: Machanical Engineering Publications,1994: 419-436
    142 O. Vingsbo, S. Soderberg. On Fretting Maps. Wear. 1988, 126(1): 131-147
    143 Z.R. Zhou, K. Nakazawa, M.H. Zhu, N. Maruyama, Ph. Kapsa, L. Vincent. Progress in Fretting Maps. Tribology International. 2006, 39(10): 1068-1073
    144朱旻昊.径向与复合微动的运行和损伤机理研究.西南交通大学博士论文. 2001:58-62
    145 Z. R. Zhou, K. Nakazawa, M. H. Zhu, N. Maruyama, Ph. Kapsa and L. Vincent. Progress in Fretting Maps. Tribology International. 2006, 39(10): 1086-1073
    146 J. A. Pape, Neu RWSource. Subsurface Damage Development during Fretting Fatigue of High Strength Steel. Tribology International. 2007, 40(7): 1111-1119
    147 S. Fouvry, K. Kubiak. Development of a Fretting-Fatigue Mapping Concept: The Effect of Material Properties and Surface Treatments. Wear. 2009, 267(12): 2186-2199
    148 K. J. Kubiak, T. G. Mathia. Interface Roughness Effect on Friction Map under Fretting Contact Conditions. Tribology Intertional. 2010, 43(8): 1500-1507
    149 D. Y. Lee, J. Hwang, G. N. Bae. Effect of Disk Rotational Speed on Contamination Particles Generated. Microsystem Technologies. 2004, 10(2): 103-108
    150 A. N. Murthy, M. Pfabe, J. Xu and F. E. Talke. Dynamic Response of 1-in. form Factor Disk Drives to External Shock and Vibration Loads. Microsystem Technologies. 2007, 13(8-10): 1031-1038
    151 H. Zheng, A. Murthy, E. B. Fanslau and F. E. Talke. Effect of Suspension Design on the Non-operational Shock Response in a Load/unload Hard Disk Drive. Microsystem Technologies. 2008, 16(1-2): 267-271
    152 L. Li, I. Etsion, E. B. Fanslau and F. E. Talke. An Analysis of the Dimple/gimbal Contact in a Hard Disk Drive Suspension. Proc. of IIP/ISPS Joint MIPE 2009. 2009, 105-106
    153王林.硬盘磁头悬架窝点和舌尖的微动接触仿真研究.哈尔滨工业大学硕士. 2009:86-92
    154 Y. Lee, S. Kim, K. Kim, N. Park, C. Kim, C. and K. Park. Analysis of Interaction Between Dimple and Flexure by Ramp Contact. The Magnetic Recording Conference. 2009: 81-82
    155 B. Raeymaekers, S. Helm, R. Brunner, E. B. Fanslau and F. E. Talke.Investigation of Fretting Wear at the Dimple/gimbal Interface in a Hard Disk Drive Suspension. Wear. 2010, 268(5-6): 1347-1353
    156 B. Raeymaekers, F. E. Talke. The Effect of Laser Polishing on Fretting Wear between a Hemisphere and a Flat Plate. Wear. 2010, 269(5-6): 416-423
    157 J. A. Greenwood, K. L. Johnson and E. Matsubaru. A Surface Roughness Parameter in Hertz Contact. Wear. 1984, 100(1-3): 47-57
    158 W. C. Oliver, G. M. Pharr. An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 37(6):1564-1583
    159 J. B. Pethica, R. Hutchings and W. C. Oliver. Hardness Measurement at Penetration Depth as Small as 20-nm. Philospuical Magazine. 2003, 48(4): 593-606
    160 C. A. Schuh, T. G. Nieh. A Nanoidentation Study of Serrated Flow in Bulk Metallic Glasses. Acta Materialia. 2003, 51(1): 87-99
    161 Y. -T. Cheng, C.-M. Cheng. Scaling, Dimensional Analysis, and Indentation Measurements. Mater. Sci. Eng. R. 2004, 44(4-5): 91-149
    162 J. Malzbender, J. M. J. den Toonder, A. R. Balkenende and G. de With. Measuring Mechanical Properties of Coatings: a Methodology Applied to Nano-Particle-Filled Sol–gel Coatings on Glass. Materials Science and Engeering: R: Report. 2002, 36(2-3): 47-103
    163 U. Bryggman, S. S?derberg. Contact Conditions and Surface Degradation Mechanisms in Low Amplitude Fretting. Wear. 1988, 125(1-2): 39-52
    164 K. Endo, H. Goto and T. Nakamura. Effect of Cycle Frequency on Fretting Fatigue Life of Carbon Steel. Bull JSME. 1969, 12(54): 1300-1308
    165 K. Iyer, S. Mall. Effect of Cyclic Frequency and Contact Pressure on Fretting Fatigue under Two-Level Block Loading. Fatigue Fract. Enging Mater. Struct. 2000, 12(54): 335-346
    166 J. F. Matlik, T. N. Haake, G. R. Swanson and G. C. Duke. High-Frequency, High Temperature Fretting-Fatigue Experiments. Wear. 2006, 261(11-12): 1367-1382
    167 P. Schaaff, M. Dalmiglio and U. Holtzwarth. Frequency Effect in Fretting Wear of Co-28Cr-6Mo Versus Ti-6Al-4V Implant Alloys. Mater. Res. Part B: Appl. Biamater. 2006, 77: 79-88
    168 Y. W. Park, T. S. Narayanan and K. Y. Lee. Effect of Fretting Amplitude and Frequency on the Fretting Corrosion Behavior of Tin Plated Contacts. Surface & Coating Technology. 2006, 201(6): 2181-2192
    169 Y. W. Park, G. R. Bapu and K. Y. Lee. Studies of Tin Coated Brass Contacts in Fretting Conditions under Different Normal Loads and Frequencies. Surface & Coating Technology. 2007, 201(18): 7939-7951
    170 L. Toth. The Investigation of the Steady Stage of Steel Fretting. Wear. 1972, 20(3): 277-86
    171 I. M. Feng, H. H. Uhlig. Fretting Corrosion of Mild Steel in Air and in Nitrogen. Trans. ASME, J. Appl. Mech. 1954, 21: 395-400
    172 S. S?derberg, U. Bryggman and T. McCullough. Frequency Effects in Fretting Wear. Wear. 1986, 110(1): 19-34
    173 M. Odfalk, O. Vingsbo. Influence of Normal Force and Frequency in Fretting. Tribol. Trans. 1990, 33(4): 604-610
    174 S. Fouvry, P. Kapsa, H. Zahouani and L.Vincent. Wear Analysis in Fretting of Hard Coatings through a Dissipated Energy Concept. Wear. 1997, 203-204: 393-403
    175 A. Ovcharenko, I. Etsion. Junction Growth and Energy Dissipation at the Very Early Stage of Elastic-Plastic Spherical Contact Fretting. Trans. ASME, J. of Tribol. 2009, 131(3): 31602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700