用户名: 密码: 验证码:
姿态变化对推扫式相机成像质量影响分析与补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载机姿态变化是影响推扫式航空相机成像质量的主要因素之一。航空相机在拍照周期内,载机会产生偏流、俯仰、横滚姿态变化,引起航空相机产生偏流、俯仰、横滚像移。为提高航空相机的成像质量,必须分析载机的姿态变化对航空相机成像质量的影响,研究补偿方法消除因载机姿态变化引起的航空相机的像移。
     本文利用坐标变换的方法建立像移计算模型,推导出由于载机姿态变化引起的推扫式航空相机偏流、俯仰、横滚像移公式,分析像移对航空相机成像质量的影响,分析计算表明,必须采取像移补偿措施进行像移补偿。
     本文提出采用三轴陀螺稳定平台补偿推扫式航空相机的偏流、俯仰、横滚像移的方案,分析其补偿原理并设计了一种高精度三轴陀螺稳定平台,详细介绍了偏流轴、横滚轴的设计方法,并对反馈传感器的反馈误差进行了分析,计算出三轴陀螺稳定平台的零位偏差。采用坐标变换方法分析三轴陀螺稳定平台补偿载机姿态变化后的像移残差理论值,并以37种典型情况为例进行分析,分析结果满足使用要求。
     对三轴陀螺稳定平台的位置补偿精度和速度补偿精度进行了试验室测试,通过输入不同幅值、不同频率的位置和速度信号测试三轴陀螺稳定平台的补偿误差,测试结果表明,三轴陀螺稳定平台满足使用需求。
     为验证三轴陀螺稳定平台的实际补偿精度,对推扫式航空相机进行多次校飞试验,应用三轴陀螺稳定平台补偿像移时图像分辨率较没有应用三轴陀螺稳定平台时提高10lp/mm。
Aircraft attitude change is one of the main factors to affect the imaging quality ofthe push-brooming aerial camera. In the camera cycle, the attitude of the aircraft such asyawing, pitching and rolling will change. As a result, the image motion happens.Consequently it is imperative to analyze the influence of the attitude change to theimaging quality of the aerial push-brooming camera, and the image motioncompensating method must be researched.
     In this paper, the image motion model of the aerial push-brooming camera wasestablished by the coordinate transformation method. Then the formula of imagemotion caused by the attitude change of the aircraft including yawing, pitching androlling was derived. The result of analysis and calculating showed that image motioncompensating was necessary.
     The scheme that compensated the image motion caused by yawing, pitching androlling of the aircraft through a three-axis gyro stabilized platform was put forward.After analysis the compensating principle, a high-precision platform was designed.And the zero-deviation of the platform was calculated. The theoretical residual error ofthe image motion which was compensated by the three-axis gyro stabilized platformwas analyzed using the coordinate transformation method. Then there were37kinds oftypical cases which were used for analysis, and the results met the requirement for use.
     The accuracy of position compensation and speed compensation of the three-axisgyro stabilized platform was tested in the laboratory by inputting different amplitude and frequency of position and velocity signal. The test results showed that thethree-axis gyro stabilized platform met the requirement for use.
     Numbers of flight tests were held to verify the actual compensating accuracy of thethree-axis gyro stabilized platform. As a result, the image resolution was improved by10lp/mm if the three-axis gyro stabilized platform was applied to image motioncompensating.
引文
[1]许永森,田海英,惠守文等.国外传输型航空相机的发展现状与展望[J].光机电信息,2010,27(12):38-43.
    [2]许永森,丁亚林,田海英,等.推扫式航空遥感相机像移补偿精度的分析[J].光学精密工程,2009,17(2):454-456.
    [3] Doyle K B,Cerrati V J,Forman S E,Sultana J A.Optimal Structural design of theairborne infrared imager[J]. Proceedings of the SPIE,1995,2542:11-32.
    [4]乔亚.国外航空情报侦察现状及技术展望[J].航空科学技术,2005,(2):28-31.
    [5] Richard Prelias.AProceedings of thewide-look-angle gimbal for an airborne electrooptical system[J].SPIE,1995,1998:104-111.
    [6]张兴旺.相机稳定平台设计[D].[硕士学位论文].哈尔滨:哈尔滨工程大学,2009.
    [7]许兆林,付战平.航空CCD侦察相机系统研究[J].航空计测技术,2001,.21(5):3-6.
    [8]丁福建,李英才.CCD相机的像移补偿[J].光子学报,1998,10(27):948-951.
    [9]刘明,匡海鹏,吴宏圣等.像移补偿技术综述[J].电光与控制,2004,11(4):46-49.
    [10]闫得杰,徐抒岩,韩诚山.飞行器姿态对空间相机像移补偿的影响[J].光学精密工程,2008,16(11):2199-2203.
    [11]军用摄影仪器北京工业学院1977.12。
    [12]常本义.关于数字航测相机像移补偿问题[J]西安测绘研究所西安710054解放军测绘学院学报,1998,15(2):105-108.
    [13]颜昌翔,王家骐.航相机像移补偿计算的坐标变换方法[J].光学精密工程,2000,8(3):203-207.
    [14]周庆才,王志坚.应用动态物象矢量共扼关系计算航天相机像移[J]空间科学学报,2003,23(1):25-29.
    [15]王俊,卢愕.王家骥光学系统动态像点移动的坐标变换法[J].光学精密工程,1999(6):P48-55.
    [16]毛英泰.误差理论与精度分析[M].北京:国防工业出版社,1982.
    [17]黄猛,张葆,丁亚林.国外机载光电平台的发展[J].航空制造技术,2008,(9).
    [18]任远航.陀螺稳定伺服平台设计[D].[硕士学位论文].南京:南京理工大学,2008.
    [19]甘志宏,张葆,橄芃芃.机载光电稳定平台框架结构工程分析[J].光学精密工程,2008,16(12).
    [20]杨洪涛.四框两轴光电稳定平台框架有限元分析及结构优化[D][硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所硕士学位论文,2006.
    [21]朱有为.精密稳定跟踪伺服机构的动态设计.[硕士学位论文].国防科学技术大学,2003.
    [22]张鹏.舰载摄像稳定平台的结构设计[J].船舶电子对抗,2006,(3):70-71.
    [23]董青华,李亚平.轴承预紧内外垫圈的设计[[J].机械制造,1994,(11).
    [24]肖万选.几种稳定平台驱动系统的传动型式[J].船舶电子对抗,2005,(5):33-34.
    [25]程志峰,张葆.高体份SiC/AL复合材料在无人机载光电稳定平台中的应用[J].光学精密工程,2009,19(11).
    [26]任建岳,陈长征,何斌,等.SiC和SiC/AL在TMA空间遥感器中的应用[J]光学精密工程,2008,16(12):2537-2542.
    [27]夏军,赵静毅.机载光电稳定平台常用材料的应用[J].航空制造技术,2010,(2).
    [28]蔡敬海.机载光电稳定平台跟踪伺服系统研究[D][硕士学位论文].长春:长春理工大学,2009.
    [29]鲍文亮,黄显林,卢鸿谦.多框架光电平台动力学建模及耦合分析[J].哈尔滨工程大学学报,2009,30(8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700