用户名: 密码: 验证码:
MIMO系统中低复杂度空时编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时编码(Space-Time Coding)技术能够充分利用MIMO信道中多个独立的传输通路获得空间分集增益,从而大幅提高无线系统抗衰落的能力。本文围绕低复杂度利于实现的空时编码技术开展研究,利用多维代数网格信号设计思想,提出了四种新的编码设计方案。
     满足广义正交约束(GOC)条件的空时码能把MIMO信道等效成若干个并行的虚拟SISO信道,消除信号间的耦合。目前以提高可靠性为目的设计的空时码中,满足GOC条件的已有正交空时码(Orthogonal Space-Time Block Code,OSTBC)和约束满秩单符号可译设计(Restricted Full-rank Single-symbol Decodable Design,RFSDD),但前者码速率很低,后者虽然码速率有所提高,但具有功率分布不平衡的缺点,而且码速率仍然有限。本文构造了一种新的满足GOC条件的全分集空时码——GOC-STBC,它在OSTBC的基础上通过放松对权矩阵满秩的要求从而获得码速率的提升,利用多维实网格星座来获得全分集,并系统地分析了该码的编码增益、码速率、译码复杂度等问题。GOC-STBC不但比OSTBC大幅提高了码速率,还解决了RFSDD功率分布不平衡的缺陷。与另一类典型的低译码复杂度的准正交空时码(Quasi-Orthogonal STBC,QSTBC)相比,GOC-STBC利用现有的代数网格理论来设计全分集和最大化编码增益,因而节省了设计开销,而且在相同译码复杂度的情况下比QSTBC具有相等或者更优的性能。
     基于GOC-STBC构造,研究了有限比特反馈的闭环系统中GOC-STBC的全分集方案,提出了一种自适应的GOC-STBC设计。该设计只需2~4比特反馈信息来指导发送端自适应地选择预编码码本,通过改善码的等效虚拟信道特性,使得自适应GOC-STBC用简单的迫零(ZF)译码就能获得全分集,而且性能与最大似然(ML)译码完全等价。即使用ML译码也具备最低的译码复杂度——单符号可译。自适应GOC-STBC在两种译码下都是星座自由的,对于任意发送天线数目时都能达到码速率1。与另一种码速率为1且用ZF译码也具有全分集的自适应QSTBC(Adaptive-QSTBC,A-QSTBC)比较,本文提出的码采用2比特反馈时就已经与使用完全反馈(无限比特)的A-QSTBC性能相当,采用大于2比特反馈时的性能统统优于完全反馈的A-QSTBC。
     码速率1的QSTBC编码增益的上界由星座的最小欧氏距离决定。在不增加星座能量的前提下,当前复数星座(如4QAM、16QAM)的最小欧氏距离很难进一步提高。为了改善QSTBC的编码增益,本文将码速率为1的4×4和8×8-QSTBC通过一定的结构变形,使其适合采用多维复网格星座这种信号设计形式,提出了一种基于多维复分圆网格的QSTBC(CL-QSTBC),并证明了CL-QSTBC编码增益的上界由网格间的最小欧氏距离决定,且该上界是可达到的,从而让CL-QSTBC的编码增益直接取决于多维网格星座的最小欧氏距离。最后,利用网格球形封装原理最大化该最小欧氏距离,从而达到最大化编码增益的目的。这样,CL-QSTBC的编码增益不再受传统复数星座的限制。经比较,CL-QSTBC的编码增益高于传统QSTBC编码增益的上界,获得了更好的性能,而且保持同样的译码复杂度。
     空时编码一个重要的设计思路是开发空间分集,在获得全部空间分集之后,再通过提高编码增益来一步步改善性能。然而,编码增益的对性能的影响总是有限的,对空时编码性能起主导作用的仍然是分集增益。空时编码系统假设信道是“块状衰落”的,即在一个码字时间内保持不变,在不同码字之间可独立地变化。考虑到时域上的独立衰落具有提供时间分集的潜力,论文提出了一种基于多维网格的联合正交空时编码方案(Joint-OSTBC)。该方案充分利用了OSTBC等效信道模型并结合多维代数网格抗衰落的特性,采用时域上多个码字联合编码,在确保全部空间分集的前提下能获得额外的时间分集。然后推导了Joint-OSTBC的符号成对错误概率的Chernoff界,证明了在块状独立衰落信道中Joint-OSTBC获得的分集增益等于发送天线数、接收天线数和联合码字的个数三者的乘积。换而言之,M个码字联合编码可使原来OSTBC的分集增益放大M倍。仿真表明成对码字联合的Joint-OSTBC,其性能已显著优于QSTBC甚至目前性能最好的Golden码,而且译码复杂度低很多。
Space-time coding techniques can exploit the space diversity gains by utilizing the multi mutual independent transmission paths of MIMO systems to greatly increase the ability against channel fadings. In this thesis, we study the space-time coding techniques with low complexity, which is easy to implement, and propose four new coding design schemes based on multi-dimensional algebraic lattices.
     The MIMO channel can be equivalent to multi parallel virtual SISO channels if space-time codes satisfy so-called generalized orthogonal constraint (GOC) conditions, so that the transmitted signals can be decoupled. In the current space-time codes designed for improving reliability, Orthogonal Space-Time Block Codes (OSTBC) and Restricted Full-rank Single-symbol Decodable Designs (RFSDD) have already satisfied the GOC condition. However, the OSTBC has just very low code rate and the RFSDD has the defect of unbalanced power distribution though its code rate is a little higher than the OSTBC. In this thesis, we propose a new space-time block code with generalized orthogonal constraint (named as GOC-STBC) to achieve full diversity, where the code rate is enhanced much compared with the OSTBC by relaxing the full-rank condition of weight matrices; the full diversity is obtained by using multi-dimensional real lattice constellations; in addition, we systematically analyze the coding gain, code rate and decoding complexity issues of the proposed GOC-STBC. In the meanwhile, the GOC-STBC resolves the unbalanced power distribution problem of the RFSDD. As the coding gain is maximized by using the ready-made algebraic lattice theory, the GOC-STBC has smaller design expense than another typical STBC with lower decoding complexity- Quasi-Orthogonal STBC (QSTBC). Moreover, the performance of GOC-STBC is the same or even better than the QSTBC when the decoding complexity is comparable.
     Based on the structured GOC-STBC, we investigate its full diversity strategy in closed-loop systems with limited feedback bits and propose an adaptive GOC-STBC design. Because the property of equivalent virtual channel matrices of the proposed code is improved by the precoding codebooks, which are adaptively choosen by 2~4 bits feedback information at the transmitter, the proposed code can obtain full diversity under the simple zero-forcing (ZF) decoding. Furthermore, the performance of ZF decoding is equivalent to that of maximum likelihood (ML) decoding, which is single-symbol decodable (SSD). In addition, the proposed adaptive GOC-STBC is constellation free for both of the aforementioned decoding methods and at the same time the code rate achieve one for any number of transmit antennas. In contrast to the adaptive-QSTBC (A-QSTBC), which is a typical code with rate one and also has full diversity under ZF decoding, the proposed code with just 2 feedback bits has the same performance as the A-QSTBC with perfect feedback; when the proposed code uses more that 2 feedback bits, its performance is better than that of the A-QSTBC with perfect feedback.
     The coding gain of rate-one QSTBCs is upper-bounded by the minimum Euclidean distance of signal constellations. When the constellation energy is fixed, it is very difficult to increase the minimum Euclidean distance of the current complex constellations (such as 4QAM and 16QAM). To further improve the coding gain of QSTBCs, in this thesis we propose a Cyclotomic Lattice-based QSTBC (CL-QSTBC) where the previous rate one 4×4- and 8×8- QSTBCs are transformed so that they are suitable to use multi-dimensional complex lattice constellations. Then, we prove that the coding gain of the CL-QSTBC is upper-bounded by the minimum Euclidean distance of lattice points and then the upper-bound is reachable. Thus, the coding gain is completely determined by the the minimum Euclidean distance of multi-dimensional lattice constellations. So, we maximize the above minimum Euclidean distance by lattice packing theory, which is equivalent to maximize the coding gain. As a result, the coding gain of the proposed CL-QSTBC will not be constrained by the common complex constellations. According to the comparison of simulations, the CL-QSTBC has higher coding gain than the upper-bound of previous QSTBCs and obtains better performance than the current best QSTBCs but with comparable decoding complexity.
     The mainest factor which dominates the performance of space-time codes is the diversity gain instead of coding gain. In this thesis, we propose a Joint Orthogonal Space-Time Code (Joint-OSTBC) scheme, where the anti-fading property of multi-dimensional algebraic lattices is combined with the equivalent channel model of OSTBCs, so that the extra time diversity can be obtained by jointly coding multi OSTBC codewords along time domain. In the meanwhile, the full space diversity can be still kept in the above coding scheme. In addition, we derive the Chernoff bound of symbol pairwise error probability and prove that the total diversity gain of the proposed Joint-OSTBC is equal to the product of the number of transmit antennas, receive antennas and jointed codewords. In other words, the Joint-OSTBC with M codewords jointed has the M times diversity gains than the previous OSTBCs. From simulations, we find that the Joint-OSTBC with just double codewords jointed has already significant performance gain over both the QSTBC and even the Golden code, which is the best known code currently, but the decoding complexity is lower much.
引文
[1] Guglielmo Marconi. From Wikipedia, the free encyclopedia. Available at http://en.wikipedia.org/wiki/Guglielmo_Marconi.
    [2] Shannon C E A. Mathematical Theory of Communication [J]. The Bell System Technical Journal. 1948, 27(7, 10): 379-423, 623-656.
    [3] Telatar I E. Capacity of Multi-antenna Gaussian channels [J]. Tech. Rep., AT&T Bell Labs., 1995.
    [4] Foschini G J, Gans M J. On Limits of Wireless Communication in a Fading Environment When Using Multiple Antennas [J]. Wireless Personal Commun. 1998, 6(3): 311-335.
    [5] Tarokh V, Seshadri N, and Calderbank A R. Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction [J]. IEEE Trans. Inform Theory, vol. 44, no. 2, pp. 744-765, March 1998.
    [6] Tarokh V, Jafarkhani H, and Calderbank A R. Space-time Block Codes from Orthogonal Designs [J]. IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1466, July 1999.
    [7] Local and Metropolitan Area Networks-Part16, Air Interface for Fixed Broadband Wireless Access Systems [S]. IEEE Standard IEEE 802.16a.
    [8] Airgo. Airgo Networks to Demonstrate TRUE MIMO Technology at Consumer Electronics. Jan. 04, 2005.
    [9] Atheors. Atheros Communications Launches Smart-antenna Wireless Chipset Delivering MIMO Performance to Standard 802.11 Products. Jan. 06, 2005.
    [10] Linksys. Linksys Announces New Line of MIMO-based Wirless-G Products. Jan. 4, 2005.
    [11] D-Link. D-Link Launches Super G with MIMO Wireless Networking Using Smart Antenna Technology to Boost Speed and Range. Jan. 18, 2005.
    [12] Foschini G J. Layered Space-time Architecture for Wireless Communication in a Fading Environment When Using Multi-element Antennas [J]. Bell Labs Tech. J. 1996, 1(2): 41-59.
    [13] Foschini G J, Golden G D, Valenzela R A, et al. Simplified Processing for High Spectral Efficiency Wireless Communication Employing Multi-element Arrays [J]. IEEE J. Select. Areas Commun. 1999, 17(11): 1841-1852.
    [14] Wolniansky P W, Foschini G J, Golden G D, et al. V-blast: an Architecture for Realizing Very High Data Rates Over the Rich-scattering Wireless Channel [C]. URSI International Symposium on Signals, Systems, and Electronics (ISSSE), 1998, 295-300.
    [15] Sellathurai M, Haykin S. Turbo-BLAST: Performance Evaluation in Correlated Rayleigh-fading Environment [J]. IEEE J. Select. Areas Commun. 2003, 21(3): 340-349.
    [16] Golden G D, Foschini G J, Valenzuela R A, et al. Detection Algorithm and Initial Laboratory Results Using V-BLAST Space-Time Communication Architecture [J]. IEE Electronics Letters. 1999, 35(1): 14-16.
    [17] Guey J C, Fitz M P, Bell M R and Kuo W Y. Signal Design for Transmitter Diversity Wireless Communication Systems over Rayleigh Fading Channels [C]. In Proc. Vehicular Tech. Conf., Atlanta, GA, Apr. 1996.
    [18] Seshadri N and Winters J. Two Signaling Schemes for Improving the Error Performance of Frequency-Division-Duplex (FDD) Transmission Systems Using Transmitter Antenna Diversity [C]. Int. J. Wireless Information Networks, 1, 49-60, January 1994.
    [19] Biglieri E, Divsalar D, McLane P and Simon M. Intruduction to Trellis-Coded Modulation with Applications [M]. Macmillan, New York, NY, 1991.
    [20] Hommons A R, Gamal H. On the theory of Space-time Codes for PSK Modulation [J]. IEEE Trans. Information Theory, 2000, 46 (3): 524-542.
    [21] Tarokh V and Jafarkhani H. A Differential Detection Scheme for Transmit Diversity [J]. IEEE Journal on Selected Areas in Communications 18 (7): 1169–1174, July 2000.
    [22] Jafarkhani H and Tarokh V. Multiple Transmit Antenna Differential Detection from Generalized Orthogonal Designs [J]. IEEE Transactions on Information Theory 47 (6): 2626–2631, September 2001.
    [23] Hochwald B M, Sweldens W. Differential Unitary Space-time Modulation [J]. IEEE Trans. Information Theory, 2000, 46 (12): 2041-2052.
    [24] Hughes B L. Differential Space-time Modulation [J]. IEEE Trans. Information Theory, 2000, 46(11): 2567-2578.
    [25] Viterbo E, Boutros J. A Universal Lattice Code Decoder for Fading Channels [J]. IEEE Trans. Inform. Theory. 1999, 45(7): 1639-1642.
    [26] Damen O, Chkeif A, and Belfiore J-C. Lattice Code Decoder for Space-time Codes [J]. IEEE Communications Letters. 2000, 4(5): 161-163.
    [27] Damen M O, El Gamal H, and Caire G. On Maximum-Likelihood Detection and the Search for the Closest Lattice Point [J]. IEEE Trans. Inform. Theory. 2003, 49(10): 2389-2402.
    [28] Shang Y and Xia X G. Space-time Block Codes Achieving Full Diversity with Linear Receivers [J]. IEEE Trans. Inform. Theory, vol. 54, no. 10, pp. 4528-4547, October 2008.
    [29] Liu J, Zhang J K and Wong K M. Full-Diversity Codes for MISO Systems Equipped With Linear or ML Detectors [J]. IEEE Trans. Inform. Theory, vol. 54,no. 10, pp. 4511-4527, Oct. 2008.
    [30] Hassibi B and Hochwald B M. High-rate Codes That Are Linear in Space and Time [J]. IEEE Trans. Inform. Theory, vol. 48, no. 7, pp. 1804-1824, July 2002.
    [31] Alamouti S M. A Simple Transmit Diversity Technique for Wireless Communications [J]. IEEE J. Select. Areas Commun. vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    [32] Su W and Xia X G. Signal Constellations for Quasi-Orthogonal Space-Time Block Codes with Full Diversity [J]. IEEE Trans. Inform. Theory, vol. 50, pp. 2331-2347, Oct. 2004.
    [33] Sezgin A, Jorswieck E A, Henkel O, Pereira S and Paulraj A. On the Relation of OSTBC and Code Rate One QSTBC- Average Rate, BER, and Coding Gain [J]. IEEE Trans. on Signal Processing. vol. 56, no. 10, Oct. 2008.
    [34] Sezgin A and Oechtering T J. Complete Characterization of the Equivalent MIMO Channel for Quasi-Orthogonal Space-time Codes [J]. IEEE Trans. Inform. Theory, vol. 54, no. 7, pp. 3315-3327, July 2008.
    [35] Dao D N, Yuen C, Tellambura C, Guan Y L and Tjhung T T. Four-Group Decodable Space–Time Block Codes [J]. IEEE Trans. Signal Processing, vol. 56, no. 1, pp. 424-430, Jan. 2008.
    [36] Karmakar S and Rajan B S. Multi-Group Decodable STBCs from Clifford Algebras [J]. IEEE Trans. Inform. Theory, vol. 55, no. 1, pp. 223-231, Jan. 2009.
    [37] Damen M O, Karim A M and Belfiore J C. Diagonal Algebraic Space-Time Block Codes [J]. IEEE Trans. on Inform. Theory, vol. 48, no. 3, pp. 628-636, Mar. 2002.
    [38] Srinath K P and Rajan B S. Low ML-Decoding Complexity, Large Coding Gain, Full-Rate, Full Diversity STBCs for 2x2 and 4x4 MIMO Systems [J]. IEEE Journal of Selected Toptics in Signal Processing, vol. 3, no. 6, pp. 958-974, Dec. 2009.
    [39] Belfiore J C, Rekaya G and Viterbo E. The Golden Code A 2x2 Full-Rate Space-Time Code with Non-Vanishing Determinants [J]. IEEE Trans. on Inform. Theory, vol. 51, no. 4, pp.1432-1436, April 2005.
    [40] Oggier F, Rekaya G, Belfiore J C and Viterbo E. Perfect Space–Time Block Codes [J]. IEEE Trans. on Inform. Theory, vol. 52, no. 9, pp. 3885-3902, Sep. 2006.
    [41] Khan M Z A and Rajan B S. Single-Symbol Maximum-Likelihood Decodable Linear STBCs [J]. IEEE Trans. Inform. Theory, vol. 52, no. 5, pp. 2062-2091, May 2006.
    [42] Karmakar S and Rajan B S. High-rate, Double-Symbol-Decodable STBCs from Cliford Algebras [C]. Proc. IEEE Globecom 2006, San Francisco, Nov. 27-Dec. 1, 2006.
    [43] Karmakar S and Rajan B Sundar. High-rate, Multi-Symbol-Decodable STBCs from Clifford Algebras [J]. IEEE Trans. on Inform. Theory, Accepted for publication - to appear in the June 2009 issue.
    [44] Lin C, Raghavan V and Veeravalli V V. To Code or Not to Code Across Time: Space-time Coding with Feedback [J] IEEE J. Select. Areas Commun., vol. 26, no. 8, pp. 1588-1598, Oct. 2008.
    [45] Yuen C, Guan Y L and Tjhung T T. Quasi-Orthogonal STBC with Minimum Decoding Complexity [J]. IEEE Trans. on Wireless Commun., vol. 4, no. 5, pp. 2089-2094, Sep. 2005.
    [46] Yuen C, Guan Y L and Tjhung T T. Power-Balanced Orthogonal Space-Time Block Code [J]. IEEE Trans. Vehic. Tech., vol. 57, no. 5, pp. 3304-3309, Sep. 2008.
    [47] Tirkkonen O and Hottinen A. Square-Matrix Embeddable Space-Time Block Codes for Complex Signal Constellations [J]. IEEE Trans. Inform. Theory, vol. 48, no. 2, pp. 384-395, Feb. 2002.
    [48] Giraud X, Boutillon E and Belfiore J C. Algebraic Tools to Build Modulation Schemes for Fading Channels [J]. IEEE Trans. on Inform. Theory, vol. 43, no. 3, pp.938-952, May 1997.
    [49] Boutros J and Viterbo E. Signal Space Diversity: A Power-and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel [J]. IEEE Trans. Inform. Theory, vol. 44, no. 4, pp.1453-1467, July 1998.
    [50] Boutros J, Viterbo E, Rastello C and Belfiore J C. Good Lattice Constellation for Both Rayleigh Fading and Guassian Channels [J]. IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 502-518, Mar. 1996.
    [51] Geramita A V and Seberry J. Othogonal Designs, Quadratic Forms and Hadamard Matrices [M]. Lacture Notes in Pure and Applied Mathematics, vol.43, New York and Basel: Marcel Dekker, 1997.
    [52] Zhong K, Guan Y L, and Ng B C. Full-Rate Orthogonal Space-Time Block Code With Pulse-Shaped Offset QAM for Four Transmit Antennas [J]. IEEE Trans. on Wireless Commun., vol. 6, no. 4, pp.1551-1559, April 2007.
    [53] Zhong K, Ng B C and Guan Y L. Full-Rate Real-Symbol-Decodable O-STBC with Offset QAM for Four Transmit Antennas [C]. Proc. IEEE ICC 2007, Glasgow, Scotland, pp. 4393–4398, Jun. 2007.
    [54] Su W and Xia X G. On Space-time Block Codes from Complex Orthogonal Designs [J]. Wireless Personal Commun. vol. 25, no. 1, pp. 1-26, April 2003.
    [55] Ganesan G and Stoica P. Space-time Block Codes: A maximum SNR approach [J]. IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1650-1656, May 2001.
    [56] Liang X B. Orthogonal Designs with Maximal Rates [J]. IEEE Trans. Inform. Theory. vol. 49, pp. 2468-2503, Oct. 2003.
    [57] Su W, Xia X G and Liu K J. A Systematic Design of High-Rate Complex Orthogonal Space-Time Block Codes [J]. IEEE Commun. Letters, vol. 8, no. 6, pp.380-382, June 2004.
    [58] Das S and Rajan B S. Low-delay, High-rate, Non-square STBCs from Scaled Complex Orthogonal Designs [C]. Proc. IEEE ISIT 2008, Toronto, Canada, pp. 1483-1487, July 6-11, 2008.
    [59] Wang H and Xia X G. Upper Bounds of Rates of Complex Orthogonal Space-Time Block Codes [J]. IEEE Trans. on Inform. Theory, vol. 49, no. 10, pp. 2788-2796, Oct. 2003.
    [60] Jafarkhani H. A Quasi-Orthogonal Space-time Block Code [J]. IEEE Trans. Commun., vol. 49, no. 1, pp. 1–4, Jan. 2001.
    [61] Papadias C B and Foschini G J. Capacity-Approaching Space-time Codes for Systems Employing Four Transmit Antennas [J]. IEEE Trans. Inform. Theory, vol. 49, no. 3, pp. 726–733, March 2003.
    [62] Tirkkonen O, Boariu A and Hottinen A. Minimal Non-Orthogonality Rate 1 Space-time Block Code for 3+ Tx Antennas [C]. Proc. IEEE Symp. On Speed-spectrum Tech. and Appli. (ISSSTA 2000), New Jersey, USA, pp. 429-432, Sep. 2000.
    [63] Sharma N and Papadias C B. Improved Quasi-orthogonal Codes Through Constellation Rotation [J]. IEEE Trans. Commun., vol. 51, no. 3, pp. 332–335, Mar. 2003.
    [64] Tirkkonen O. Optimizing Space-time Block Codes by Constellation Rotations [C]. Proc. Finnish Wireless Commun. Workshop (FWCW’01), Finland, pp.59-60, Oct. 2001.
    [65] Wang D and Xia X G. Optimal Diversity Product Rotations for Quasi-Orthogonal STBC with MPSK Symbols [J]. IEEE Commun. Letters, vol. 9, no. 5, pp. 420-422, May 2005.
    [66] Yuen C, Guan Y L and Tjhung T T. Quasi-Orthogonal STBC with Minimum Decoding Complexity: Further Results [C]. Proc. IEEE WCNC 2005, vol. 1, pp. 483-488, New Orleans, La USA, Mar. 2005.
    [67] Yuen C, Guan Y L and Tjhung T T. Optimising Quasi-Orthogonal STBC Throug Group-Constrained Linear Transformation [J]. IET Commun. 2007, 1, (3), pp. 373-381, Jan. 2007.
    [68] Wang H, Wang D and Xia X G. On Optimal Quasi-Orthogonal Space-time Block Codes with Minimum Decoding Complexity [J]. IEEE Trans. Inform. Theory, vol. 55, no. 3, pp. 1104-1130, March 2009.
    [69] Karmakar S and Rajan B S. Minimum-Decoding-Complexity, Maximum-Rate Space-Time Block Codes from Clifford Algebras [C]. Proc. IEEE ISIT 2006, Seattle, USA, pp.788-792, July 09-14, 2006.
    [70] Yuen C, Guan Y L and Tjhung T T. Algebraic Relationship between Amicable Orthogonal Designs and Quasi-Orthogonal STBC with Minimum Decoding Complexity [C]. Proc. IEEE ICC 2006, Istanbul, Turkey, vol. 11, pp. 4882-4887, June 2006.
    [71] Dao D N and Tellambura C. On Decoding, Mutual Information, and Antenna Selection Diversity for Quasi-Orthogonal STBC with Minimum Decoding Complexity [C]. Proc. IEEE Globecom 2006, San Francisco, California, USA, Nov./Dec. 2006.
    [72] Dao D N and Tellambura C. Performance Analysis and Optimal Signal Designs for Minimum Decoding Complexity ABBA Codes [C]. Proc. IEEE Globecom 2006, San Francisco, California, USA, Nov./Dec. 2006.
    [73] Dao D N and Tellambura C. Quasi-Orthogonal STBC with Minimum Decoding Complexity Performance Analysis, Optimal Signal Transformations, and Antenna Selection Diversity [J]. IEEE Trans. on Commun., vol. 56, no. 6, pp. 849-853, June 2008.
    [74] Sharma N and Papadias C B. Full-Rate Full-Diversity Linear Quasi-Orthogonal Space-Time Codes for Any Number of Transmit Antennas [J]. EURASIP Journal on Applied Signal Processing 2004: 9, 1246–1256.
    [75] Yuen C, Guan Y L and Tjhung T T. A Class of Four-Group Quasi-Orthogonal STBC Achieving Full Rate and Full Diversity for Any Number of Antennas [C]. Proc. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Berlin, Germany, Sep. 2005.
    [76] Dao D N, Tellambura C, Yuen C, Tjhung T T, and Guan Y L. Four-group Decodable Semi-orthogonal Algebraic Space-time Block Codes [C]. IEEE WCNC2007, Hong Kong, China, March 2007.
    [77] Rajan B S, Lee M H and Khan Z A. A Rate-One Full-Diversity Quasi-Orthogonal Design for Eight Tx Antenna [R]. Internal Report TR-PME-2002-15, available at: http://pal.ece.iisc.emet.in/PAM/tech.repO2.html.
    [78] Rajan G S and Rajan B S. Multi-group ML decodable Collocated and Distributed Space Time Block Codes [J]. Accepted by IEEE Trans. Inform. Theory, Avaliable at http://arxiv.org/PS_cache/arxiv/pdf/0712/0712.2384v2.pdf.
    [79] Karmakar S and Rajan B S. Non-unitary-weight Space-time Block Codes with Minimum Decoding Complexity [C]. Proc. IEEE ISIT 2006, Seattle, USA, pp.793-797, July 09-14, 2006.
    [80] Khan Z A and Rajan B S. Space-time Block Codes From Co-ordinate Interleaved Orthogonal Designs [C]. Proc. IEEE ISIT 2002, Lausanne, Switzerland, pp. 275, 2002.
    [81] Khan Z A, Rajan B S and Lee M H. Rectangular Coordinate Interleaved Orthogonal Designs [C]. Proc. IEEE. Globlecom 2003, San Francisco, vol.4,pp.2004-2009, Dec., 2003.
    [82] Dao D N and Tellambura C. Decoding, Performance Analysis, and Optimal Signal Designs for Coordinate Interleaved Orthogonal Designs [J]. IEEE Trans. on Wireless Commun., vol. 7, no. 1, pp. 48-53, Jan. 2008.
    [83] Wei Y R and Wang M Z. Performance Analysis of Full-rate STBCs from Coordinate Interleaved Orthogonal Designs [C]. Proc. IEEE ICC 2007, Glasgow, Scotland, pp.4610-4615, June 2007.
    [84] Yuen C, Guan Y L and Tjung T T. On the Search for High-Rate Quasi-Orthogonal Space-Time Block Code [J]. Invited Journal for International Journal of Wireless Information Network (IJWIN), vol. 13, no. 4, pp.329-340, Oct 2006.
    [85] Zheng L and Tse D N C. Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels [J]. IEEE Trans. Inform. Theory, vol. 45, pp. 1073-1096, May 2003.
    [86] Tavildar S and Viswanath P. Approximately Universal Codes over Slow Fading Channels [J]. IEEE Trans. Inform. Theory, vol. 52, pp. 3233-3258, July 2006.
    [87] Liao H, Wang H and Xia X G. Some Designs and Normalized Diversity Product Upper Bounds for Lattice-Based Diagonal and Full-Rate Space-Time Block Codes [J]. IEEE Trans. on Inform. Theory, vol. 55, no. 2, pp.569-583, Feb. 2009.
    [88] Fasano A and Barbarossa S. Trace-Orthogonal Space-Time Coding [J]. IEEE Trans. on Signal Processing, vol. 56, no. 5, pp.2017-2034, May 2008.
    [89] Yao H and Wornell G. Achieving the full MIMO diversity-multiplexing frontier with rotation based space-time codes [C]. Proc. Allerton Conf. Commun., Control, Computing, Monticello, IL, Oct. 2003.
    [90] Dayal P and Varanasi M K. An Optimal Two Transmit Antenna Space Time Code and Its Stacked Extensions [C]. Proc. Asilomar Conf. Signals, Systems, Computers, Pacific Grove, CA, pp. 987-991, Nov. 2003.
    [91] Kiran T and Rajan S B. STBC-Schemes with Non-vanishing Determinant for Certain Number of Transmit Antennas [J]. IEEE Trans. Inform. Theory, vol. 51, pp. 2984-2992, Aug. 2005.
    [92] Elia P, Kumar K R, Pawar S A, Kumar P V and Lu H. Explicit Construction of Space-time Block Codes: Achieving the Diversity-Multiplexing Gain Tradeoff [J]. IEEE Trans. Inform. Theory, vol. 52, pp. 3869-3884, Sep. 2006.
    [93] Elia P, Sethuraman B A and Kumar P V. Perfect Space–Time Codes for Any Number of Antennas [J]. IEEE Trans. Inform. Theory, vol. 53, no. 11, pp.3853-3868, Nov. 2007.
    [94] Sezginer S and Sari H. Full-Rate Full-Diversity 2x2 Space-Time Codes of Reduced Decoder Complexity [J]. IEEE Commun. Letters. vol. 11, no. 12, pp.1-3, Dec. 2007.
    [95] Srinath K P and Rajan B S. A Low-Complexity, Full-Rate, Full-Diversity 2x2 STBC with Golden Code's Coding Gain [C]. Proc. IEEE Globecom 2008, New Orleans, USA, Nov/Dec., 2008.
    [96] Paredes J M, Gershman A B and Alkhansari M G. A New Full-Rate Full-Diversity Space-Time Block Code With Nonvanishing Determinants and Simplified Maximum-Likelihood Decoding [J]. IEEE Trans. Signal Processing, vol. 56, no. 6, pp.2461-2469, June 2008.
    [97] Zhang J K, Liu J and Wong K M. Linear Toeplitz Space Time Block Codes [J]. Proc. IEEE ISIT 2005, Adelaide, Australia, pp.1942-1946, Sep. 2005.
    [98] Y. Shang and X. G. Xia. A Criterion and Design for Space-time Block Codes Achieving Full Diversity with Linear Receivers [C]. Proc. IEEE ISIT 2007, Nice, France, June 24-29, 2007.
    [99] Love D J, Heath R W, Santipach W and Honig M L. What is the value of limited feedback for MIMO channels [J]. IEEE Communications Magazine, pp.54-59, Oct. 2004.
    [100] Molisch A F and Win M Z. MIMO Systems with Antenna Selection [J]. IEEE Microwave Magazine, 5(1):46–56, Mar. 2004.
    [101] Gore D A and Paulraj A J. MIMO Sntenna Subset Selection with Space-time Coding. IEEE Trans. Signal Processing, vol. 50, no. 10, pp.2580-2588, Oct. 2002.
    [102] Chae C B, Mazzarese D, Jindal N and Heath R W. Coordinated Beamforming with Limited Feedback in the MIMO Broadcast Channel [J]. IEEE J. Select. Areas Commun., vol. 26, no. 8, Oct. 2008.
    [103] Jafar S A and Srinivasa S. On the Optimality of Beamforming with Quantized Feedback [J]. IEEE Trans. Commun., vol. 55, no. 12, pp. 2288-2302, Dec. 2007.
    [104] Tan C W and Calderbank A R. Multiuser Detection of Alamouti Signals [J]. IEEE Trans. Commun., vol. 57, no. 7, pp.2080-2089, Jul 2009.
    [105] Wu Y and Calderbank A R. Code Diversity in Multiple Antenna Wireless Communication [C]. Proc IEEE ISIT 2008, Toronto, Canada, pp.1078-1082, July 2008.
    [106] Derryberry R T, Gray S D, Ionescu D M , Mandyam G and Raghothaman B. Transmit diversity in 3G CDMA systems [J]. IEEE Comm. Mag., vol. 40, no. 4, pp. 68–75, April 2002.
    [107] Paul T K. and Ogunfunmi T. Wireless LAN Comes of Age: Understanding the IEEE 802.11n Amendment [J]. IEEE Circuits Syst. Mag., vol. 8, no. 1, pp. 28–54, First Quarter 2008.
    [108] IEEE-SA Standards Board. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layersfor Combined Fixed and Mobile Operation in Licensed Bands [S]. IEEE Std 802.16e-2005, Feb. 2006.
    [109] Gesbert D, Rensburg C V, Tosato F and Kaltenberger F. Multiple Antenna Techniques in UMTS Long Term Evolution (LTE): From Theory to Practice [S]. S. Sesia, I. Toufik, and M. Baker, Eds. Wiley, 2008, ch. 7.
    [110] IEEE-SA Standards Board. IEEE 802.16 Task Group m [S]. http://wirelessman.org/tgm/.
    [111] Andrews J G. Multiple Antenna Techniques-Chapter 5. July 29, 2006.
    [112] Love D J, Heath R W, Lau V K N, Gesbert D, Rao B D and Andrews M. An Overview of Limited Feedback in Wireless Communications Systems [J]. IEEE J. Selected Areas Commun., vol. 26, no. 8, pp.1341-1365, Oct. 2008.
    [113] Liu L and Jafarkhani H. Application of Quasi-orthogonal Space-time Block Codes in Beamforming [J]. IEEE Trans. Commun., vol. 53, no. 1, pp. 54–63, Jan. 2005.
    [114] Sampath H and Paulraj A. Linear Precoding for Space-time Coded Systems with Known Fading Correlations [C]. Proc. IEEE Asilomar Conf. on Signals, Systems, and Comp., vol. 1, 2001, pp. 246–251.
    [115] Zhang H, Li Y, Stolpman V and Waes N V. A Reduced CSI Feedback Approach for Precoded MIMO-OFDM Systems [J]. IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 55–58, Jan. 2007.
    [116] Zhou S and Giannakis G B. Optimal Transmitter Eigen-beamforming and Space-time Block Coding Based on Channel Mean Feedback [J]. IEEE Trans. Signal Processing, vol. 50, no. 10, pp. 2599–2613, Oct. 2002.
    [117] Zhou S and Giannakis G B. Optimal Transmitter Eigen-beamforming and Space-time Block Coding Based on Channel Correlations [J]. IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1673–1690, July 2003.
    [118] Jongren G and Skoglund M. Quantized Feedback Information in Orthogonal Space–time Block Coding [J]. IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2473–2486, Oct. 2004.
    [119] Larsson E G, Ganesan G, Stoica P and Wong W H. On the Performance of Orthogonal Space-time Block Coding with Quantized Feedback [J]. IEEE Commun. Lett., vol. 6, no. 11, pp. 487–489, Nov. 2002.
    [120] Love D J and Heath R W. Diversity Performance of Precoded Orthogonal Space-time Block Codes Using Limited Feedback [J]. IEEE Commun. Lett., vol. 8, no. 5, pp. 305–307, May 2004.
    [121] Conway J H, Hardin R H and Sloane N J A. Packing Lines, Planes, etc.: Packings in Grassmannian Spaces [J]. Experimental Math., vol. 5, pp. 139–159, 1996.
    [122] Barg A and Nogin D Y. Bounds on Packings of Spheres in the GrassmannManifold [J]. IEEE Trans. Inf. Theory, vol. 48, pp. 2450–2454, Sep. 2002.
    [123] Love D J and Heath R W. Limited Feedback Unitary Precoding for Orthogonal Space-time Block Codes [J]. IEEE Trans. on Signal Processing, pp.64-73, Jan. 2005.
    [124] Sanayei S, Love D J and Nosratinia A. On the Design of Linear Precoders for Orthogonal Space-time Block Codes with Limited Feedback [C]. Proc. IEEE WCNC 2005, vol. 1, pp. 489-493, March 2005.
    [125] Chen Z and Lee M H. One Bit Feedback for Quasi-Orthogonal Space-Time Block Codes Based on Circulant Matrix [J]. IEEE Trans. on Wireless Comm., vol. 8, no. 7, July 2009.
    [126] Toker C, Lambotharan S and Chambers J A. Closed-loop Quasi-orthogonal STBCs and Their Performance in Multipath Fading Environments and When Combined with Turbo Codes [J]. IEEE Trans. Wireless Comm., vol. 3, no. 6, pp.1890-1896, Nov. 2004.
    [127] Kim J, Ariyavisitakul S L and Seshadri N. STBC-SFBC for 4 Transmit Antennas with 1bit Feedback [C]. Proc. IEEE ICC 2008, Beijing, China, pp.3943-3947, May 2008.
    [128] Kim J and Ariyavistakul S L. Optimum 4-Transmit-Antenna STBC/SFBC with Angle Feedback and a Near-Optimum 1-Bit Feedback Scheme [J]. IEEE Commun. Letters, vol. 11, no. 11, pp.868-870, Nov. 2007.
    [129] Wu Y and Calderbank A R. Code Diversity in Multiple Antenna Wireless Communication [J]. IEEE J Selected Topics in Signal Pro., vol. 3, no. 6, pp.928-938, Dec. 2009.
    [130] Ko Y and Tepedelenlioglu C. Orthogonal Space-time Block Coded Rate-Adaptive Modulation with Outdated Feedback [J]. IEEE Trans. Wireless Comm., vol. 5, no. 2, pp. 290-295, Feb. 2006.
    [131] Lin C, Raghavan V and Veeravalli V. Optimal Power Allocation for Linear Dispersion Codes over Correlated MIMO Channels with Channel State Feedback [C]. Proc. IEEE Globecom 2007, pp.1602-1606, Nov. 2007.
    [132] Machado R, Uchoa-Filho B F and Duman T M. Linear Dispersion Codes for MIMO Channels with Limited Feedback [C]. Proc. IEEE WCNC 2008, pp.199–204, March-April 2008.
    [133] Kim T T, Jongren G and Skoglund M. On the Convergence Behavior of Weighted Space-time Bit-interleaved Coded Modulation [C]. Proc. IEEE Asilomar Conf. on Signals, Systems, and Comp., vol. 1, pp.1257-1261, Nov. 2004.
    [134] Liu L and Jafarkhani H. Space-time Trellis Codes Based on Channel-phase Feedback [J]. IEEE Trans. Commun., vol. 54, no. 12, pp. 2186-2198, Dec. 2006.
    [135] Razaghi P, Khalaj B H and Shamsi M. Linear Decoupled and Quasi-DecoupledSpace-time Codes [J]. IEEE Trans. Commun., vol. 55, no. 1, pp.54-59, Jan. 2007.
    [136] Lin C and Veeravalli V V. Optimal Linear Dispersion Codes for Correlated MIMO Channels [J]. IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 657-666, Feb. 2008.
    [137] Bresler G and Hajek B. Note On Mutual Information and Orthogonal Space-time codes [C]. Proc. IEEE ISIT 2006, Seattle, USA, July 9-14, 2006.
    [138] Jiang Y. An Information Theoretic Study on Linear Dispersion Codes and Low-Density Parity-Check Codes [D]. Ph.d. thesis, UIUC, 2005.
    [139] Liu W, Sellathurai M, Xiao P, Tang C and Wei J. Improved Design of Two and Four-group Decodable STBCs with Larger Diversity Product for Eight Transmit Antennas [C]. Proc. IEEE ICASSP 2009, Taipei, April 2009.
    [140] Ford H. Space-Time Block Coding Multiple Antenna Systems [D]. PhD Thesis of Technischen University Wien, Nov. 2005.
    [141] Lin C and Veeravalli V V. A Limited Feedback Scheme for Linear Dispersion Codes over Correlated MIMO Channels [C]. Proc. IEEE ICASSP 2007, Honolulu, HI, April 2007.
    [142] Guo X and Xia X G. On Full Diversity Space-Time Block Codes with Partial Interference Cancellation Group Decoding [J]. to appear in IEEE Transaction on Information Theroy. Available at“http://www.ece.udel.edu/~xxia/Pub.html”.
    [143] Lutkepohl H. Handbook of Matrices [M]. New York: John wiley & Sons, 1996.
    [144] E. Viterbo,“Table of Best Known Full Diversity Algebraic Rotations,”http://www1.tlc.polito.it/~viterbo/rotations/rotations.html.
    [145] Inequality of arithmetic and geometric means. From Wikipedia, the free encyclopedia about Inequality_of_arithmetic_and_geometric_means. Available at http://en.wikipedia.org/wiki/ .
    [146] Yuen C, Guan Y L and Tjhung T T. Unitary Differential Space-Time Modulation with Joint Modulation [J]. IEEE Trans. Veh. Tech, vol. 56, no. 6, pp. 3937-3944, Nov, 2007.
    [147] Wang G, Liao H, Wang H and Xia X G. Systematic and Optimal Cyclotomic Lattices and Diagonal Space-Time Block Codes Designs [J]. IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3348-3360, Dec. 2004.
    [148] Grover R, Su W and Pados D A. PEP-bound Rotation Angle Optimization of 8-transmit-antenna Quasi-orthogonal Space-time Block Codes [C]. Proc. IEEE ICASSP 2007, Honolulu, Hawai'i, U.S.A, vol. 3, April 2007.
    [149] Sezgin A. Space-Time Codes for MIMO Systems: Quasi-Orthogonal Design and Concatenation [D]. Elektrotechnik und Informatik der Technischen Universit?at Berlin, 2005.
    [150] Conway J H and Sloane N J A. Sphere Packings, Lattices and Groups [M], 3rded. New York: Springer-Verlag, 1998.
    [151] The Golden Codes. Available at http://www.tlc.polito.it/~viterbo/perfect_codes/ Golden_Code.html.
    [152] Taricco G and Viterbo E. Performance of Component Interleaved Signal Sets for Fading Channels [J]. IEE Electronics Letters. pp. 1170-1172, April 1996.
    [153] Fluckiger E B, Oggier F and Viterbo E. New Algebraic Constructions of Rotated Zn-Lattice Constellations for the Rayleigh Fading Channel [J]. IEEE Trans. Inform. Theory, vol. 50, no. 4, pp. 702-714, April 2004.
    [154] Fluckiger E B, Oggier F and Viterbo E. Algebraic Lattice Constellations: Bound on Performance [J]. IEEE Trans. Inform. Theory, vol. 52, no. 1, pp. 319-327, January 2006.
    [155] Wang G and Xia X G. On Optimal Cyclotomic Lattices and Diagonal/single-layer Space-time Block Codes [C]. Proc. IEEE ISIT 2004, Chicago, USA, June 27- July 2, 2004.
    [156] Damen M O and Beaulieu N C. On Diagonal Algebraic Space-Time Block Codes. IEEE Trans. Commun., vol. 51, no. 6, pp. 911-919, June 2003.
    [157] Wang H and Xia X G. Optimal Normalized Diversity Product of 2x2 Lattice-Based Diagonal Space–Time Codes From QAM Signal Constellations [J]. IEEE Trans. Inform. Theory, vol. 54, no. 4, pp. 1814-1818, April 2008.
    [158] Damen M O, Gamal H E and Beaulieu N C. Systematic Construction of Full Diversity Algebraic Constellations [J]. IEEE Trans. Inform. Theory, vol. 49, no. 12, pp.3344-3349, Dec. 2003.
    [159] Gamal H E and Damen M O. Universal Space-time Coding [J]. IEEE Trans. Inf. Theory, vol. 49, pp. 1097-1119, May 2003.
    [160] Damen M O, Gamal H E and Beaulieu N C. Linear Threaded Algebraic Space-time Constellations [J]. IEEE Trans. Inform. Theory, vol. 49, pp. 2372-2388, Oct. 2003.
    [161] Wang G and Xia X G. On Optimal Multilayer Cyclotomic Space-time Code Designs [J]. IEEE Trans. Inform. Theory, vol. 51, no. 3, pp. 1102-1135, Mar. 2005.
    [162] Damen M O, Gamal H E and Beaulieu N C. A New Representation of TAST Codes [J]. IEEE Trans. Inform. Theory, vol. 52, pp. 4248-4251, Sep. 2006.
    [163] Prasad N and Varanasi M K. Analysis and Optimization of Diagonally Layered Lattice Schemes for MIMO Fading Channels [J]. IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 1162-1185, Mar. 2008.
    [164] Choi S K, Park S Y and Kang C G. Rotated Multidimensional Modulation for Spatial Multiplexing Systems [C]. Proc. IEEE VTC 2003-Fall, Florida, USA, pp. 246-250, vol.1, Oct. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700