用户名: 密码: 验证码:
基于FPGA的极紫外相机主控系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁层空间暴是太阳活动高峰期日冕向外喷射的高速等离子体流被地磁场捕获引发的,是地球空间相机故障失效和损毁的诱发因素之一。研究地球等离子体层的整体运动行为和微观结构变化是探索地球空间暴的主要方法和手段。等离子体层中的氦核受到太阳辐射激发时会发射波长为30.4nm的强度正比于氦核粒子的浓度极紫外光辐射,对其进行成像探测便能间接观测到等离子体层的三维空间结构及其在磁扰动期间的变化。“嫦娥探月计划”二期工程的着陆器将搭载一台EUV相机,在月球表面对地球等离子体层进行30.4nm波段成像,以研究等离子体层的时空密度分布及其在太阳活动峰年期间的变化。
     在介绍了等离子体层成像探测的背景和意义之后,本文对月基对地观测、光子计数成像、MCP电子倍增、位敏阳极探测等关键技术原理进行详细说明,引出月基极紫外相机主控系统的研究任务。之后,从硬件设计和软件设计两个方面对系统的设计实现过程做了说明。
     硬件方面,根据任务需求,在对比了基于ASIC、基于DSP和基于FPGA的解决方案后,选择FPGA作为系统的主控制器,并进行了FPGA芯片选型。由此出发,确定了EUV相机的总体结构和外部接口,完成外部接口的硬件电路设计,最终完成极紫外相机主控板的硬件设计。
     软件方面,在对可编程逻辑的四个基本设计原则深入理解的基础上,介绍了系统的模块划分、各模块功能以及模块间的数据流图设计。然后逐一介绍各模块的详细设计:介绍了总线模块中地址译码、数据总线缓冲和中断状态处理的时序;介绍了基于环形分配器和位置信号采集的步进电机控制;介绍了RS-422通讯以及LVDS数据传输的电气特性、接口设计和工作方式;介绍了位置解码算法的原理,以并行执行和串行执行两种方法进行硬件实现,并根据面积与速度平衡原则进行权衡选择;介绍了乒乓结构的数据缓存结构,根据前端数据率确定了数据缓存深度,并设计了乒乓缓存时序。由于FPGA系统各模块工作时钟的多样性,根据同步设计原则进行了时钟域设计,提出了基于全局时钟网络、时钟鉴相和异步FIFO的混合时钟域解决方案,增加系统的可靠性。
     最后,结合数据处理和缓存的实验结果,对论文的研究工作进行了总结,分析了有待于进一步解决的问题,对今后的工作进行了展望。
The geospatial magnetosphere explosion, trigger by the high speed plasma from solar crown, is a significant causation of spacecraft breakdown in geosynchronous orbit. An effective method to detect the geospatial storm is to study the macroscopic action and microscopic structure of the plasmasphere. He+ ion in the plasmasphere will emit a ray radiation at 30.4 nm when exposing in sunlight. The intensity of radiation is direct ratio to density of He+ ions. Imaging the distribution of the He+ ion through its emission at 30.4 nm can be a main way for studying the plasmasphere. A Lunar Imaging Detection at Extreme Ultraviolet will be carried out in the 2rd project of Chinese Moon Program, in order to study the structure of plasmasphere and metamorphose during the solar activity.
     After introducing the background of imaging plasmasphere, the key techniques and theories of the imaging are described in detail, such as lunar imaging detection, Single Photon Imaging, Anode Detector Based on MCP. Then comes the mission of the main control system of Lunar Imaging Detection at Extreme Ultraviolet, followed by description to the design and implementation of hardware and software.
     According to the mission of main control system, spaceborne signal processing platforms based on ASIC, DSP and FPGA are listed in comparison and solution based on FPGA is finally chosen. XQR2V3000 which is selected as the core processor of the system, with external interface around it, composed the hardware structure. Then hardware design is executed, and hardware platform of EUV Camera is finished.
     In software design, the system is devided into modules, according to the basic design principle of programmable devices. The bus-handle module emphasizes time sepuence of the address decoder, bus-buffer and interrupt status register. The step by step control of the motors is based on annular pulse creator and location sensor. And the electic characteristic, external interface and work mode are major considerations of diffrerential communication modules, including RS-422 and LVDS. Algorithm of position decoding for the WSZ is executed in two different ways, parallel and serial. The consumption and processing speed of two solutions are listed in comparison, and serial solution is chosen at last. Data transfer rate of LVDS communication decides the capacity of data-buffer module, which is designed into Ping Pong structure. After all, a multiple clock network based on global clock networks, phase-distinguish and asynchronous FIFO is proposed, in order to improve the stability of the system.
     In the end, a positive conclusion is drawn based on the test results. When summarizing the thesis, lagecy shortcomings are listed to be improved in the following work, and some advices for the system optimization are presented.
引文
[1]刘静波.同步轨道磁场对太阳风扰动的响应[D]北京:中国科学院空间科学与应用研究中心,2008
    [2]汤朝灵.利用双星和Cluster II等对地球磁层的观测和分析研究[D]合肥:中国科学技术大学,2009
    [3]彭吉龙,李保权,韦飞,张鑫.空间太阳极紫外(EUV)成像望远镜[J]光学技术,2008(34),92-94
    [4]缪振华.基于楔条形阳极探测器的单光子成像系统[D]西安:中国科学院西安光学精密机械研究所,2008
    [5]张兴华.紫外光子计数成像系统关键技术研究[D]西安:中国科学院西安光学精密机械研究所,2009
    [6]何玲平,尼启良等.楔条形阳极光子计数探测器成像性能的检测[J]光学精密工程,2009(11),2700-2704
    [7]张兴华,赵宝升等.紫外单光子成像系统的研究[J]物理学报,2008(7),4239-4242
    [8]尼启良,刘世界等.极紫外位置灵敏阳极光子计数成像探测器研究[J]中国光学与应用光学,2009(1),35-39
    [9] B.R.SANDEL,A.L.BROADFOOT,C.C.CURTIS,et al.THE EXTREME ULTRAVIOLET IMAGER INVESTIGATION FOR THE IMAGE MISSION.Space Sci.Rev., 2000, 91 :197-242.
    [10]李园.基于单光子探测的光场统计性质的研究[D]太原:山西大学,2006
    [11]潘京生.微通道板及其主要特征性能[J]应用光学,2004,25(5),25-29
    [12]张学全.基于FPGA的星载图像压缩系统实现方法研究[D]北京:中国科学院空间科学与应用研究中心,2009
    [13] Michael John Sebastian Smith. Application-Specific Integrated Circuit, University of Hawaii.
    [14]杜生海,邢闻.FPGA设计指南[M]北京:人民邮电出版社,2007
    [15] FERNANDA LIMA KASTENSMIDT, LUIGI CARRO. FAULT-TOLERANCE TECHNIQUES FOR SRAM-BASED FPGAS
    [16]童鹏,胡以华.FPGA器件选型研究[J]现代电子技术,2007(20),66-68
    [17] Virtex II Platform FPGAs Complete Data Sheet:www.xilinx.com
    [18]田耘,徐文波,胡彬.Xlinx ISE Design Suite 10.x FPGA开发指南[M]北京:人民邮电出版社,2008
    [19]李雷定.基于FPGA的数据实时无损压缩系统设计[D]太原:中北大学,2009
    [20]吴江.航天测控系统地面站终端数据接入设备技术研究[D]成都:电子科技大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700