用户名: 密码: 验证码:
不同轮回选择方法对玉米窄基群体的改良效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界玉米生产第二大国和玉米育种较先进的国家,但也是种质资源较贫乏的国家之一。玉米种质资源的贫乏,造成了种质基础狭窄的局面,种质基础狭窄已成为限制我国玉米育种水平进一步提高的主要制约因素,这就客观地要求我们把研究重点放在种质扩增、改良和创新以及杂种优势群和杂种优势模式的研究和构建上。轮回选择是玉米种质扩增与改良的基本方法,能有效地打破基因间的连锁关系,增加优良基因重组的机会,使群体中优良基因频率不断提高,达到改善群体表现的目的,从而为选育优良自交系提供基本素材,进而提高选育自交系及杂交种的效率。本研究以两个玉米窄基群体P3C0和P4C0及其分别经过5轮控制双亲混合选择的改良后代P3MSC1、P3MSC2、P3MSC3、P3MSC4、P3MSC5、P4MSC1、P4MSC2、P4MSC3、P4MSC4和P4MSC5,共12个群体为材料,通过多点田间表型鉴定和配合力测定,研究控制双亲混合选择对不同玉米窄基群体的改良效果;以基础群体P4C0及其经过5轮控制双亲混合选择的改良后代P4MSC1、P4MSC2、P4MSC3、P4MSC4和P4MSC5,P4C0经过1轮半同胞-S2:3(HS-S2:3)轮回选择的改良后代P4HSC1,P4HSC1经过3轮控制双亲混合选择的改良后代P4HSC1-MSC1、P4HSC1-MSC2和P4HSC1-MSC3以及将两个自交系加入到P4HSC1中进行1轮动态改良的群体P4HSC1-AP,共11个群体为材料,通过多点田间表型鉴定和配合力测定,研究不同轮回选择方法对玉米窄基群体的改良效果,并利用SSR分子标记分析不同轮回选择方法对群体遗传多样性的影响,为玉米窄基群体改良方案的完善提供参考;以从2个基础群体P4C0和P5C0及其经过2轮控制双亲混合选择的改良群体P4MSC2、P5MSC2和经过1轮HS-S2:3选择的改良群体P4HSC1、P5HSC1的单株自交后代中,分别选取来自不同基本株的3个田间表现优良的株系(基础群体为S6株系,改良群体为S5株系),共计18个高代选系为材料,通过田间表型鉴定、多点配合力测定和SSR分子标记分析,对这些群体高代选系的育种潜势进行研究,为这些选系的利用及选系策略的制定提供依据。主要研究结果如下:
     1.控制双亲混合选择对基础群体P3C0和P4C0单株产量和主要构成性状及其一般配合力(GCA)改良效果明显,但对群体与测验种的特殊配合力(SCA)却没有明显的改良效果。经过5轮控制双亲混合选择改良后,两个基础群体P3C0和P4C0改良群体的株高和穗位高及其GCA效应值都随改良轮次增加而显著增加。基础群体P3C0及其改良后代,粒深和穗行数均以P3C0为最小,P3MSC5为最大,其GCA效应值分别以P3MSC2■和P3MSC5为最大;单株产量及其GCA效应值都以P3C0为最小,分别以P3MSC4和P3MSC2为最大。基础群体P4C0及其改良群体,粒深和穗行数均以P4C0为最小,分别以P4MSC5和P4MSC4为最大,其GCA效应值都以P4MSC4为最大;单株产量及其GCA效应值都以P4C0为最小,分别以P4MSC2和P4MSC4为最大。改良群体其余多数性状及其GCA效应值也都大于各自的基础群体,但不同群体的同一性状及同一群体的不同性状,在不同的改良轮次,其改良效果不尽相同。总体趋势表现为,控制双亲混合选择进行到一定世代后,群体一些性状及其GCA能得到同步有效改良,有些性状自身及其GCA的改良效果却不同步。当选择响应到达最大以后,持续的控制双亲混合选择会导致窄基群体的选择增益下降,甚至出现负增益。
     2.不同轮回选择方法对基础群体P4C0主要性状及其GCA改良效果不尽相同。P4C0经5轮控制双亲混合选择后,群体株高和穗位高及其GCA效应值持续增加,群体主要性状及其GCA都得到较好的改良,单株产量遗传增益主要集中在前2轮,3轮改良以后群体单株产量均值有下降的趋势。P4C0经过1轮HS-S2:3选择后,改良群体P4HSC1产量及其主要构成性状都得到了较好的改良。P4HSC1经3轮控制双亲混合选择后,群体主要性状及其GCA得到进一步改良。将两个与P4HSC1属同一杂优类群的优良自交系加入到群体P4HSC1中,进行1轮动态改良后,群体产量和主要构成性状及其GCA在P4HSC1的基础上得到了进一步改良。以时间计算,控制双亲混合选择对群体P4C0产量和主要构成性状及其GCA改良效果优于HS-S2:3轮回选择,但在植株性状改良上HS-S2:3选择效果较好。以轮次计算,动态改良对群体P4HSC1产量和主要构成性状及其GCA的改良效果优于控制双亲混合选择,但动态改良后,群体株高、穗位高及其GCA效应值有较大幅度的增加。
     3.经过改良后,群体内优良个体出现频率(粒深大于1.100cm,穗行数大于或等于16行,单株产量大于160g的个体百分比)发生了变化。经过5轮控制双亲混合选择后,基础群体P3C0和P4C0及其改良后代优良个体出现频率随选择轮回增加呈波动增加趋势。P4C0经过1轮HS-S2:3选择后,群体优良个体出现频率较P4C0有较大的提高。P4HSC1经过1轮动态改良后,群体优良个体出现频率较P4C0和P4HSC1均有较大的提高。P4HSC1经过3轮控制双亲混合选择改良后,群体优良个体出现频率随改良轮次增加呈增加趋势,但有一定的波动。
     4.不同轮回选择方法对基础群体P4C0遗传多样性的影响存在差异。P4C0经过5轮控制双亲混合选择后,在改良的前2轮,多数表征遗传多样性的参数下降不明显,基因杂合度和遗传多样性指数还有小幅度增加。经3轮改良以后,群体杂合度遗传多样性开始下降,虽然衡量群体遗传多样性的参数虽然变化规律不尽相同,但其反映的整体趋势是基本一致的,即在群体改良的低代,群体遗传多样性得到了较好的保持,而多代的改良则会导致群体遗传多样性的下降。P4C0经过1轮HS-S2:3选择后,6个表征群体遗传多样性的参数比P4C0均有较大幅度的下降。P4HSC1经过1轮动态改良后,6个表征群体遗传多样性的参数均有较大幅度的增加。P4HSC1经过3轮控制双亲混合选择改良后,6个表征群体遗传多样性的参数均呈增大的趋势,但每轮增加的幅度均较小
     5.本地选择和异地选择对基础群体P4C0遗传多样性存在不同影响。P4C0经过5轮控制双亲混合选择后,群体基因型数虽然总体上是减小的趋势,但表现出减少与增加交替出现的现象。在四川改良形成的群体,其基因型数较其上一轮改良群体少,在云南改良形成的群体,其基因型数较其上一代增加。
     6.不同轮回选择方法创造了不同的遗传变异。将P4C0经过不同轮回选择方法改良的11个群体按来源分为5个类型,第一类包括P4C0,第二类包括P4MSC1、P4MSC2、P4MSC3、P4MSC4(?)(?)P4MSC5,第三类包括P4HSC1,第四类包括P4HSC1-AP,第五类包括P4HSC1-MSC1、P4HSC1-MSC2和P4HSC1-MSC3。分子方差分析结果表明,不同类型间、群体间和群体内的变异分别为6%、5%和89%,说明经过不同的轮回选择方法改良后,群体遗传变异虽然发生了不同的变化,但不同改良群体间的遗传变异仍远远小于群体内的遗传变异。从主坐标分析结果可以看出,基础群体及控制双亲混合选择的早代,群体内个体间的分布相对分散,而高代群体和P4HSC1及以P4HSC1为起始群体的两类改良群体,分布相对集中,随着改良轮次的增加,群体内个体的分布发生了定向变化,且不同选择方法改良后,群体内个体偏移的方向和程度不一致。
     7.改良群体高代选系在自交代数少1代的情况下,其纯合的位点比例与基础群体高代选系相当,说明用改良群体高代选系纯合速度较快。与基础群体高代选系相比,改良群体高代选系间遗传差异虽有减小的趋势,但仍有较大的遗传差异。
     8.不同群体高代选系之间,表型及配合力差异较大,来自同一群体不同基本株的选系之间差异也较大,群体高代选系的表型和配合力差异来源于不同群体及基本株的差异。总体而言,改良群体高代选系产量和主要构成性状及其GCA表现优于基础群体高代选系,但值得注意的是多数改良群体高代选系株高、穗位高及其GCA都较各自的基础群体高代选系有所增加。
     9.改良群体高代选系P4MSC2-1、P4MSC2-2、P5MSC2-2和P5MSC2-3以及基础群体高代选系P5C0-3,自身产量和主要性状及其GCA表现较好,与测验种所配组合产量较高,有较大的育种利用价值。
China is the second largest country in maize production all over the world. The maize breeding was relatively advanced, but also the germplasm resources were relatively poor in china. The lack of maize germplasm result in the narrow basis, it was the main factor that block the development of maize breeding. This fact requires us to focus on the expansion and improvement and innovation of germplasm. The recurrent selection is the basic method for the improvement and expansion of maize germplasm. It could break the chain linkage between genes effectively and increase the superior gene frequency continuously. These populations with the performance improved then can serve as a potential source of superior inbred lines and can inhabit development of a possible genetic ceiling for further hybrid improvement. In this study, two synthetic narrow-base maize populations P3 and P4 were improved by 5 cycles of biparental mass selection method to obtain 12 populations. In different ecological environment, the phenotypes of the populations per se were analysis and the combing ability was tested according to an incomplete diallel model to study the effect of MS on different populations. The narrow base population P4 was improved by different recurrent selection method to obtain 11 populations. In different ecological environment, the phenotypes of the populations per se were analysis and the combing ability was tested according to an incomplete diallel model to study the effect of different recurrent selection method on a same population, also the effect of different recurrent selection methods on genetic diversity of populations were analysis by SSR markers with the objective to make suggestions on how to raise the efficiency of improvement and utilization of synthetic populations. Three inbred lines derived from each of the 6 populations, including P4C0, P4MS2, P4HSC1, P5C0, P5MSC2 and P5HSC1, to make a total of 18 lines. The phenotypes of the lines per se were analysis, and the combing ability was tested according to an incomplete diallel model, the genetic diversity of the lines were analysis by SSR markers with the objective to make suggestions on the usage of these lines and generating strategies for deriving lines from a improved population. The main results were summarized as follows:
     1. After 5 cycles of biparental mass selection (MS), for both of the base population P3C0 and P4C0, most traits of the populations per se and the GCA were improved significantly, whereas the SCA of most traits showed no significant increase. The mean of plant height and ear height per se and their GCA increased with the advance of selection for the both base populations. For P3C0 and its improved descendants, the mean of kernel depth and rows per ear were smallest at P3C0 and largest at P3MSC5. The GCA effects of them were smallest at P3C0, and largest at P3MSC2 and P3MSC5, respectively. The yield per plant of populations per se and its GCA effects were both smallest at P3C0, and largest at P3MSC4 and P3MSC2, respectively. For P4C0 and its improved descendants, the mean of kernel depth and rows per ear were smallest at P4C0, and largest at P4MSC5 and P4MSC4, respectively. The GCA effects of them were both smallest at P4C0, and largest at P4MSC4. The yield per plant of the populations per se and its GCA effects were both smallest at P4C0, and largest at P4MSC2 and P4MSC4, respectively. For most of the other traits per se and their GCA effects, the improved descendants were larger than their respective CO. There were different effects of improvement on different populations and traits at different cycles. The general trend showed that after cycles of biparental mass selection, some traits of populations per se and their GCA were improved simultaneously, while the improvement of population per se and the GCA did not display a synchronicity for some others. After the largest selection response to biparental mass selection was obtained, a sustained biparental mass selection would lead to a decrease in genetic gain or even a negative genetic gain.
     2. The effect of different recurrent selection method on the main traits and their GCA were different. After 5 cycles of MS, the mean of plant height and ear height per se and their GCA increased with the advance of selection for P4C0,most traits of the populations per se and the GCA were improved significantly, and the genetic gain were obtain in first 2 cycles, the genetic gain decrease from the 3rd cycle. After 1 cycles of HS-S2:3 selection, most traits of the populations per se and the GCA were improved significantly. After 3 cycles of MS, most traits of the population P4HSC1 per se and the GCA were improved further. After add the inbred lines to the population P4HSC1, most traits per se and their GCA display a significant increase over P4HSC1.In time, the effect on yield and the yield component and their GCA were better than HS-S2:3 selection, but the HS-S2:3 selection was more beneficial to maintain the plant and ear height of population. In turn, adding lines to the population were more effective on the improvement of yield and the yield component and their GCA than MS, but also the plant and ear height increase more.
     3. After five cycles of MS, the excellent individual frequency increase with the advance of selection with a wave phenomenon for both P3C0 and P4C0.After 1 cycle of HS-S2:3 selection, the excellent individual frequency increase over P4C0. After add the inbred lines to the population P4HSC1, the he excellent individual frequency increase. After 3 cycles of bi-parents mass selection, the excellent individual frequency increase with the advance of selection with a wave phenomenon.
     4. The effects of different recurrent selection methods on the genetic diversity were different. After 5 cycles of MS on P4C0, the number and the percentage of polymorphic loci displayed a descending trend with the advance of selection, the mean genetic distance represent slightly fluctuate declining. The expected heterozygosity (He) and Shannon genetic diversity index (I) increased in the first two cycles while decreased from the 3rd cycle with the advance of selection. The number of genotype presented the trend of declining with the advance of selection and showed an alternative growth and descends phenomenon related to the location where the populations were developed. The 6 index of genetic diversity decreased after HS-S3, after 3 cycles MS were carried out on P4HSC1 or adding 2 inbred lines into P4HSC1, the genetic diversity of population increase in varying degrees.
     5. In our study, the number of genotype presented the trend of declined with the selection process. In additional, the number of genotype appears to be related to the location where the populations were developed. When the population was developed in Yunnan province, the number of genotype increased while decreased when the population was developed in Sichuan province.
     6. The 11 populations devlopeped from P4 by different recurrent selection method were classified into 5 types based on the method the population were improved. The 1st type included P4C0, the 2nd type included P4MSC1, P4MSC2, P4MSC3, P4MSC4 and P4MSC5, the 3rd type included P4HSC1, the 4th type included P4HSC1-AP, the 5th type included P4HSC1-MSC1, P4HSC1-MSC2 and P4HSC1-MSC3.The AMOVA showed that the genetic various among regions, among populations and within populations were 5%, 6% and 89%, respectively. The genetic diversity changed with the advance of selection, while the genetic diversity within populations was much more than that of among populations. The result of principle coordinates analysis showed that the individual distribute in a larger range in the P4C0 and early cycles of MS while the distribution range become smaller in the advance cycles of MS and the P4HSC1 and the populations developed from P4HSC1 by MS and. The directional changes occurred in the distribution of the individual with the advance of selection, but degrees and direction vary from method to method.
     7. The inbred lines derived from different population, and the inbred lines derived from different basic individual in a same population vary in the phenotype and combing ability.
     8. The inbred lines P4MSC2-1, P4MSC2-2, P5MSC2-2 and P5MSC2-3 derived from improved population were superior in yield and yield component and their GCA, the hybrid between these lines and the testers were high in yield. In summary, most of the inbred lines derived from the improved population were better than the inbred lines derived from the base population in yield and yield component and their GCA. However the inbred lines derived from the improved population were taller in the plant height and ear height.
     9. The number and percentage of homozygote of the lines derived from the improved populations were roughly equivalent to that of the lines derived from the basic populations with one inbred generation less. The genetic diversity of the lines derived from the improved population showed a decrease trend, but the genetic diversity was still rich relatively.
引文
[1]胡延吉.植物育种学.北京,高等教育出版社,2003:21-23.
    [2]刘纪麟.玉米育种学-第二版.北京,中国农业出版社,2002:141-220
    [3]Troyer A F. Background of U.S. Hybrid com Ⅱ:Breeding climate and food. Crop Sci,2004,44: 370-380
    [4]Hallauer A R, Miranda J B. Quantitative Genetics in Maize Breeding.2nd edition, Iowa State University Press, Ames, IA,1988
    [5]MBS. Inc. genetics handbook-26th edn.MBS.Inc,Ames,Iowa,USA,1999
    [6]Vigouroux, Sharon M, Yoshihiro M, et al. An Analysis of Genetic Diversity Across the Maize Genome Using Microsatellites, Genetics,2005,16(9):1617-1631
    [7]Goodman M M, Stuber C W. Races of maize VI. Isozyme variation among races of maize in Bolivia. Maydica,1983,28:169-187
    [8]Liu K, Goodman M, Muse S, et al. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics,2003,165:2117-2128.
    [9]Cartea M E, Revilla P, Butron A, et al. Do second cycle maize inbred preserve the European flint heterotic groups?.Crop Sci,1999,39:1060-1064
    [10]Clerc V L, Bazante F, Baril C, et al. Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor appl genet,2005,110:294-302
    [11]吴景锋.我国主要玉米杂交种种质基础评述.中国农业科学,1982,2:1281-1285
    [12]曾三省.中国玉米杂交种的种质基础.中国农业科学,1990,23(4):1291-195
    [13]王懿波,王振华,陆利行,等.中国玉米种质基础、杂种优势群划分与杂优模式研究.玉米科学,1998,1:9-13
    [14]王懿波,王振华,王永普等.中国玉米主要种质杂种优势群的划分及其改良利用.华北农学报,1998,13(1):74-80
    [15]史桂荣.玉米种质基础研究现状分析.黑龙江农业科学,2002,2:35-37
    [16]董炳友,高树仁,邓永贵.黑龙江省玉米品种种质基础研究.黑龙江八一农垦大学学报,2006,18(1):8-11
    [17]焦仁海,王绍萍,孙发明.吉林省玉米种质的分类与归纳.玉米科学,2006,14(1):21-25
    [18]刘旭,景希强,何晶,等.二十年来辽宁省玉米种质基础及杂优模式分析.玉米科学,2008,16(6):33-37
    [19]王启柏,李杰文,郭风发.山东省玉米种质基础及杂优模式分析.山东农业科学,2009,10:18-21
    [20]魏昕,王振华,张前进.河南省玉米生产现状、问题与对策.玉米科学,2010,18(2):136-141
    [21]荣廷昭,李晚忱,潘光堂.新世纪初发展我国玉米遗传育种科学技术的思考.玉米科学,2003,(专刊):42-53
    [22]陈发波,杨克诚,潘光堂等.西南及四川区试玉米组合遗传多样性分析.作物学报,2007,33(6):991-998
    [23]戴景瑞,鄂立柱.我国玉米育种科技创新问题的几点思考.玉米科学,2010,18(1):1-5
    [24]Hoisington D, Khairallah M, Reeves T, Ribaut J M, Skovmand B. Plant genetic resources:what can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences of the United States of America,1999,96(11):5937-5943
    [25]张世煌,田清镇,李新海,等.玉米种质改良与相关理论研究进展.玉米科学,2006,14(1):7-11
    [26]李海明,张世煌,胡瑞法.遗传单一性、品种单一性与中国玉米生产浙江大学学报(农业与生命科学版).2005,31(6):677-682
    [27]番兴明,谭静,杨峻芸.热带、亚热带外来玉米种质的利用.西南农业学报,2000,13(1):107-111
    [28]国务院.《全国新增1000亿斤粮食生产能力规划(2009—2020年)》.2009
    [29]史桂荣.我国玉米种质现状及改进建议.杂粮作物,2002,22(4):196-198
    [30]荣廷昭,李晚忱,潘光堂.新世纪初发展我国玉米遗传育种科学技术的思考.玉米科学,2003,(专刊):42-53
    [31]扈光辉,贺雨丰.常规育种条件下玉米种质扩增的途径.杂粮作物,2004,24(1):1-5
    [32]Salhuana W, Jones Q, Sevilla R, et al. The Latin American Maize Project:Model for rescue and use of irreplaceable germplasm. Diversity,1991,7:40-42
    [33]Salhuana W, Jounes Q, Eeberhart S,et al.Latin American maize project (LAMP) final report. Johnston:pioneer Hi-Bred Inc. Special Publication,1997
    [34]Pollak L M.The History and Success the Public-private Project on germplasm enhancement of maize (Gem),2002, http://www.iastate.edu/-usda-gem
    [35]张世煌.玉米育种家不要走猫步.http://chinamaize.blog.sohu.com/
    [36]张祖新,郑用琏,李建生,等.三峡地区玉米地方品种的遗传潜势.华中农业大学报,1994,13(15):450-455
    [37]卢洪,郑用琏,李建生,等.27个玉米地方品种的配合力和杂种优势群的研究.华中农业大学学报,1994,13(6):545-552
    [38]魏国才,南元涛,唐跃文,等.黑龙江省玉米地方种质资源的筛选分析利用研究.玉米科学,2001,9(3):32-33
    [39]刘纪麟,郑用琏,张祖新等.三峡地区玉米地方品种杂种优势群的初探.作物杂志,1998,(增刊):6-12
    [40]晏庆九,张健,许明陆,等.三峡库区72份玉米地方品种产量性状的评价.植物遗传资源学报,2001,2(1):12-17
    [41]张志国.贵州山区玉米种质的改良.中国农学通报,2004,20(4):42-144
    [42]曾学礼,张祖新.对湖南省20个玉米地方品种的数量性状分析和聚类分析.湖北农业科学,2001,(5):35-38
    [43]高翔,陈泽辉,祝云芳.贵州玉米品种(组合)杂优模式初探.玉米科学,2004,12(增刊):20-21.
    [44]刘世建.用RAPD和SSR分子标记对四川地方玉米种质杂种优势群的初步研究.硕士学位论文,雅安,四川农业大学,2001
    [45]Malvar R A, Butron A, Alvarez A,et al. Evaluation of the European Union Maize Landrace Core Collection for resistance to Sesamia nonagrioides (Lepidoptera:Noctuidae) and Ostrinia nubilalis (Lepidoptera:Crambidae). J Econ Entomol,2004,97:628-34
    [46]Bracco M, Lia V V, Gottlieb A M, et al. Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina. Genetica,2009,135:39-49
    [47]Bitocchi E, Nanni L, Rossi M, et al. Introgression from modern hybrid varieties into landrace populations of maize (Zea mays ssp. mays L.) in central Italy. Mol Ecol,2009,18:603-21
    [48]Smith J S C, Duvick D N, Smith O S,et al. Changes in pedigree backgrounds of pioneer brand maize hybrids widely grown from 1930 to 1999.Crop Sci,2004,(44)1:935-1947
    [49]姚启伦.西南部分玉米地方种质资源的遗传多样性分析.博士学位论文,雅安,四川农业大学,2007
    [50]向葵.四川盆地及盆周山区部分玉米地方种质的育种潜势分析.硕士学位论文,雅安,四川农业大学,2008
    [51]铁双贵,刘丁良,郑用琏.玉米人工合成群体配合力效应及遗传潜势的研究.作物学报,2000,26(1):28-34
    [52]Iltis H H,Doebley J F,Guzman R. Zea diploperennis (Gramineae):A new teosinte from Mexico. Crop Sci,1979,203:186-188
    [53]郭乐群,张谷,谷明光.二倍体多年生大刍草是有价值的新种质资源.玉米科学,2000,8(4):12-14
    [54]Conzales QConfonieri V,Comas C. Relationships between zea mays ssp, mays and zea ssp, parviglumis by genemic in situ hybridization(GISH).MNL,2001,75:36-38
    [55]Han Y H, Li L J, Song Y C. Physical mapping of the 5S and 45S rDNA in teosintes. MNL, 2002,76:70-72
    [56]Shenoy V V, Sachan J K S, Sarkar K R. Comparison between maize and its wild relatives,MNL,1981,57:99-101
    [57]Hilton H, Gaut B S.Speciation and domestication in maize and its wild relatives:evidence from the Globulin-1 gene. Genetics,1998,150:863-872
    [58]田松杰,石云素,宋燕春等.利用AFLP技术研究玉米及其野生近缘种的遗传关系.作物学报,2004,30(4):354-359
    [59]唐祈林.用玉米近缘材料创造玉米新种质.中国农业科学(增刊),2000,33:62-66
    [60]唐祈林,杨克诚,郑祖平等.玉米与玉米近缘种性研究可杂交.作物学报,2006,32(1):144-146
    [61]荣廷昭,唐祈林.优质高产新型饲草玉米SAUMZ1号的选育与利用.贵州农业科学,2007,35(1):7-9
    [62]李冬郁,谷光明.玉米野生亲缘种质的应用.广西农业科学,2000,3:123-125
    [63]李冬郁,郭乐群.玉米野生近缘种类玉米的研究和利用.玉米科学,2001,9(2):11-13
    [64]Sprague G F, Dudley J W J. Corn and Corn Improvement. American Society of Agronomy, Madison, WI,1988
    [65]Bernardo R. Breeding for Quantitative Traits in Plants. Stemma Press, Woodbury, MN,2002
    [66]Dudley J W.From Means to QTL:The Illinois Long-Term Selection Experiment as a Case Study in Quantitative Genetics. Crop Sci,2007,47:S20-32
    [67]A R哈洛威.玉米轮回选择的理论与实践.北京,农业出版社,1989:47-120
    [68]彭泽斌,张世煌.玉米群体改良的问题与对策.中国农业科学,2000,33(增刊):27-33
    [69]Gethi J G, Labate J A, Lamkey K R, Smith M E, Kresovich S. SSR variation in important U.S. maize inbred lines. Crop Sci,2002,42,951-958
    [70]Hagdoin S, Lamkey K R, Frisch M et al. Molecular genetic diversity among progenitors and derived elite lines of BSSS and BSCB1 maize population. Crop Sci,2003,43:474-482
    [71]Smith J S C, Duvick D N, Smith O S,et al. Changes in pedigree backgrounds of pioneer brand maize hybrids widely grown from 1930 to 1999.Crop Sci,2004,(44)1:935-1947
    [72]Hallauer A R, Lamkey K R, White P R. Registration of B117, B118, B119, B120, and B121. 2004. Crop Sci,44:2280-2281
    [73]Kamkey K.R. Fifty years of recurrent selection in the Iowa Stiff Stalk Synthitic maize population. Maydica,1992,37:19-28
    [74]Hallauer A R. Introgression of Elite Subtropical and Tropical Germplasm with U.S. Corn Belt Germplasm.2003 NCR-167 North Central Regional Corn Breeding Meetings Program. www.agron.iastate.edu/corn/NCR 167/Abstracts/2003/Hallauer_2003_Abstract. Pdf
    [75]Vasal S K, Srinivasan G, Crossa J, et al. Heterosis and temperate early-maturity maize germplasm and combining ability of CIMMYT's subtropical. Crop Sci.,1992,32:884-890
    [76]Vasal S K, Srinivasan G, Beck D L, et al. Heterosis and combining ability of CIMMYT's tropical late white maize germplasm. Maydica,1992,37(2):217-223
    [77]高翔,陈泽辉,祝云芳.CIMMYT玉米种质AC8328BNC1的耐瘠性研究.玉米科学,2004122:76-78
    [78]卢峰,吕香玲.生物技术在玉米育种中的应用.杂粮作物,2006.26(2):68-70
    [79]Eder J, Chalyk S. In vivo haploid induction in maize. Theor Appl Genet,2002,104:703-708
    [80]Gordillo G A, Geiger H H. MBP (version 1.0):a software package to optimize maize breeding procedures based on doubled haploid lines. J Hered,2008,99:227-231
    [81]Pret'ova A,Obert B,Bartosova Z. Haploid formation in maize, barley, flax, and potato. Protoplasma,2006,228:107-14
    [82]Zhang Z, Qiu F, Liu Y, et al. Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep,2008,27:1851-60
    [83]陈绍江黎亮李浩川.玉米单倍体育种.北京,中国农业大学出版社,2009,1-50
    [84]黎亮,李洁川,徐小炜,陈绍江.玉米孤雌生殖单倍体加倍技术研究进展.玉米科学,2010,18(1):12-14
    [85]邹克琴.基因工程原理与技术.浙江大学出版社,2010
    [86]http://www.fawan.com/Article/ShowArticle.asp?ArticleID=283648
    [87]wang Q X, Zhang H, Xie Y J,et al. Studies of transgene segregation and integration in maize]. Yi Chuan Xue Bao,1999,26:254-61
    [88]Paz J L, Pla M, Papazova N, et al. Stability of the MON 810 transgene in maize. Plant Mol,2010,7:103-110
    [89]全球转基因植物研发现状.农业部农业转基因生物安全管理办公室,2010
    [90]杨业华.普通遗传学.北京,高等教育出版社.2003
    [91]荣廷昭,李晚忱,杨克诚,等.西南生态区玉米育种.北京,中国科学技术出版社,2003:262-264
    [92]张敏译.窄基玉米综合种ZPS14茎杆抗倒性的遗传分析.国外农学,1997,4:1-5
    [93]石明亮.玉米选系窄基础材料组配规律的初步研究.玉米科学,1997,5(4):11-14
    [94]苏俊,闫淑琴.玉米窄基群体的构建与利用.黑龙江农业科学,2010(1): 11-13
    [95]Gardber C O. An evaluation of effects of mass selection and seed irradiation thermal neutrons on yield of corn. Crop sci,1961,1:241-245
    [96]http://hdl.handle.net/2142/3526
    [97]Troyer A F, Brown W L. Selection for early flowering in corn. Crop Sci.,1972,12:301-303
    [98]Troyer A F, Brown W L. Selection for early flowering in corn:seven late synthetics. Crop Sci.,1976,16:767-772
    [99]Troyer A F. Selection for early flowering in corn:18 adapted F2 populations. Crop Sci.,1986,26:283-285
    [100]张世煌,石德树,徐家舜,等.对两个亚热带优质蛋白玉米群体的适应性混合选择研究Ⅰ.开花期性状的直接选择响应.作物学报,1995,21(3):271-280
    [101]张世煌,石德树,徐家舜,等.对两个亚热带优质蛋白玉米群体的适应性混合选择研究Ⅱ.相关响应.作物学报,1995,21(5):513-519
    [102]夏九成,杨克诚,张怀渝.控制双亲的混合选择对热带玉米群体墨白964的改良效应.作物学报,2004,30(10):980-989
    [103]魏昕.墨白964群体5轮混合选择遗传变异的分子生物学研究.硕士学位论文,雅安,四川农业大学,2004
    [104]张德贵,李新海,李明顺.四个热带亚热带玉米群体开花期性状对混合选择的直接选择响应.作物学报,2010,36(1):28-35
    [105]Lamkey K R, Dudley J W. Mass Selection and Inbreeding Depression in Three Autotetraploid Maize Synthetics. Crop Sci 24:802-806
    [106]Weyhrich R A, Lamkey K R, Hallauer A R. Response of seven methods of recurrent selection in the BS11 maize population. Crop Sci,1998.38:308-321
    [107]Leon T N, Coors J G. Twenty-four cycles of mass selection for prolificacy in the Golden Glow maize population. Crop Sci,2002,42(2):325-333
    [108]彭泽斌,刘新芝,孙福来.中综3号玉米群体格子混合选择效果分析.作物学报, 2000,26(5):618-622
    [109]Vales M L, Malvar R A, Revilla P, et al. Recurrent selection for grain yield in two Spanish maize synthetic populations. Crop Sci.,2001,41:15-19
    [110]Hopkins C G. Improvement in the chemical composition of the corn kernel. University of Illinois agriculture experiment station bulletin 55,1899:205-240
    [111]Lonnquist J H. A modification of the ear-to-row procedure for the improvement of maize population. Crop sci,1964,4:277-278
    [112]Compton. W A, Comstock R E. More on modified ear-to-row selection in corn. Crop sci,1976,16:122
    [113]Holthaus J F, Lamkey K R.Population Means and Genetic Variances in Selected and Unselected Iowa Stiff Stalk Synthetic Maize Populations. Crop Sci,1995,35:1581-1589
    [114]谢振江,张锦芬,Lazar Kojic,等.中国和南斯拉夫异地育种对南斯拉夫玉米群体改良的效果.南京农业大学学报,2001,24(3):6-10
    [115]秦泰辰,邓德祥.两种轮回选择方案对玉米群体改良的效应.中国农业科学,1989,22(4):25-32
    [116]姚占军,王守才.两种轮回选择方法对沈综CO群体的产量及植株性状的遗传改良效果的研究.河北农业大学学报,2001,24(3):13-16
    [117]Pfarr D G, Lamkey K R. Evaluation of Theory for Identifying Populations for Genetic Improvement of Maize Hybrids. Crop Sci,1992,32:663-669
    [118]孔繁玲.植物数量遗传学.北京,中国农业大学出版社,2006:282-284
    [119]陈彦惠,刘仁东.玉米开放的S1或S2轮回选择系统与优良自交系种质的循环利用.作物杂志,1994,1:12-14
    [120]陈彦惠,吴连成.玉米群体改良研究的进展与展望《21世纪玉米育种展望-玉米遗传育种国际学术讨论会论文集》,2000年
    [121]Comstock R E, Robison H F, Harrey P B. A breeding procedure designed to use maximum of both general and specific combing ability. Agron.1949,41:360-367
    [122]Paterniani E. Selection among and within families in a brazillian population of maize. Crop sci,1967b,7:212-216
    [123]彭泽斌,田志国.改良HS相互轮回选择与玉米育种.玉米科学,2004,12(1):12-14
    [124]郭文辉,刘峻屏.玉米两个综合种三轮相互轮回选择及其进展的研究.吉林农业科学,1989,2:1-5
    [125]彭泽斌,刘新芝.改良S1后代轮回选择在玉米群体改良中应用的研究Ⅰ直接响应与相 关响应.作物学报,1995,21(6):695-701
    [126]彭泽斌,刘新芝.改良S1后代轮回选择在玉米群体改良中应用的研究Ⅱ群体方差、配合力及杂交优势.作物学报,1996,22(4):465-469
    [127]Sprague G F, Tatum L A. General vs specific combing ability in single crosses of corn. J. Ame soc agron,1942,34:923-933
    [128]Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Biol.Sci,1956,9:463-493
    [129]Griffing B. A generalized treatment of the use of diallel crosses in quantitative inheritance. Heredity,1956,10:31-45
    [130]Doerksen T K, Kannenberg L W, Lee E A.2003.Effects of recurrent selection on combining ability in maize breeding Populations. Crop Sci,43,1652-1658
    [131]彭泽斌,刘新芝,孙福来.中综3号玉米群体格子混合选择效果分析.作物学报,2000.26(5).618-622
    [132]Kearsey M J, J L Jinks. A general method of detecting additive, dominance and epistatic variation for metrical traits I theory.Heredity,1968,23:403-409
    [133]张晓峰金益张永林,等.东农-2玉米改良群体的遗传结构分析.中国农业科学,2000z1,105-112
    [134]马克平.试论生物多样性的概念.生物多样性,1993,1(1):20-221
    [135]钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994,13-361
    [136]娄希祉.人类的宝贵财富——作物遗传资源的多样性.农业科技通讯,1994,8:4
    [137]娄希祉,方嘉禾,郑殿升.充分发挥作物品种资源在粮食增产中的作用.自然资源学报,1996,(3):203-209
    [138]Salt D E, Prince R C. Mechanisms of cadmium mobility and accumulation in India mustard. Plant Physi,1995,109:1427-1433
    [139]王成树,李增智.分子数据的遗传多样性分析方法(综述).安徽农业大学学报,2002,29(1):90-94
    [140]Robinson N J, Tommey A M. Plant metallothioneins. Biochem. J.,1993,295:1-10
    [141]沈洁,刘登义.遗传多样性概述.生物学杂志,2001,18(3):5-7
    [142]Litt M, Luty J A. A hyper variable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actins gene. Am. J. Hum. Genet.1989,44: 397-401
    [143]Nakamura Y, Leppert M, O'Connell P, et al. Variable number tandem repeat (VNTR) markers for human gene mapping. Science,1987,235:1616-1622
    [144]Tautz D. Hyper variability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res.,1989,17:6463-6471
    [145]Chen X, Temnykh S, Xu Y, et al. Develop of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet.,1997,95:552-562
    [146]Roder M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat. Genetics,1998, 149:2007-2023.
    [147]Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet.1998,97:308-315
    [148]郝晨阳,王兰芬,贾继增,等.SSR荧光标记和银染技术的比较分析.作物学报,2005,31(12):144-149
    [149]易红梅,王凤格,赵久然,等.玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究.华北农学报,2006,21(5):64-67
    [150]袁力行,傅骏骅,Warburton M,等.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,2000,27(8):725-733
    [151]Pejic I, Aimone-Marsan P, Morgaante M, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, SSRs and AFLPs. Theoretical and Applied Genetics,1998,97:1248-1255
    [152]Reif J C, Melchinger A E, Xia X C, et al.2003. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci,43:1275-1280
    [153]Labate J A, Lamkey K R, Lee M, et al.Molecular genetic diversity after reciprocal recurrent selection in BSSS and BSCB1 maize populations. Crop Sci,1997,37:413-423
    [154]Hinze L L, Kresovich S, Nason J D, Lamkey K R.2005.Population genetic diversity in a maize reciprocal recurrent selection program. Crop Sci,45:2435-2442
    [155]黄素华,滕文涛,王玉娟,等.利用SSR分子标记分析玉米轮回选择群体的遗传多样性遗传学报,2004,31:73-80
    [156]Smith O S, Smith J S, Cabwomen S L, et al. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain-yield, heterosis and RFLPs. Theor Appl. Genet, 1990,80:833-840
    [157]袁力行,傅骏骅,Warburton M,等.利用RFLP和SSR标记划分玉米自交系杂种优势群的研究.作物学报,2001,27(2):149-156
    [158]Williams J G K, Hubeilk A R., Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res,1990,18(22):6531-6535
    [159]张超良,孙世孟,金德敏,等.RAPD技术在12个玉米骨干自交系快速鉴定中的应用.作物学报,1998,24(6):718-222
    [160]赵久然,郭景伦.利用DNA指纹鉴定玉米杂交种纯度及其真伪技术的研究.玉米科学,1999,7(1)9-13
    [161]Zabeau M, Vos P. Selective Restriction Fragment Amplification general method for DNA fingerprinting. European Patent Application 92402629.7 (Public Number 0 534 858 AL).1993
    [162]袁力行,傅骏骅,刘新芝,等.用分子标记预测玉米杂种优势的研究.中国农业科学,2000,33(6):6-12
    [163]高世斌,陈永燕.玉米骨干自交系AFLP指纹图谱鉴定.四川农业大学学报,2001,19(2):126-128
    [164]韩毅,陈威,谭静,等.分子标记在玉米育种中的应用.安徽农业科学,2010,11:5563-5566
    [165]Xu Y, Crouch J H. Marker-Assisted Selection in Plant Breeding:From Publications to Practice. Crop Sci.2008,48:391-407
    [166]宋同明.对中综2号玉米综合种含油量11个周期轮回选择效果分析.作物杂志,1994,6:8-11
    [167]Calarreta. Six cycles of s1 recurrent selection in two Spanish maize synethetic.spanish journal of agriculture research.2007,5(2):193-198
    [168]Thanda D,Kevin V P. Divergent selection for resistance to maize weevil in six maize population.crop sci,2003,43(6):2043-2049
    [169]Dudley J W, Lambert R J.Ninety generations of selection for oil and protein in maize. Maydica,1992,37:1-7
    [170]Dudley J W, Lambert R J.100 generations of selection for oil and protein in corn. Plant Breed. Rev,2004,24:79-110
    [171]Laurie C C, Chasalow S D, Ledeaux J, et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics,2004,168:2141-2155
    [172]Dudley J. W. Genetic analysis of crosses among corn strains divergently selected for percent oil and protein. Crop Sci,1977,17:111-117
    [173]Clark D J, Dudley J W, Rocheford T R, et al. Genetic analysis of corn kernel composition in the random mated 10 generation of the cross of generations 70 of IHO × ILO.2006. Crop Sci, 46:807-819
    [174]Dudley J W.Epistatic Interactions in Crosses of Illinois High Oil × Illinois Low Oil and of Illinois High Protein × Illinois Low Protein Corn Strains. Crop Sci,2008,48(1):59-69
    [175]Dudley J W.From Means to QTL:The Illinois Long-Term Selection Experiment as a Case Study in Quantitative Genetics. Crop Sci,2007,47:S20-32
    [176]Guzman P.S., Lamkey K.R. Effective Population Size and Genetic Variability in the BS11 Maize Population. Crop Sci,2000,40:338-346
    [177]Hagdorn S, Lamkey K R., Frisch M, et al. Molecular Genetic Diversity among Progenitors and Derived Elite Lines of BSSS and BSCB1 Maize Populations. Crop Sci,2003,43:474-482
    [178]Keeratinijakal V, Lamkey K R. Genetic Effects Associated with Reciprocal Recurrent Selection in BSSS and BSCB1 Maize Populations. Crop Sci,1993a,33:78-82
    [179]Keeratinijakal V, Lamkey K R. Responses to Reciprocal Recurrent Selection in BSSS and BSCB1 Maize Populations. Crop Sci,1993b,33:73-77
    [180]Labate J A, Lamkey K R, Lee M, et al. Molecular Genetic Diversity after Reciprocal Recurrent Selection in BSSS and BSCB1 Maize Populations. Crop Sci,1997,37:416-423
    [181]Schnicker B J, Lamkey K R. Interpopulation Genetic Variance after Reciprocal Recurrent Selection in BSSS and BSCB1 Maize Populations. Crop Sci,1991,33:90-95
    [182]Walters S P, Russell W A, Lamkey K R. Performance and Genetic Variance among S1 Lines and Testcrosses of Iowa Stiff Stalk Synthetic Maize. Crop Sci,1991,31:76-80
    [183]Weyhrich R A, Lamkey K R, Hallauer A R. Effective Population Size and Response to S1-Progeny Selection in the BS11 Maize Population. Crop Sci,1998 38:1149-1158
    [184]Hallauer A R, Lamkey K R, White P R. Registration of B117, B118, B119, B120, and B121. Crop Sci,2004,44:2280-2281
    [185]Brandon M W, Edwards J W, Lamkey K R.Inbred-Progeny Selection Is Predicted to Be Inferior to Half-Sib Selection for Three Maize Populations.Crop Sci,2009,43:443-450
    [186]Bernardo R, Charcosset A.Usefulness of gene ionformation in marker-assisted recurrent selection:a simulation appraisal. Crop Sci,2006,46(2):614-621
    [187]Bernardo R,Yu J M. Prospects for genome wide selection for quantitative traits in maize. Crop Sci,2007,47(3):1082-1090
    [188]汪黎明,郭庆法,孟昭东,等.国际玉米小麦改良中心的玉米育种工作概况.山东农业科学,1995,5:46-48
    [189]番兴明,陈洪梅.国际玉米小麦改良中心杂交玉米育种技术.玉米科学,1999,7(4):8-10.
    [190]杨镇,那桂秋,孙平CIMMYT玉米遗传育种浅析.国外农学—杂粮作物,1999,19(6):29-30
    [191]Warburton M L, Xia X C, J Crossa, et al. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci,2002, 42:1832-1941
    [192]Xia X C, Reif J C, Hoisington D A, et al. Genetic diversity among CIMMYT maize inbred lines investigated with SSR Markers:I lowland tropical maize. Crop Sci,2004,44(6):2230-2238
    [193]Reif J C, Xia X C, Melchinger A E, et al. Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci,2004,44(1):326-337
    [194]Generation challenge programme cultivating plant diversity for the resource poor. http://www.generationcp.org/
    [195]陈庆华.玉米群体改良在创造新种质资源和选系中的效应与方法探讨.辽宁农业科学,1998,2:16-18
    [196]彭泽斌,田志国,刘新芝.MS1与MS1-HS两种选择方法在玉米群体ZZ4中的改良效果比较Ⅰ.主要农艺性状的变化,作物学报,2004,30 1102-1107
    [197]彭泽斌,田志国,刘新芝.MS1与MS1-HS两种选择方法的比较研究Ⅰ.遗传方差、配合力及杂种优势,作物学报,2005,(31),29-35.
    [198]彭泽斌,田志国,刘新芝.改良S1和半同胞交替轮回选择对中综4号玉米群体改良效果的研究.中国农业科学,2004,37(11):1598-1603
    [199]http://chinamaize.blog.sohu.com/
    [200]宋同明.创新种质走中国发展高油玉米之路.作物杂志,2008,6,6-7
    [201]优良玉米自交系展示--综3综31,玉米科学,2009,17(5):F002
    [202]陈彦惠,吴连成,张向前,等.轮回选择对豫综5号玉米群体的选择效果.河南农业科学,2003,1:8-11
    [203]刘祥,胡必德,朱列层.玉米群体改良中两类测验种测验结果分析.西北农业学报,1995,4(2):13-18
    [204]胡必德,刘祥,李发民,等.半姊妹轮回选择对长穗大粒群体若干生状的选择效果.西北农业学报,1995,5(3):15-30
    [205]孙根楼,赖仲铭.玉米半外来种质群体数量性状的基因效应分析.辽宁农业科学,1990,4:27-29
    [206]赖仲铭,杨克诚.全姊妹轮回选择与混合选择对玉米群体改良效果的初步研究.作物学报,1983,9:7-16
    [207]杨克诚,赖仲铭.基础群体和子群体重组次数对玉米群体主要经济性状改良效果影响的研究.四川农业大学学报,1990,8(1):11-17
    [208]杨克诚,赖仲铭,兰发盛.两种选择方法对玉米群体主要经济性状配合力改良的研究.四川农业大学学报,1990,8(1):94-100
    [209]兰发盛,赖仲铭.两种选择方法对玉米群体遗传组成的效应.四川农业大学学报,1991,9(1):143-148
    [210]潘光堂.三重测交法在玉米群体改良中的应用研究.四川农业大学学报,1986,4(1):129-138
    [211]荣廷昭,刘礼超,雷本鸣,倪惜玉.玉米群体改良与自交系和杂交种选育相结合的方法研究.四川农业大学学报,1987,5(3):147-155
    [212]倪惜玉,刘礼超,雷本鸣.山区玉米育种用优良自交系苏37(S37)的选育研究.四川农业大学学报,1996,(14):366-370
    [213]刘礼超,荣廷昭,倪昔玉,等.玉米“三高”自交系48-2的选育研究..四川农业大学学报,1993,11(4):495-501
    [214]荣廷昭,刘礼超,倪惜玉,等.丰抗兼优玉米新杂交种川农单交9号的选育研究.四川农业大学学报,1993,11(4):509-514
    [215]张建辉,荣廷昭,潘光堂,等.5个玉米人工合成群体主要性状育种潜势分析.作物学报,2006,32(2),273-277.
    [216]马燕斌,杨克诚.6个玉米人工合成群体的配合力分析.玉米科学,2007,15(3)48-51.
    [217]马燕斌,荣廷昭,杨克诚,等.6个玉米人工合成群体的育种潜势分析.中国农业科学,2007,40(8):1594-1601
    [218]江舟.9个不同遗传背景玉米人工合成群体的遗传潜势分析.硕士学位论文,雅安,四川农业大学,2009
    [219]Li L J, Yang K C, Pan G T, et al. Genetic diversity of maize populations developed by two kinds of recurrent selection methods investigated with SSR markers. Scinetia Agricutura Sinca, 2008,7(9):1037-1045
    [220]李芦江,杨克诚.两种轮回选择方法对玉米群体主要性状的改良效果.华北农学报,2009,24(增刊):30-34
    [221]邹超英,李芦江,杨克诚,等.控制双亲混合选择对不同玉米合成群体的改良效应.作物学报,2010,36(1):76-84
    [222]邹超英,杨克诚,荣廷昭,等.3个不同玉米基础群体及其改良后代遗传变异的SSR分析,玉米科学,2010,18(2):17-22
    [223]秦燕,任纬,杨克诚.玉米人工合成群体S2遗传变异SSR标记评估.玉米科学,2007,15(5):22-27.
    [224]秦燕,任纬,杨克诚.2个玉米人工合成群体S2主要性状的配合力分析.华北农学报,2007,22(2):34-38
    [225]张华,杨克诚.2个玉米人工合成群体部分S1株系SSR分析与产量配合力研究.华北农学报,2008,23(1):55-61
    [226]苟才明,杨克诚.5个玉米人工合成群体高代选系的杂优类群分析.华中农业大学学报,2008,27(1):22-27
    [227]苟才明,杨克诚.5个玉米人工合成群体高代选系的配合力分析.华北农学报,2008,23(2),62-67
    [228]李燕,杨克诚.7个玉米合成群体高代选系配合力分析.玉米科学,2009(增刊):55-60
    [229]荣廷昭,李晚忱.田间试验于统计分析.成都,四川大学出版社,2001
    [230]Scott, O. R., Extraction of DNA from plant tissue. Plant Molecular Biology,1998,6:1-6
    [231]刘维全.精编分子生物学试验指导.北京,化学工业出版社,2009
    [232]Nei M. Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics,1978, (89):583-590
    [233]Rogers J S. Measure of genetic similarity and genetic distance. Studies in genetics. Univ. of Tex. Publ.,1972:145-153
    [234]Shannon C E, Weaver W. The mathematical theory of communication. Univ. of Illinois Press, Urbana.1949
    [235]Rolf J F.NTSYS~pc2 Numerical taxonomy and multivariate analysis system(CP).Version1.8 Exeter Software, Setauket, New York,1992
    [236]唐启义,冯明光.DPS数据处理系统-试验设计、统计分析及模型优化.北京,科学出版社,2006,171-174
    [237]Excoffier F. Analysis of population subdivision. Handbook of statistical genetic. john wiley & sons, chicester England,2001
    [238]Peakall R, Smouse P E.GENALEX 6:genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes,2006,6,288-295
    [239]Hallauer A R, Miranda J B. Quantitative genetics in maize breeding. New York:The Iowa State Univ. Press,1981.
    [240]Wardyn B M, Edwards J W, Lamkey K R. Inbred-Progeny Selection Is Predicted to Be Inferior to Half-Sib Selection for Three Maize Populations. Crop Sci,2009,49:443-450.
    [241]Russell W A.Comparion of thr hybrid performance of maize inbred lines developed from the original and improved cycles of BSSS. Maydica ⅩⅩⅩ:407-419
    [242]张永林,金益,王振华,等.玉米轮回选择中不同轮次自交系配合力分析.东北农业大学学报,1995,26(3):226-230
    [243]Tabanao D A, Bernardo R. Genetic variation in maize breeding populations with different numbers of parent. Crop Science,2005,45,2301-2306
    [244]卢洪宝,张义荣,魏良明,等.近红外分析法在玉米轮回选择中的应用.山西农业科学,2005,32(2):28-31
    [245]http://hdl.handle.net/2142/3526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700