用户名: 密码: 验证码:
外源性MICA分子对内皮细胞生物学功能的影响及介导NK细胞杀伤作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,主要组织相容性复合体-I类相关链A(major histocompatibility complex class I-related chain A,MICA)抗体与实体器官移植特别是肾移植的排斥反应和移植肾长期存活率之间的关系成了移植免疫学基础和临床研究的热点。在等待肾移植的患者体内检测到了预存的MICA抗体,说明在移植前患者就接触到了MICA抗原而产生了特异性的抗体;移植后MICA抗体与免疫排斥反应和慢性移植肾失功之间均存在着密切的关系。由于MICA蛋白可以表达在血管内皮细胞表面,但不表达在T淋巴细胞,因而MICA分子可能直接引起移植肾血管的损伤,进而导致移植肾功能损害。有学者研究了MICA抗原对淋巴细胞生物学特性的影响,发现MICA抗原对T细胞和B细胞有促进其增殖的作用。最近对心脏移植的研究中发现,血清中的可溶性MICA(sMICA)分子可以减轻移植物的免疫损伤,对移植物起到保护作用。MICA分子和NKG2D是互为配受体的关系,且NKG2D是NK细胞表面的一种激活性受体。但是MICA抗原对内皮细胞的生物学特性的影响, sMICA在肾移植中的是否有保护作用,以及NK细胞能否被激活而对内皮细胞产生杀伤作用,均未见报道。
     因此,本课题将分三个部分进行研究:(1)应用MICA重组蛋白对血管内皮细胞进行刺激,观察它对内皮细胞的生物学特性及其分泌功能的影响;(2)外源性抗原对内皮细胞MICA基因表达的调节作用,以及对细胞上清中sMICA的水平的影响;(3)表达MICA分子的内皮细胞与NK细胞共同培养,观察NK细胞对内皮细胞的杀伤作用,并探讨其可能的作用机制。
     第一部分MICA抗原对内皮细胞生物学功能的影响
     目的观察主要组织相容性复合体-I类相关链A (MICA)抗原对血管内皮细胞生物学功能的影响。
     方法将外源性重组MICA蛋白分A5(5ng/ml),A10(10ng/ml),A25(25ng/ml)三个剂量加入培养基中作为实验组,A0组加入等体积的磷酸盐缓冲液(PBS)作为对照组,对人脐静脉内皮细胞(HUVEC)予以培养。用流式细胞仪检测其细胞周期和凋亡情况,采用噻唑蓝(MTT)比色法检测细胞增殖情况,并测定各组细胞上清液中前列环素代谢产物6-酮-前列腺素F1α(6-keto-PGF1α)、内皮素(ET-1)、组织型纤溶酶原激活物(t-PA)及其抑制物(PAI)的水平。
     结果各实验组(A5,A10,A25 )内皮细胞A570值均高于对照组(A0)。以A5组增殖最为明显,A10组比A5组稍下降,两组之间差异统计学意义(P > 0.05),但明显高于A25组差异有统计学意义(P < 0.05)。在相同剂量下48h时增殖率最高,A570值分别为0.458, 0.446, 0.389。72h和96h呈持续缓慢增殖,随着时间延长增殖率逐渐下降,差异有统计学意义(P < 0.05)。A10, A25组细胞上清中的6-keto-PGF1α水平分别为144.6, 132.8pg/ml,A0, A5组分别为226.5, 232.6pg/ml;A10,A25组ET-1水平分别为23.6, 25.8pg/ml,A0,A5组分别为11.8, 10.4pg/ml。A10,A25组和A0,A5组比较,差异均有统计学意义(P < 0.05);而A10与A25组比较,A0与A5组比较,差异均无统计学意义(P > 0.05)。各实验组(A5,A10,A25 ) t-PA、PAI分别为161.2, 154.2, 157.8ng/ml;221.6, 248.5, 252.4ng/ml;而对照组(A0)分别为233.5ng/ml、137.8ng/ml。实验组和对照组之间比较,差异均有统计学意义(P < 0.05);而各实验组之间比较,差异均无统计学意义(P > 0.05)。各实验组细胞无明显凋亡,细胞周期也无明显改变。
     结论MICA抗原对内皮细胞的生长周期无明显影响,也不引起其凋亡,但能刺激内皮细胞增殖,以小剂量诱导增殖明显,并呈持续缓慢增殖。同时能够引起内皮细胞功能受损,凝血功能增强,而纤溶功能下降,有助于血栓形成。
     第二部分外源性抗原对内皮细胞MICA基因表达的影响
     目的探讨外源性抗原对内皮细胞MICA基因表达的影响。
     方法将MICA重组蛋白分A5(5ng/ml), A10(10ng/ml), A25(25ng/ml)和热休克蛋白(HSP-70)分B5(5ng/ml), B10(10ng/ml), B25(25ng/ml)各三个剂量的实验组,对内皮细胞(HUVEC)予以诱导培养,对照组A0、B0组分别加等量的磷酸盐缓冲液(PBS)。采用实时荧光定量PCR方法检测内皮细胞MICA mRNA表达、Western blot法检测MICA蛋白和流式细胞仪检测MICA蛋白在细胞膜表面的表达,用ELISA法测定细胞上清液中可溶性MICA (sMICA)的水平。
     结果用三个剂量MICA重组蛋白诱导48h后,各实验组(A5,A10,A25)内皮细胞MICA mRNA和MICA蛋白的表达量与对照组比较均有显著增加,差异均有统计学意义(P < 0.05)。A5组和A10组MICA mRNA和MICA蛋白均高于A25组,而且差异均有统计学意义(P < 0.05);但A5组与A10组之间比较差异无统计学意义(P > 0.05)。MICA膜蛋白表达以A10组(32.6%)最高,并与A5组(28.2%)、A25组(23.4%)之间有显著性差异(P < 0.05)。各实验组(A5,A10,A25 ) sMICA水平分别为35.8、27.4、21.8pg/ml,较对照组(A0,352.5pg/ml)显著下降,且差异均有统计学意义(P < 0.05),而各实验组之间比较,差异均无统计学意义(P > 0.05)。而HSP蛋白组内皮细胞MICA基因的表达和sMICA水平无明显改变。
     结论外源性MICA抗原能够诱导内皮细胞自身MICA mRNA、总蛋白和膜蛋白表达上调,尤其是细胞膜蛋白增加明显,但sMICA水平显著下降,而HSP蛋白组无显著变化。
     第三部分MICA分子介导NK细胞对内皮细胞的杀伤作用
     目的观察MICA分子在NK细胞杀伤内皮细胞过程中的作用,探讨其可能的机制。
     方法使用免疫磁珠方法及CD56阳性分选试剂盒分选NK细胞,并将NK细胞与表达MICA膜蛋白的活化内皮细胞,共同培养10h。NK细胞与A0组HUVEC(同第二部分)共培养为A组,与A10组为B组。用荧光素进行染色,在荧光显微镜下观察死亡和存活细胞数量,计算NK细胞对内皮细胞杀伤效率,用ELISA法测定细胞上清中的干扰素-γ(IFN-γ)和穿孔素水平。
     结果免疫磁珠法可以分选NK细胞,纯度为88.5%。NK细胞对B组内皮细胞的杀伤效率为35.5%,明显高于A组12.6%; B组IFN-γ和穿孔素水平显著高于A组,两组差异均有统计学意义(P < 0.05)。
     结论经过外源性MICA重组蛋白刺激的内皮细胞表面MICA分子表达增高,能够提高NK细胞对内皮细胞的杀伤效率;IFN-γ和穿孔素可能是发挥细胞毒作用的活性物质。
Major histocompatibility complex class I-related chain A (MICA) antibodies are associated with acute rejection and poor renal-allograft survival, which has become focus of basic and clinical research of transplant immunology. Acute rejection was occurred in renal-allograft recipients with good HLA matching and anti-MICA antibodies were detected in serum and rejected allografts. Anti-MICA antibodies also existed in serum of patients waiting for renal transplantation, which indicated that the patients produced specific antibodies against MICA antigen before transplantation. There was close relationship between MICA molecules with chronic renal-allograft dysfunction. MICA protein is expressed on the surface of vascular endothelial cells, but not on T lymphocyte. Therefore, MICA molecule might cause injury of allograft vessles directly and result in renal-allograft dysfunction. It has been reported that soluble MICA (sMICA) can reduce immunologic injury of allograft in heart transplant recipients and protect allograft function. It was demonstrated that MICA antigen can make T and B lymphocytes proliferation.
     MICA is ligand of NKG2D receptor on NK cell and NKG2D is an activating receptor. But whether MICA antigen can influence endothelial cells, whether sMIICA can protect renal allograft and whether NK cell be activated to kill endothelial cell have not been reported. Therfore, this study will conclude three parts: (1) Observe the impact of biological characteristics and secreting function of endothelial cell after we add MICA antigen to the media for cultivation; (2) Moderating effects of exogenous antigen for MICA expression in endothelial cell and sMICA in superant; (3) Coculture NK cell and endothelial cell expressing MICA protein and observe the cytotoxicity of NK cell against endothelial cell.
     PartⅠ: Impact of MICA antigen to biological functions of endothelial cells
     Objective To investigate the impact of major histocompatibility complex class I-related chain A (MICA) antigen to biological characteristics and secreting function of endothelial cell.
     Methods HUVECs were divided into three experimental groups(A5,A10,A25 ), which were stimulated with exogenous recombinant MICA protein at 5ng/ml, 10ng/ml, 25ng/ml respectively. Group A0 was added equivalent volume PBS as control. The apoptosis and cell cycle was measured by flow cytometry (FCM). The proliferation of endothelial cell was detected by MTT assay. The level of metabolic product of PGI2 (6-keto-PGF1α)、endothelin (ET-1)、tissue plasminogen activator (t-PA) and its inhibitor (PAI) in supernatant of all groups were detected.
     Results All experimental groups were higher values of A570 than control group. Both group A5 and A10 were significantly higher than the control group and group A25 (P < 0.05), but there were no significant differences between group A5 and A10 (P > 0.05). The proliferation rate at 48h was the highest in identical dosage. A570 value of experimental groups at 48h was 0.458, 0.446 and 0.389 respectively. The proliferation rate at 72h and 96h were persistently decreased as extending time. There were significant differences (P < 0.05). The level of 6-keto-PGF1αof group A10, A25 was 144.6 and 132.8pg/ml, which was lower than that of group A0 (226.5pg/ml) and A5 (232.6pg/ml). The level of ET-1 of group A10, A25 was 23.6 and 25.8pg/ml while the level of ET-1 of group A0, A5 was 11.8 and 10.4pg/ml. The differences were statistically significant (P < 0.05), but there was no difference between group A0 with A5, group A0 with A5 (P > 0.05). The level of t-PA of experimental groups were 161.2, 154.2 and 157.8ng/ml and the level of PAI were 221.6, 248.5 and 252.4ng/ml. Compared with control group, the level of t-PA in three experimental groups rised markedly and the level of PAI decreased obviously. These differences had statistical significances (P < 0.05). But there was no significant difference among the experimental groups (P > 0.05). There were no cell apoptosis and changes of cell cycle in all experimental groups.
     Conclusions The small dosage of MICA antigen can stimulate endothelial cell persistent proliferation. Meanwhile, MICA antigen can make endothelial cell injured and cause the coagulation function enhanced, fibrinolytic function declined.
     PartⅡ: Impact of exogenous antigen for expression of MICA gene in endothelial cell
     Objective To investigate the expression of MICA gene in endothelial cell stimulated with exogenous antigen.
     Methods The endothelial cells were divided into control group and three experimental groups, which were stimulated with exogenous recombinant MICA antigen (group A) and heat shock protein (HSP, group B) at 5ng/ml, 10ng/ml and 25ng/ml. The expression of MICA mRNA was detected by real-time fluorescence quantitative PCR. The expression of MICA protein was measured by Western blot. The expression of MICA total protein on the cell surface was detected by using flow cytometry (FCM). The levels of soluble MICA (sMICA) in supernatant of all groups were detected by ELISA.
     Results The expression of MICA mRNA and MICA protein were increased significantly after MICA stimulation (P < 0.05). The expression of MICA mRNA of group A10 were remarkably higher than the group A25, but had no differences with group A5. The expression of MICA membrane protein of group A10 were higher than that of group A25 (P < 0.05), but had no differences with group A5. The level of sMICA in three experimental groups were 35.8、27.4、21.8pg/ml respectively,which decreased obviously comparing with that of control group( 352.5pg/ml). These differences had statistical significances (P < 0.05). But there was no significant difference among the experimental groups (P > 0.05). However, the expression of MICA gene and sMICA level didn’t change after HSP stimulation.
     Conclusions The exogenous MICA antigen up-regulate the expression of MICA mRNA and protein, especially the membrane protein on the cell surface significant increase, but sMICA in supernatant decreased.
     PartⅢ: Killing effect of NK Cell to Endothelial Cell mediated by MICA Molecule
     Objective To observe the role of MICA molecule in the process of NK cells killing endothelial cells.
     Methods NK cells were selected by using immumomagnetic beads (CD56 positive isolation kit) according to the manufacturer’s recommended conditions. It was divided into four groups. Group A was NK cells and HUVECs of group A0 (see PartⅡ), group B was NK cells and HUVECs of group A10. NK cells and HUVECs expressing MICA molecule were cocultured for 10h. All the cells were stained by fluorescein AO/EB and the dead cells were measured under fluorescence microscope. Killing effect of NK cells was calculated by the number of dead cells among total cells. Level of IFN-γand perforin in cell superant were detected by ELISA.
     Results The purity of NK cells selected by using immumomagnetic beads was 88.5%. The killing effect of NK cells to group Bwas 35.5%, which was higher than that of group A, 12.6%. There were significant differences between two groups (P < 0.05). Level of IFN-γand perforin in group B were higher than that of group A and the differences were statistically significant (P < 0.05).
     Conclusion Expression of MICA molecule on the surface of HUVECs can raise the cytotoxicity of NK cells to HUVECs. IFN-γand perforin might be bioactive substance playing killing effect.
引文
1.那彦群,郭震华主编.实用泌尿外科学[M].北京:人民卫生出版社, 2009: 201-202.
    2.郑克立主编.临床肾移植学[M].北京:科学技术文献出版社, 2006: 255-276.
    3. Tinckam KJ, Chandraker A. Mechanisms and Role of HLA and non-HLA Alloantibodies[J]. Clin J Am Soc Nephrol, 2006, 1(3): 404-414.
    4. Mizutani K, Terasaki PI, Rosenb A, et al. Serial Ten-Year Follow-Up of HLA and MICA Antibody Production Prior to Kidney Graft Failure. American Journal of Transplantation[J]. 2005, 5(9): 2265-2272.
    5. Mizutani K, Terasaki PI, Remi NJ. Frequency of MIC Antibody in Rejected Renal Transplant Patients without HLA Antibody[J]. Human Immunology, 2006, 67(3): 223-229.
    6. Mizutani K, Terasaki PI, Bignon JD, et al. Association of Kidney Transplant Failure and Antibodies Against MICA[J]. Human Immunology, 2006, 67(9): 683-691.
    7. Zou Y, Stastny P, Süsal C, et al. Antibodies against MICA antigens and kidney-transplant rejection. New England of Journal Medicine[J]. 2007, 357(13): 1293-1300.
    8. Zwirner NW, Dole K, Stastny P. Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes [J]. Hum Immunol, 1999, 60(4): 323-330.
    9. Bahram S, Spies T. The MIC gene family[J]. Res Immunol, 1996, 147: 328-333.
    10. Bahram S. MIC genes: from genetics to biology [J]. Adv Immunol, 2000, 76(1): 1-60.
    11. Stastny P, Zou Y, Fan Y,et al. The emerging issue of MICA antibodies: antibodies to MICA and other antigens of endothelial cells[J]. Contrib Nephrol. 2009, 162(1): 99-106.
    12. Hankey KG, Drachenberg CB, Papadimitriou JC, et al. MIC expression in renal and pancreatic allografts[J]. Transplantation, 2002, 73(2): 304-306.
    13. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science, 1999, 285(5428): 727-729.
    1. Bahram S, Bresnahan M, Geraghty DE, et al. A second lineage of mammalian major histocompatibility complex class I genes [J]. Proc Natl Acad Sci USA, 1994, 91(14): 6259-6263.
    2. Bahram S. MIC genes: rom genetics to biology[J]. Adv Immunol, 2000, 76(1): 1-60.
    3. Sumitran-Holgersson S, Wilczek HE, Holgersson J, et al. Identification of the nonclassical HLA molecules, mica, as targets for humoral immunity associated with irreversible rejection of kidney allografts[J]. Transplantation 2002, 74(2): 268-277.
    4. Amézaga N, Crespo M, Lopez-Cobos M, et a1. Relevance of MICA antibodies in acute humoral rejection in renal transplant patients[J]. Transpl Immunol, 2006, 17(1): 39-42.
    5. Zou Y, Heinemann FM, Grosse-Wilde H, et al. Detection of anti-MICA antibodies in patients awaiting kidney transplantation, during the post-ptransplant course, and in eluates from rejected kidney allografts by Luminex flow cytometry[J]. Hum Immunol, 2006, 67(3): 230-237.
    6. Zwirner NW, Marcos CY, Mirbaha F, et al. Identification of MICA as a new polymorphic alloantigen recognized by antibodies in sera of organ transplant recipients[J]. Hum Immunol 2000, 61: 917-924.
    7. Mizutani K, Terasaki P, Bignon JD, et al. Association of Kidney Transplant Failure and Antibodies Against MICA[J]. Hum Immunol 2006, 67(9): 683-691.
    8. Terasaki PI, Ozawa M, Castro R. Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival[J]. Am J Transplant 2007, 7(2): 408-415.
    9. Panigrahi A, Gupta N, Siddiqui JA, et al. Post transplant development of MICA and anti-HLA antibodies is associated with acute rejection episodes and renal allograft loss[J]. Hum Immunol 2007, 68(5): 362-367.
    10.侯建全,何军,袁晓妮,等.动态分析HLA和MICA特异性抗体对移植肾功能的影响[J].中华泌尿外科杂志, 2008, 29(11): 755-758.
    11.袁晓妮,何军,侯建全,等.抗人类白细胞抗原与抗组织相容性Ⅰ类相关链A位点特异性抗体对移植肾功能的监测价值[J].中华实验外科杂志, 2009, 26 (10): 1266-1268.
    12. Stastny P, Zou Y, Fan Y, et al. The emerging issue of MICA antibodies: antibodies toMICA and other antigens of endothelial cells[J]. Contrib Nephrol, 2009, 162(1): 99-106.
    13. Duquesnoy RJ,李幼平主编.移植免疫生物学[M].北京:科学出版社, 2000, 165-169.
    14. Zou Y, Stastny P, Süsal C, et al. Antibodies against MICA Antigens and Kidney-Transplant Rejection[J]. N ENGL J MED, 2007, 357(13): 1293-1300.
    15.张庆斌,刘伏元.血管内皮细胞和原发性高血压[J].心血管病学进展, 2005, 26( 5) : 481- 484.
    16.温绍君,刘洁琳.血管内皮细胞功能研究概况[J].生殖医学杂志, 2005, 14(5): 310-313.
    17.陈明,胡申江.高血压病血管内皮功能障碍及治疗[J].心血管病学进展, 2005, 26( 3) : 222- 226.
    18.刘丽芳,卢海刚.钙拮抗剂与血管内皮功能障碍[J].实用心脑肺血管病杂志, 2005, 13( 5) : 312- 314.
    19. Benediktsson H. Histopathology of chronic renal allograft dysfunction[J]. Transplantation Reviews, 2004, 18(1): 80-85.
    20.王庆文.移植肾慢性排斥反应的发病机制和治疗[J].肾脏病与透析肾移植杂志, 2000, 9(1): 52-54.
    21.陈实主编.移植学前沿[M].武汉:湖北科学技术出版社, 2002, 369-281.
    22. Mizutania K, Terasakia P, RosenbA, et al. Serial Ten-Year Follow-Up of HLA and MICA Antibody Production Prior to Kidney Graft Failure[J]. Am J Transplant, 2005, 5(9): 2265-2272.
    23.赵色玲,李留洋,郭颖,等.肾移植后抗HLA和MICA抗体对移植肾慢性排斥反应的影响[J].中国组织工程研究与临床康复, 2009, 13(5): 845-848.
    24.俞鹏,陈晓虎.血管内皮细胞功能及其与原发性高血压的关系[J].中华实用中西医杂志, 2006, 19( 19) : 2272- 2273.
    25. Mombouli JV, Vanhoutte PM. Endothelial dysfunction: from physiology to therapy[J]. J Mol Cell Cardiol, 1999, 31(1): 61-74.
    26.郑春霞,刘志红.血管内皮细胞损伤及其检测[J].肾脏病与透析肾移植杂志, 2007, 16(1): 64-69.
    27.唐映梅.血管内皮细胞和移植排斥反应[J].中华器官移植杂志, 2005, 26(10):636-638.
    28. Badr KF, Murray JJ, Bteyer MD, et a1. Mesangial cel1, glomerular and renal vascular responses to endothelin in the rat kidney. Elucidation of signal transduction pathways[J]. J Clin Invest, 1989, 83(3): 336-342.
    29. Siren V, Immonen I. uPA, tPA and PAI-1 mRNA expression periretinal membranes[J]. Curr Eye Res, 2003, 27(5): 261-267.
    30. Hankey KG, Drachenberg CB, Papadimitriou JC, et al. MIC expression in renal and pancreatic allografts[J]. Transplantation, 2002, 73(2): 304-306.
    31. P earson JD. Endothelial cell function and thrombosis[J]. Baillieres Best Pract Res Clin Haematol, 1999, 12(3): 329-341.
    32. Esmon CT. The endothelial cell protein C receptor[J]. Thromb Haemost, 2000, 83(5): 639-643.
    33. Sidelmann JJ, Gram J, Jespersen J, et al. Fibrin clot formation and lysis: Basic mechanisms[J]. Semin Thromb Hemost, 2000, 26(6): 605-618.
    1. Bahram S. MIC genes: from genetics to biology[J]. Adv Immunol, 2000, 76(1): 1-60.
    2. Amézaga N, Crespo M, Lopez-Cobos M, et al. Relevance of MICA antibodies in acute humoral rejection in renal transplant patients[J]. Transpl Immunol, 2006, 17(1): 39-42.
    3. Suárez-álvarez B, López-Vázquez A, Díaz-Pe?a R, et al. Post-transplant soluble MICA and MICA antibodies predict subsequent heart graft outcome[J]. Transpl Immunol 2006, 17(1): 43-46.
    4. Zou Y, Stastny P, Süsal C, et al. Antibodies against MICA Antigens and Kidney-Transplant Rejection[J]. N ENGL J MED, 2007, 357(13): 1293-1300.
    5.侯建全,何军,袁晓妮,等.动态分析HLA和MICA特异性抗体对移植肾功能的影响[J].中华泌尿外科杂志, 2008, 29(11): 755-758.
    6. Zwirner NW, Marcos CY, Mirbaha F, et al. Identification of MICA as a new polymorphic alloantigen recognized by antibodies in sera of organ transplant recipients[J]. Hum Immunol, 2000, 61(9): 917-924.
    7. Hankey KG, Drachenberg CB, Papadimitriou JC, et al. MIC expression in renal and pancreatic allografts[J]. Transplantation, 2002, 73(2): 304-306.
    8. Stastny P, Zou Y, Fan Y,et al. The emerging issue of MICA antibodies: antibodies toMICA and other antigens of endothelial cells[J]. Contrib Nephrol, 2009, 162(1): 99-106.
    9. Tinckam KJ, Chandraker A. Mechanisms and Role of HLA and non-HLA Alloantibodies[J]. Clin J Am Soc Nephrol, 2006, 1(3): 404-414.
    10. Derhaag JG, Duijvestijn AM, Damoiseaux JG, et al. Effects of antibody reactivity to major histocompatibility complex (MHC) and non-MHC alloantigens on graft endothelial cells in heart allograft rejection[J]. Transplantation, 2000, 69(9): 1899-1906.
    11. Wu GD, Jin YS, Salazar R, et al. Vascular endothelial cell apoptosis induced by anti-donor non-MHC antibodies: A possible injury pathway contributing to chronic allograft rejection[J]. J Heart Lung Transplant, 2002, 21(11): 1174-1187.
    12. Mauiyyedi S, Crespo M, Collins AB, et al. Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification[J]. J Am Soc Nephrol, 2002, 13(3): 779-787.
    13. Ferry BL, Welsh KI, Dunn MJ, et al. Anti-cell surface endothelial antibodies in sera from cardiac and kidney transplant recipients: Association with chronic rejection[J]. Transpl Immunol, 1997, 5(1): 17-24.
    14. Ball B, Mousson C, Ratignier C, et al. Antibodies to vascular endothelial cells in chronic rejection of renal allografts[J]. Transplant Proc, 2000, 32(2): 353-354.
    15. Jurcevic S, Ainsworth ME, Pomerance A, et al. Antivimentin antibodies are an independent predictor of transplant-associated coronary artery disease after cardiac transplantation[J]. Transplantation, 2001, 71(7): 886-892.
    16. Duquesnoy RJ,李幼平主编.移植免疫生物学[M].北京:科学出版社, 2000, 165-169.
    17.唐映梅.血管内皮细胞和移植排斥反应[J].中华器官移植杂志, 2005, 26(10): 636-638.
    18. Stastny P, Zou Y, Fan Y, et al. The emerging issue of MICA antibodies: antibodies to MICA and other antigens of endothelial cells[J]. Contrib Nephrol, 2009, 162(1): 99-106.
    19. Zou Y, Stastny P, Süsal C, et al. Antibodies against MICA Antigens and Kidney-Transplant Rejection[J]. N ENGL J MED, 2007, 357(13): 1293-1300.
    20. Mizutania K, Terasakia P, RosenbA, et al. Serial Ten-Year Follow-Up of HLA andMICA Antibody Production Prior to Kidney Graft Failure[J]. Am J Transplant, 2005, 5(9): 2265-2272.
    21. Zwirner NW, Dole K, Stastny P. Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes[J]. Hum Immunol, 1999, 60(4): 323-330.
    22. Sumitran-Holgersson S, Wilczek HE, Holgersson J, et a1. Identification of the nonclassical HLA molecules,mica,as targets for humoral immunity associated with irreversible rejection of kidney allografts[J]. Transplantation, 2002, 74(2):268-277.
    23. Groh V, Bahram S, Bauer S, et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium [J]. Proc Natl Acad Sci USA, 1996, 93(22): 12445-12450.
    24. Groh V, Steinle A, Bauer S, et al. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells[J]. Science, 1998, 279(5357): 1737-1740
    25. Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells[J]. Nat Immunol, 2001, 2(3): 255-260.
    26. Schreiner B, Voss J, Wischhusen J, et al. Expression of toll-like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates IL-8 release and upregulation of NKG2D-ligands[J]. Faseb J, 2006, 20(1): 118-120.
    27. Tang KF, Chen M, Xie J, et al. Inhibition of hepatitis B virus replication by small interference RNA induces expression of MICA in HepG2.2.15 cells[J]. Med Microbiol Immunol, 2009, 198(1): 27-32.
    28. Gasser S, Orsulic S, Brown EJ, et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor[J]. Nature, 2005, 436(7054): 1186-1190.
    29. Tang KF, Ren H, Cao J, et al. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB[J]. J Cell Biol, 2008, 182(2): 233-239.
    30. Zwirner NW, Fernandez-Vina MA, Stastny P. MICA, a new polymorphic HLA-related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes[J]. Immunogenetics, 1998, 47(2): 139-148.
    31. Kaiser BK, Yim D, Chow IT, et al. Disulphide-isomerase-enabled shedding oftumour-associated NKG2D ligands[J]. Nature, 2007, 447(7143): 482-486.
    32. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases[J]. Cancer Res, 2008, 68(15): 6368-6376.
    33. Salih HR, Rammensee HG, Steinle A. Cutting edge:down-regulation of MICA on human tumors by proteolytic shedding[J]. J Immunol, 2002, 169(8): 4098-4102.
    34. Wiemann K, Mittrucker HW, Feger U, et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo[J]. J Immunol, 2005, 175(2): 720-729.
    35. Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impairexpression of NKG2D and T-cell activation[J]. Nature, 2002, 419(6908): 679-680.
    36. Suárez-álvarez B, López-Vázquez A, Díaz-Molina B, et a1. The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allograft rejection [J]. Transplantation, 2006, 82(3): 354-361.
    37. Suárez-álvarez B, López-Vázquez A, Díaz-Pe?a R, et al. Posttransplant soluble MICA and MICA antibodies predict subsequent heart graft outcome[J]. Transpl Immunol 2006, 17(1): 43-46.
    38. Zou Y, Yang X, Jiang X, et al. High levels of soluble Major Histocompatibility Complex class I related Chain A (MICA) are associated with Biliary Cast Syndrome after liver transplantation[J]. Transpl Immunol, 2009, 21(4): 210-214.
    1.田志刚,陈永艳. NK细胞的发育、分化与识别机制[J].中国免疫学杂志, 2009, 25(1): 31-34.
    2. Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity[J]. Curr Opin Immunol, 2005, 17(1): 29-35.
    3.郑为东.活化性受体NKG2D及其配体的研究进展[J].国际免疫学杂志, 2007, 30(4): 262-265.
    4. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science, 1999, 285(5428): 727-729.
    5. Borrego F, Kabat J, Kima DK, et al. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells[J]. Mol Immunol, 2001, 38(9): 637-660.
    6. Pardoll DM. Immunology. Stress, NK receptors, and immune surveillance[J]. Science, 2001, 294(5542): 534-536.
    7. Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB[J]. Proc Natl Acad Sci USA. 1999, 96(12): 6879-6884.
    8. Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10[J]. Science, 1999, 285(5428): 730-732.
    9. Seiler M, Brabcova I, Viklicky O, et al. Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation[J]. Am J Transplant, 2007, 7(2): 423-433.
    10. Vivier E, Tomasello E, Baratin M et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510.
    11.周光炎主编.免疫学原理[M].上海:上海科学技术出版社, 2007, 41-45.
    12.韩瑞发,马腾骧主编.肾移植分子免疫基础与临床[M].北京:人民军医出版社, 2005, 34-50.
    13.熊丹,杨志刚.自然杀伤细胞纯化及扩增技术研究进展医学综述[J]. 2008, 14(22): 3372-3375.
    14. Yang ZG, Zeng YY, He XH, et al. Development of amethod for isolation, culture and p roliferation of mouse NK cells[ J ]. Xi Bao Yu Fen ZiMian Yi Xue Za Zhi, 2005, 21 (3): 379-381.
    15. Oren A, Husebo C, Iversen AC, et al. A comparative study of immunomagnetic methods used for separation of human natural killer cells from peripheral blood[ J ]. J ImmunolMethods, 2005, 303(1-2): 1-10.
    16.宫伟雁. NKG2D及其配体研究进展[J].国外医学免疫学分册, 2004, 27(3): 160-164.
    17. González S, GrohV, Spies T. Immunobiology of Human NKG2D and Its Ligands[J]. Curr Top Microbiol Immunol, 2006, 298: 121-138.
    18. Vankayalapati R, Garg A, Porgador A, et a1. Role of NK Cell Activating Receptors and Their Ligands in the Lysis of Mononuclear Phagocytes Infected with an Intracellular Bacterium[J]. J Immuno1, 2005, 175(7):4611-4617.
    19. López-Larrea C, Suárez-Alvarez B, López-Soto A. The NKG2D receptor: sensing stressed cells[J]. Trends in Molecular Medicine, 2008, 14 (4):179-189.
    20. VernerisMR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8 T cells[J]. Blood, 2004, 103(8): 3065-3072.
    21. Takaki R, Hayakawa Y, Nelson A, et al. IL-21 Enhances Tumor Rejection through a NKG2D-Dependent Mechanism[J]. J Immuno1, 2005, 175(4): 2167-2173.
    22. Zhang C, Zhang J, Niu J, et al. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well asSTAT1 and ERK1/2 phosphorylation. Cytokine, 2008, 42(1): 128-136.
    23. Vivier E, Tomasello E, Baratin M et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510.
    24. Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB[J]. Proc Natl Acad Sci USA. 1999, 96(12): 6879-6884.
    25.邹勇,宁琴. NK细胞受体与配体的特异识别[J].国际免疫学杂志, 2007, 30(3): 194-199.
    26. Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10[J]. Science, 1999, 285(5428): 730-732.
    27. Upshaw JL, Arneson LN, Schoon RA, et al. NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3–kinase in human natural killer cells[J]. Nat Immunol, 2006, 7(5): 524-532.
    28. Seiler M, Brabcova I, Viklicky O, et al. Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation[J]. Am J Transplant, 2007, 7(2): 423-433.
    1. Bahram S, Bresnahan M, Geraghty DE, et al. A second lineage of mammalian major histocompatibility complex class I genes [J]. Proc Natl Acad Sci USA, 1994, 91(14): 6259-6263.
    2. Bahram S, Mizuki N, Inoko H, et al. Nucleotide sequence of the human MHC class I MICA gene[J]. Immunogenetics, 1996, 44(1): 80-81.
    3. Bahram S, Spies T. Nucleotide sequence of a human MHC class I MICB cDNA[J]. Immunogenetics, 1996, 43(4): 230-233.
    4. Bahram S, Shiina T, Oka A, et al. Genomic structure of the human MHC class I MICB gene[J]. Immunogenetics, 1996, 45(2): 161-162.
    5. Fodil N, Laloux L, Wanner V, et al. Allelic repertoire of the human MHC class I MICA gene[J]. Immunogenetics, 1996, 44(5): 351-357.
    6. Bahram S, Spies T. The MIC gene family[J]. Res Immunol, 1996, 147(5): 328-333.
    7. Bahram S. MIC genes: from genetics to biology [J]. Adv Immunol, 2000, 76(1): 1-60.
    8. Rueda B, Pascual M, López-Nevot MA, et al. A new allele within the transmembrane region of the human MICA gene with seven GCT repeats[J]. Tissue Antigens, 2002, 60(6): 526-528.
    9. Gambelunghe G, Brozzetti AL, Ghaderi M, et al. MICA A8: a New Allele Within MHC Class I Chain-Related A Transmembrane Region With Eight GCT Repeats[J].Hum Immunol, 2006, 67(12): 1005-1007.
    10. Pérez-Rodríguez M, Corell A,Argüello JR, et a1. A new MICA allele with ten alanine residues in the exon 5 microsatellite[J]. Tissue Antigens, 2000, 55(2): 162-165.
    11. Petersdorf EW, Shuler KB, Longton GM, et a1. Population study of allelic diversity in the human MHC class 1-reahed MICA-A gene[J]. Immunogenetics, 1999, 49(7-8): 605-612.
    12. Zhang Y, Lazaro AM, Zou Y, et al. MICA polymorphism in South American Indians[J]. Immunogenetics, 2002, 53(10-11): 900-906.
    13.龚卫娟,范丽安,杨珏琴,等.三个群体MICA基因外显子2、3和4的多态性研究[J].中华医学遗传学杂志, 2002, 19(4): 336-339.
    14. Molinero LL, Marcos CY, Mirbaha F, et al. Codominant expression of the polymorphic MICA alloantigens encoded by genes in the HLA region[J]. Eur J Immunogenet, 2002, 29(4): 315-319.
    15. Pellet P, Renaud M, Fodil N, et al. Allelic repertoire of the human MICB gene[J]. Immunogenetics, 1997, 46(5): 434-436.
    16. Fodil N, Pellet P, Laloux L, et al. MICA haplotypic diversity[J]. Immunogenetics, 1999, 49(6): 557-560.
    17. Komatsu-Wakui M, Tokunaga K, Ishikawa Y, et al. MIC-A polymorphism in Japanese and a MIC-A–MIC-B null haplotype[J]. Immunogenetics, 1999, 49(7-8): 620-628.
    18. Tian W, Boggs DA, Ding WZ, et al. MICA genetic polymorphism and linkage disequilibrium with HLA-B in 29 African-American families[J]. Immunogenetics, 2001, 53(9): 724-728.
    19. Tian W, Boggs DA, Uko G, et al. MICA, HLA-B haplotypic variation in five population groups of sub-Saharan African ancestry[J]. Genes Immun, 2003, 4(7): 500-505.
    20. Marin ML, Savioli CR, Yamamoto JH, et al. MICA polymorphism in a sample of the Sao Paulo population, Brazil[J]. Eur J Immunogenet, 2004, 31(2): 63-71.
    21. Piancatelli D, Del Beato T, Oumhani K, et al. MICA polymorphism in a population from north Morocco, Metalsa Berbers, using sequence-based typing[J]. Hum Immunol, 2005, 66(8): 931-936.
    22. Gao X, Single RM, Karacki P, et al. Diversity of MICA and linkage disequilibrium with HLA-B in two North American populations[J]. Hum Immunol, 2006, 67(3): 152-158.
    23. Cerwenka A, Bakker AB, McClanahan T, et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice [J]. Immunity, 2000, 12(6): 721-727.
    24. Groh V, Bahram S, Bauer S, et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium [J]. Proc Natl Acad Sci USA, 1996, 93(22): 12445-12450.
    25. Zwirner NW, Fernandez-Vina MA, Stastny P. MICA, a new polymorphic HLA-related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes[J]. Immunogenetics, 1998, 47(2): 139-148.
    26. Zou Y, Mirbaha F, Stastny P. Contact Inhibition Causes Strong Downregulation of Expression of MICA in Human Fibroblasts and Decreased NK Cell Killing [J]. Hum Immunol, 2006, 67(3): 183-187.
    27. Hankey KG, Drachenberg CB, Papadimitriou JC, et a1. MIC expression in renal and pancreatic allografts[J]. Transplant, 2002, 73(2): 304-306.
    28. Zwirner NW, Dole K, Stastny P. Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes [J]. Hum Immunol, 1999, 60(4): 323-330.
    29. Molinero LL, Fuertes MB, Rabinovich GA, et al. Activation-induced expression of MICA on T lymphocytes involves engagement of CD3 and CD28[J]. J Leukoc Biol, 2002, 71(5): 79l-797.
    30. Molinero LL, Domaica CI, Fuertes MB,et al. Intracellular expression of MICA in activated CD4 T lymphocytes and protection from NK cell–mediated MICA-dependent cytotoxicity[J]. Hum Immunol 2006, 67(3): 170-182.
    31. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science, 1999, 285(5428): 727-729.
    32. Vivier E, Tomasello E, Baratin M et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510.
    33. Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB[J]. Proc Natl Acad Sci USA. 1999, 96(12): 6879-6884.
    34. Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10[J]. Science, 1999, 285(5428): 730-732.
    35. Upshaw JL, Arneson LN, Schoon RA, et al. NKG2D-mediated signaling requires aDAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3–kinase in human natural killer cells[J]. Nat Immunol, 2006, 7(5): 524-532.
    36. Stastny P. Introduction: MICA/MICB in Innate Immunity, Adaptive Immunity, Autoimmunity, Cancer, and in the immune response to transplants[J]. Hum Immunol, 2006, 67(2): 141-144.
    37. Seiler M, Brabcova I, Viklicky O, et a1.Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation[J]. Am J Transplant, 2007, 7(2): 423-433.
    38. Salih HR, Rammensee HG, Steinle A. Cutting edge:down-regulation of MICA on human tumors by proteolytic shedding[J]. J Immunol, 2002, 169(8): 4098-4102.
    39.张彩,冯进波,王郡甫,等.膜型/分泌型MICA对NK细胞受体NKG2D的相反调节效应及其对NK细胞受体谱的影响[J].中华微生物学和免疫学杂志, 2004, 24(2): 107-111.
    40. Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells[J]. Nat Immunol, 2001, 2(3): 255-260.
    41. Thomas M, Wills M, Lehner PJ. Natural killer cell evasion by an E3 ubiquitin ligase from Kaposi’s sarcoma-associated herpesvirus[J]. Biochem Soc Trans, 2008, 36(Pt 3): 459-463.
    42. Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA[J]. Science, 2007, 317(5836): 376-381.
    43. Stern-Ginossar N, Gur C, Biton M, et al. Human microRNAs regulate stressinduced immune responses mediated by the receptor NKG2D[J]. Nat Immunol, 2008, 9(9): 1065-1073.
    44. Kaiser BK, Yim D, Chow IT, et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands[J]. Nature, 2007, 447(7143): 482-486.
    45. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases[J]. Cancer Res, 2008, 68(15): 6368-6376.
    46. Groh V, Smythe K, Dai Z, et al. Fas-ligand-mediated paracrineTcell regulation by the receptor NKG2D in tumor immunity[J]. Nat Immunol, 2006, 7(7): 755-762.
    47. Doubrovina ES, Doubrovin MM,Vider E,et al. Evasion fromNKcell immunity byMHC class I chain-related molecules expressing colon adenocarcinoma[J]. J Immunol, 2003, 171(12): 6891-6899.
    48. Kriegeskorte AK, Gebhardt FE, Porcellini S, et al. NKG2D-independent suppression of T cell proliferation by H60 and MICA[J]. Proc Natl Acad Sci USA, 2005, 102(33): 11805-11810.
    49. Wiemann K, Mittrucker HW, Feger U, et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo[J]. J Immunol, 2005, 175(2): 720-729.
    50. Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impairexpression of NKG2D and T-cell activation[J]. Nature, 2002, 419(6908): 679-680.
    51. Zhang Y, Stastny P. MICA antigens stimulate T cell proliferation and cell-mediated cytotoxicity[J]. Hum Immunol, 2006, 67(3): 215-222.
    52. Terasaki PI. Humoral Theory of Transplantation[J]. Am J Transplant, 2003, 3(6): 665-673.
    53. Zwirner NW, Marcos CY, Mirbaha F, et al. Identification of MICA as a new polymorphic alloantigen recognized by antibodies in sera of organ transplant recipients[J]. Hum Immunol, 2000, 61(9): 917-924.
    54. Sumitran-Holgersson S, Wilczek HE, Holgersson J, et al. Identification of the nonclassical HLA molecules, mica, as targets for humoral immunity associated with irreversible rejection of kidney allografts[J]. Transplantation, 2002, 74(2): 268-277.
    55. Mizutani K, Terasaki P, Rosen A, et al. Serial ten-year follow-up of HLA and MICA antibody production prior to kidney graft failure[J]. Am J Transplant, 2005, 5(9): 2265-2272.
    56. Zou Y, Heinemann FM, Grosse-Wilde H, et al. Detection of anti-MICA antibodies in patients awaiting kidney transplantation, during the post-ptransplant course, and in eluates from rejected kidney allografts by Luminex flow cytometry[J]. Hum Immunol, 2006, 67(3): 230-237.
    57. Terasaki PI, Ozawa M, Castro R. Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival[J]. Am J Transplant 2007, 7(2): 408-415.
    58. Mizutani K, Terasaki P, Bignon JD, et al. Association of Kidney Transplant Failure and Antibodies Against MICA[J]. Hum Immunol, 2006(9), 67(9): 683-691.
    59. Panigrahi A, Gupta N, Siddiqui JA, et al. Post transplant development of MICA and anti-HLA antibodies is associated with acute rejection episodes and renal allograft loss[J]. Hum Immunol, 2007, 68(5): 362-367.
    60.侯建全,何军,袁晓妮,等.动态分析HLA和MICA特异性抗体对移植肾功能的影响[J].中华泌尿外科杂志, 2008, 29(11): 755-758.
    61.诸明,侯建全,何军,等.动态监测供者特异性抗体和非特异性抗体判断移植肾预后的临床意义[J].中华实验外科杂志, 2008, 25(12): 1323-1325.
    62.袁晓妮,何军,侯建全,等.抗人类白细胞抗原与抗组织相容性Ⅰ类相关链A位点特异性抗体对移植肾功能的监测价值[J].中华实验外科杂志, 2009, 26(10): 1266-1268.
    63.赵色玲,李留洋,郭颖,等.肾移植后抗HLA和MICA抗体对移植肾慢性排斥反应的影响[J].中国组织工程研究与临床康复, 2009, 13(5): 845-848.
    64. Suárez-álvarez B, López-Vázquez A, Díaz-Pe?a R, et al. Post-transplant soluble MICA and MICA antibodies predict subsequent heart graft outcome[J]. Transpl Immunol 2006, 17(1): 43-46.
    65. Suárez-álvarez B, López-Vázquez A, Díaz-Molina B, et a1. The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allograft rejection [J]. Transplantation, 2006, 82(3): 354-361.
    66. Ozawa M, Terasaki PI, Lee JH, et al. 14th International HLA and Immunogenetics Workshop: report on the Prospective Chronic Rejection Project[J]. Tissue Antigens 2007, 69(Suppl 1): 174-179.
    67. Zou Y, Mirbaha F, Lazaro A, et al. MICA is a target for complement-dependent cytotoxicity with mouse monoclonal antibodies and human alloantibodies[J]. Hum Immunol, 2002, 63(1): 30-39.
    68. Zou Y, Stastny P, Süsal C, et al. Antibodies against MICA Antigens and Kidney-Transplant Rejection[J]. N ENGL J MED, 2007, 357(13): 1293-1300.
    69. Amézaga N, Crespo M, Lopez-Cobos M, et a1. Relevance of MICA antibodies in acute humoral rejection in renal transplant patients[J]. Transpl Immunol, 2006, 17(1): 39-42.
    70. Zou Y, Yang X, Jiang X, et al. High levels of soluble Major Histocompatibility Complex class I related Chain A (MICA) are associated with Biliary Cast Syndrome after liver transplantation[J]. Transpl Immunol, 2009, 21(4): 210-214.
    71. Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB [J]. Proc Natl Acad Sci USA, 1999, 96(12): 6879-6884.
    72. Xu X, Rao G, Gaffud MJ, et al. Clinicopathological Significance of Major Histocompatibility Complex Class I-Related Chain A and B Expression in ThyroidCancer[J]. J Clin Endocrinol Metab, 2006, 91(7): 2704-2712.
    73.周智锋,叶韵斌,陈强,等. MICA分子在NK细胞杀伤乳腺癌中的作用[J].免疫学杂志, 2008, 24(2): 208-212.
    74. W?gs?ter D, Dimberg J, Hugander A, et al. Analysis of MICA gene transcripts in human rectal cancers[J]. Anticancer Res. 2003, 23(3B): 2525-2529.
    75. Jinushi M, Vanneman M, Munshi NC, et al. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma[J]. Proc Natl Acad Sci USA, 2008, 105(4): 1285-1290
    76. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases[J]. Cancer Res, 2008, 68(15): 6368-6376.
    77. Rebmann V, Schütt P, Brandhorst D. Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients[J]. Clin Immunol, 2007, 123(1): 114-120.
    78. Jinushi M, Takehara T, Tatsumi T, et al. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas[J]. J Hepatol, 2005, 43(6): 1013-1020.
    79. Tamaki S, Sanefuzi N, Kawakami M, et al. Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients[J]. Hum Immunol, 2008, 69(2): 88-93.
    80.陈钢,王春利,郭石平,等.肺癌患者血清中可溶性MICA(sMICA)表达及临床意义[J].临床医药实践杂志, 2009, 18(2): 118-120.
    81.叶韵斌,周智锋,陈强,等.可溶性M ICA在乳腺癌免疫逃逸中的作用[J].细胞与分子免疫学杂志, 2008, 24 (9): 904-907.
    82. Park Y, Lee H, Sanjeevi CB, et al. MICA Polymorphism Is Associated With Type 1 Diabetes in the Korean Population[J]. Diabetes Care, 2001, 24(1): 33-38.
    83. Field SF, Nejentsev S, Walker NM, et al. Sequencing-based genotyping and association analysis of the MICA and MICB genes in type 1 diabetes[J]. Diabetes, 2008, 57(6): 1753-1756.
    84. Mok J, Bang D, Lee ES, et al. Strong Association of MICA*009 of Extracellular Domains and MIC-A*A6 of Transmembrane Domain in Korean Patients with Behcet’s Disease[J]. Adv Exp Med Biol. 2003, 528: 221-224.
    85. Tinto N, Ciacci C, Calcagno G, et al. Increased prevalence of celiac disease without gastrointestinal symptoms in adults MICA 5.1 homozygous subjects from theCampania area[J]. Dig and Liver Dis, 2008, 40(4): 248-252.
    86. Ding Y, Xia B, Lu M, et a1. MHC class I chain-relaled gene A-A5.1 allele is associated with ulcerative colitis in Chinese population[J]. Clin Exp Immnunol, 2005, 142(1): l93-198.
    87. Allez M, Tieng V, Nakazawa A, et al. CD4+NKG2D+ T Cells in Crohn’s Disease Mediate Inflammatory and Cytotoxic Responses Through MICA Interactions[J]. Gastroenterology, 2007, 132(7): 2346-2358.
    88. Karacki PS, Gao X, Thio CL, et al. MICA and recovery from hepatitis C virus and hepatitis B virus infections[J]. Genes and Immunity, 2004, 5(4): 261-266.
    89. López-Vázquez A, Rodrigo L, Mi?a-Blanco A, et al. Extended Human Leukocyte Antigen Haplotype EH18.1 Influences Progression to Hepatocellular Carcinoma in Patients with Hepatitis C Virus Infection [J]. J Infect Dis, 2004, 189(6): 957-963.
    90. Tang KF, Chen M, Xie J, et al. Inhibition of hepatitis B virus replication by small interference RNA induces expression of MICA in HepG2.2.15 cells[J]. Med Microbiol Immunol, 2009, 198(1): 27-32.
    91.黄柏胜,罗奇志,梅冰,等. MICA*008基因与人巨细胞病毒感染的相关性分析[J].南方医科大学学报, 2007, 27(4): 509-511.
    92. Chalupny NJ, Rein-Weston A, Dosch S, et al. Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142[J]. Biochem and Biophys Res Commun, 2006, 346(1): 175-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700