用户名: 密码: 验证码:
多相流的电容层析成像图像重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电容层析成像(ECT)是一种可用于多相流浓度测量的可视化技术,该技术基于测量的电容数据重建被测物场的介质分布图。ECT因具有具有快速、安全、非侵入传感、廉价等优点而被认为是极具广阔发展前景的过程成像技术。ECT技术的成功应用在很大程度上取决于图像重建算法的精度与速度。本文主要探讨ECT图像重建算法,具体内容安排如下:
     详细分析了电容层析成像技术的基本原理、逆问题的数学基础、三种典型的正则化方法(Landweber迭代法、Tikhonov正则法和截断奇异值分解法)、总结了七种广义逆的迭代算法,并进行了对比研究。
     ECT图像重建问题常常被转化为一个最优化问题,本文详细地探讨了三类无约束最优化算法:最速下降法、共轭梯度法和牛顿法。特别地,由于共轭梯度算法具有简便、所需要存储量与最速下降法差别不大,而收敛速度比最速下降法要快、初值不敏感性、大范围收敛等特性,本文基于解的先验信息改进共轭梯度算法,并对四种典型的共轭梯度算法进行了比较评价。
     Tikhonov正则法是一个求解病态问题的有效方法,一个Tikhonov正则化解是个平衡解的精确性与稳定性的结果。根据ECT图像重建的病态本质,本文推导了两种广义Tikhonov泛函:其一,利用组合估计技术改进标准Tikhonov泛函;其二,用Tikhonov正则化技术改进标准Minimax估计。数值结果表明,两种算法均表现出良好的数值性能,能够有效克服ECT图像重建的数值不稳定性。所重建图像的空间分辨率得到了显著提高,被重建图像的失真较小且伪影较少;同时,用噪声污染电容数据重建的结果也表明算法具有良好的稳健性。
     传统ECT图像重建算法仅考虑测量电容数据的噪声,敏感矩阵的不精确性并未得到考虑。事实上,由于图像重建模型的线性化近似,使得敏感矩阵可能是不精确的。为此,在ECT图像重建过程中同时考虑电容数据和敏感矩阵的不精确性是合理的。基于正则化总体最小二乘估计,本文提出了一个同时考虑电容数据和敏感矩阵不精确性的图像重建算法,并利用稳健估计技术改进标准正则化总体最小二乘法。数值结果表明,该算法是可行的,能够有效克服ECT图像重建的数值不稳定性。所重建图像的空间分辨率得到了显著提高,被重建图像的失真较小且伪影较少。
     基于小波多尺度分析技术和总体最小二乘估计方法,本文推导了一个广义多尺度ECT图像重建目标泛函。此外,本文用同伦算法求解所构造的目标泛函,其同伦方程由固定点同伦设计,并用固定点迭代算法求解。数值实验结果表明,该算法是可行的,能够有效克服ECT图像重建的数值不稳定性。所重建图像的空间分辨率得到了显著提高,被重建图像的失真较小且伪影较少。
     基于小波多尺度分析方法,本文对ECT图像进行了相应的后处理,它包括ECT图像的多尺度增强、多尺度去噪和多尺度融合三个方面。数值结果表明,经过处理后的ECT图像能够更好地突出被重建对象的细节特征,增强了ECT图像的解释能力和可靠性,进而为后续的定量分析提供必要的条件。
     传统ECT图像重建算法一般考虑线性化模型,当被重建对象的高介电常数与低介电常数的差别不大时是可行的,而且,也获得了许多成功的应用。然而,在实际的应用中,当被重建对象的高介电常数与低介电常数的差别大时,线性化近似可能引入较大的误差,此时,在ECT图像重建过程中考虑线性化近似所引入的误差是合理的。基于半参数方法,本文推导了一个同时考虑电容测量噪声和线性化近似所引入误差的ECT图像重建目标泛函,在此基础上用同伦算法求解所建立的目标泛函。数值结果表明,该算法是可行的,所重建图像的质量得到了显著的提高。
Electrical capacitance tomography (ECT) is a visualization technology that can be applied to concentration measurement for the multiphase flow. It attempts to image the permittivity distribution of an object by measuring the electrical capacitances between sets of electrodes placed around its periphery. ECT is considered as a promising tomography technology due to its advantages such as high speed, high safety, non-intrusive sensing and low cost. Successful applications of ECT technology depend on the speed and precision of the image reconstruction algorithms. A main motivation for this dissertation is to investigate image reconstruction algorithms for ECT, and the main contents are as follows:
     The principles of ECT technique and the mathematics theory of the inverse problem are reviewed. Three typical regularization methods, such as the Landweber iteration algorithm, the Tikhonov regularization method and the truncated singular value decomposition method, are discussed in detail. Seven kinds of iterative algorithms of solving the generalized inverse are introduced and compared.
     The image reconstruction problem for ECT is often transformed into an optimization problem. In this dissertation, three kinds of unconstrained optimization algorithms, such as the steepest descent algorithm, the conjugate gradient algorithm and the Newton algorithm, are analyzed in detail. Especially, owing to the advantages such as the simplicity, smaller storage and faster convergence when compared with the steepest descent method, larger convergence domain, the conjugate gradient algorithms are detailedly discussed and improved according to the prior information of a solution. At the same time, four kinds of typical conjugate gradient algorithms are compared and evaluated by numerical simulations.
     The Tikhonov regularization method is an effective method to solve the inverse problems. A Tikhonov regularization solution is a result of balancing the precision and stabilization of a solution. Two generalized Tikhonov functionals are deduced according to the ill posed characteristics of ECT image reconstruction problem. In the first objective functional, the standard Tikhonov functional is improved using a combination robust estimation technique. In the second objective functional, the standard Minimax estimation is developed by the Tikhonov regularization technique. The numerical results indicate that the both algorithms are feasible and effectively overcome the numerical instability of ECT image reconstruction process. The spatial resolution of the reconstructed images is remarkably enhanced. The distortion of the reconstructed images is relative small, and the artifacts in the reconstructed images can be eliminated effectively. At the same time, the reconstructed results by the noise-contaminated capacitance data also show that the proposed algorithms hold a good robustness to the noises in the capacitance data.
     Traditional image reconstruction algorithms for ECT only consider the noises in the measured capacitance data; however, the inaccurate characteristics in the sensitivity matrix are not to be considered. In fact, the sensitivity matrix may be inaccurate due to the linearization approximation of the image reconstruction model. Therefore, considering the inaccurate nature in the measured capacitance data and the sensitivity matrix in the process of image reconstruction is reasonable. Based on the regularized total least squares method that has been developed using the robust estimation technique, an image reconstruction algorithm that considers the inaccurate nature in the measured capacitance data and the sensitivity matrix is proposed. The numerical results indicate that the proposed algorithm is feasible and effectively overcomes the numerical instability of ECT image reconstruction process. The spatial resolution of the reconstructed images is remarkably enhanced. The distortion of the reconstructed images is relatively small, and the artifacts in the reconstructed images can be eliminated effectively.
     A multiscale objective functional based on the wavelet multiscale analysis technique and the total least squares method is deduced. The homotopy algorithm is employed to solve the objective functional. The homotopy equation is designed by the fixed-point homotopy and is solved by the fixed-point iterative algorithm. The numerical results indicate that the proposed algorithm is feasible and effectively overcomes the numerical instability of ECT image reconstruction process. The spatial resolution of the reconstructed images is remarkably enhanced. The distortion of the reconstructed images is relatively small, and the artifacts in the reconstructed images can be eliminated effectively.
     Post-processing techniques for ECT images, such as the multiscale image enhancing, the multiscale image de-noising and the multiscale image fusion, have been carried out using the wavelet-based multiscale method. Numerical results indicate that the processed images can better highlight the detailed characteristics of the reconstructed objects and the explanatory ability and reliability of ECT images are increased, which provide necessary elements for the sequent quantitative analysis.
     Traditional ECT image reconstruction algorithms often consider the linearized model, which has obtained many successful applications when the difference between the high permittivity and low permittivity in the measured region is not large. However, the linearized model may bring large error when the difference between the high permittivity and low permittivity in the measured region is large. Therefore, considering the errors that linearization process brings is reasonable in the process of image reconstruction. A new objective functional based on the semiparametric method that considers the noises in the measured capacitance data and the linearization error is established. The homotopy algorithm is employed to solve this objective functional. Numerical results indicate that this algorithm is feasible, and quality of the reconstructed images is enhanced remarkably.
引文
[1]李海青,黄志尧.软测量技术原理及应用.北京:化学工业出版社,2001.
    [2]孙斌,张宏建,岳伟庭.HHT与神经网络在油气两相流型识别中的应用.化工学报,2004,55(10):1723-1727.
    [3]周云龙,孙斌,陈飞.气液两相流型智能识别理论及方法.北京:科学出版社,2007.
    [4]曾楠,廖延彪,赖淑蓉.两相流场光学层析成像的研究.激光杂志,2002,23(5):30-31.
    [5]杨莉松,王桂英,徐至展.光学过程层析成像的发展现状.激光与光电子学进 展,1997,(8):5-7.
    [6]杨莉松,王桂英,徐至展.光学层析成像机理分析.激光与红外,1997,27(4):239-241.
    [7]董向元.电容成像技术在热物理量测量中的应用研究.中国科学院研究生院博士学位论文,2006.
    [8]Bruneau P R P,Mudde R F,Van T H J J.Fast computed tomographic imaging within turbulent fluidized beds.The 3rd World Congress on Industrial Process Tomography,2003,Banff,Canada,589-594.
    [9]Boyer C,Fanget B.Measurement of liquid flow distribution in trickle bed reactor of large diameter with a new gamma-ray tomographic system.Chemical Engineering Science,2002,57:1079-1089.
    [10]Hau K F.Measurement of mass flux in two-phase flow using combinations of pitot tubes and gamme deensitometers.AIChE Journal,1981,27:177-184.
    [11]Narabayashi T,Morooka S,Akiba M.Development of BWR Fuel and Components Using X-ray CT for Two-Phase Flow.The 4th World Congress on Industrial Process Tomography.2005,Aizu,Japan,527-530.
    [12]张修刚,王栎,林宗虎.近期多相流过程层析成像技术的发展.热能动力工程,2004,19(3):221-226.
    [13]温君芳,冯玉田,仇清海.超声层析成像的迭代重建.声学技术,2008,27(3):356-360.
    [14]何敏,刘泽,董峰,熊汉亮,徐苓安.电磁层析成像技术图像重建的仿真研究.天津大学学报,2001,34(4):435-438.
    [15]董峰,徐立军,刘小平,徐苓安.用电阻层析成像技术实现两相流流型识别.仪器仪表学报(增刊),2001,22(3):416-417.
    [16]Xie C G,Plaskowski A.8-electrode capacitance system for two-component flow identification part 1:Flow regime identification.IEE Proceedings A.,1989,136:173-183.
    [17]Xie C G,Plaskowski A.8-electrode capacitance system for two-component flow identification part 2:Flow regime identification.IEE Proceedings A,1989,136:184-190.
    [18]Huang S M,Xie C G,Thorn R.Design of sensor electronics for electrical capacitance tomography.IEE Proceedings G.,1992,139:83.
    [19]Isaksen O,Dico A S,Hammer E A.A capacitance-based tomography system for interface measurement in separation vessels.Measurement Science and Technology,1994,5:1262-1271.
    [20]Isaksen O,Nordtvedt J E.A new reconstruction algorithm for process tomography.Measurement Science and Technology,1993,4:1464-1475.
    [21]Johansen G A,Fr(?)ystein T,Hjertakery B T.A dual sensor flow imaging tomographic system.Measurement Science and Technology,1996,7:297-307:
    [22]Ismail I,Gamio J C,Bukhari S F A,Yang W Q.Tomography for multi-phase flow measurement in the oil industry.Flow Measurement and Instrumentation,2005,16:145-155.
    [23]Huang Z Y,Xie D L,Zhong H J,Li H Q.Gas-oil two-phase flow measurement using an electrical capacitance tomography system and a venture meter.Flow Measurement and Instrumentation,2005,16:177-182.
    [24]Warsito W,Fan L S.Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography (ECT).Chemical Engineering Science,2001,56:6455-6462.
    [25]Gamio J C,Castro J,Rivera L,Alamilla J,Garcia-Nocetti F,Aguilar L.Visualisation of gas-oil two-phase flows in pressurized pipes using electrical capacitance tomography.Flow Measurement and Instrumentation,2005,16:129-134.
    [26]Jeanmeure L F C,Dyakowski T,Zimmerman W B J,Clark W.Direct flow-pattern identification using electrical capacitance tomography.Experimental Thermal and Fluid Science,2002,26:763-773.
    [27]Srivastava A,Agrawal K,Sundaresan S,Karri S B R,Knowlton T M.Dynamics of gas-particle flow in circulating fluidized beds.Powder Technology,1998,100:173-182.
    [28]Dyakowski T,Edwards R B,Xie C G,Williams R A.Application of capacitance tomography to gas-solid flows.Chemical Engineering Science,1997,52:2099-2110.
    [29]Chaplin G,Pugsley T.Application of electrical capacitance tomography to the fluidized bed drying of pharmaceutical granule.Chemical Engineering Science,2005,60:7022-7033.
    [30]Warsito W,Fan L S.Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT.Chemical Engineering Science,2005,60:6073-6084.
    [31]Warsito W,Fan L S.ECT imaging of three-phase fluidized bed based on three-phase capacitance model.Chemical Engineering Science,2003,58:823-832.
    [32]Liu S,Chen Q,Wang H G,Jiang F,Ismail I,Yang W Q.Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds.Flow Measurement and Instrumentation,2005,16:135-144.
    [33]Zhu K W,Rao S M,Wang C H,Sundaresan S.Electrical capacitance tomography measurements on vertical and inclined pneumatic conveying of granular solids.Chemical Engineering Science,2003,58:4225-4245.
    [34]Azzopardi B J,Jackson K,Robinson J P,Kaji,Byars M,Hunt A.Fluctuations in dense phase pneumatic conveying of pulverized coal measured using electrical capacitance tomography.Chemical Engineering Science,2008,doi:10.1016/j.ces.2008.02.013.
    [35]Makkawi Y T,Wright P C.Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography.Chemical Engineering Science,2002,57:2411-2437.
    [36]Hasan N M,Azzopardi B J.Imaging stratifying liquid-liquid flow by capacitance tomography.Flow Measurement and Instrumentation,2007,18:241-246.
    [37]Jaworski A J,Dyakowski T.Investigations of flow instabilities within the dense pneumatic conveying system.Powder Technology,2002,125:279-291.
    [38]Malcus S,Chaplin G,Pugsley T.The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT).Chemical Engineering Science,2000,55:4129-4138.
    [39]Bennett M A,West R M,Luke S P,Williams R A.The investigation of bubble column and foam processes using electrical capacitance tomography.Minerals Engineering,2002,15:225-234.
    [40]Makkawi Y T,Wright P C.Tomographic analysis of dry and semi-wet bed fluidization:the effect of small liquid loading and particle size on the bubbling behavior.Chemical Engineering Science,2004,59:201-213.
    [41]Wiens J,Pugsley T.Tomographic imaging of a conical fluidized bed of dry pharmaceutical granule.Powder Technology,2006,169:49-59.
    [42]Soleimani M,Vauhkonen M,Yang W Q,Peyton A,Kim B S,Ma X D.Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter.Measurement Science and Technology,2007,18:3287-3294.
    [43]Warsito W,Marashdeh Q,Fan L S.Electrical capacitance volume tomography.IEEE Sensor Journal,2007,7:525-535.
    [44]Warsito W,Fan L S.3D-ECT velocimetry for flow structure quantification of gas-liquid-solid fluidized beds.Canadian Journal of Chemical Engineering,2003,81:875-884.
    [45]Ostrowski K L,Luke S P,Bennett M A,Williams R A.Application of electrical capacitance tomography for on-line and off-line analysis of flow pattern in horizontal pipeline of pneumatic conveyer.Chemical Engineering Journal,2000,77:43-50.
    [46]孙猛.稀疏气固两相流经旋浓集的电容层析成像测量.中国科学院研究生院博士学位论文,2008.
    [47]张义贵.微尺度多孔介质中燃烧的电容层析成像应用研究.中国科学院研究生院硕士学位论文,2008.
    [48]Waterfall R C,He R,Wolanski P,Gut Z.Flame visualization using electrical capacitance tomography.Proceeding of SPIE,2001,4188:242-250.
    [49]He R,Xie C G,Waterfall R C.Engine flame imaging using electrical capacitance tomography.Electronics Letters,1994,30:559-560.
    [50]Andrzei P,Tadeusz P,Michal F.Progress of the ECT application in dust-air explosibility research.Proceedings of 2nd World Congress on Industrial Process Tomography,Hannover,Germany,2001,339-345.
    [51]刘靖.电容层析成像技术在冻土物质分布及其动态变化测试中的应用研究.中国科学院研究生院博士学位论文,2007.
    [52]Yang W Q,Adam M S,Watson R.Monitoring water hammer by capacitancetomography.Electronics Letters,1996,32:1778-1779.
    [53]Tomkiewicz K,Plaskowski A,Beck M S.Testing of the failure of the solid rocket propellant with tomography methods.The 1st World Congress on Industrial Process Tomography,Buxton,Greater Manchester,1999,249-255.
    [54]Dyakowski T,York T,Mikos M.Imaging nylon polymerisation processes by applying electrical tomography.Chemical Engineering Journal,2000,77:105-109.
    [55]Yang W Q,Nguyen T,Betting M.Imaging wet gas separation process by capacitance tomography.Proceedings of SPIE,2002,4665:347-358.
    [56]邵富群,章勇高.利用ECT传感器获取高炉块状区物料分布信息.东北大学学报,2002,23(11):1044-1047.
    [57]Yang W Q,Peng L H.Image reconstruction algorithms for electrical capacitance tomography.Measurement Science and Technology,2003,14:R 1 -R 13.
    [58]Xie C G,Huang S M,Hoyle B S,Thorn R,Lenn C,Snowden D,Beck M S.Electrical capacitance for flow imaging:system model for development of image reconstruction algorithms and design of primary sensors.IEE Proceedings-G,1992,139:89-98.
    [59]Peng L H,Merkus H,Scarlett B.Using regularization methods for image reconstruction of electrical capacitance tomography.Particle and Particle Systems Characterization,2000,17:96-104.
    [60]Yan H,Liu L J,Xu H.Image reconstruction in electrical capacitance tomography using multiple linear regression and regularization.Measurment Science and Technology,2001,12:575-581.
    [61]Liu S,Fu L,Yang W Q,Jiang F.Prior-online iteration for image reconstruction with electrical capacitance tomography.IEE Pro-Science,Measurement and Technology,2004,151 :195-200.
    [62]Landweber L.An iteration formula for fredholm integral equations of the first kind.American Journal of Mathematics,1951,73:615-624.
    [63]Yang W Q,Spink D M,York T A,McCann H.An image reconstruction algorithm based on Landweber's iteration method for electrical capacitance tomography.Measurement Science and Technology,1999,10:1065-1069.
    [64]Liu S,Fu L,Yang W Q.Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography.Measurement Science and Technology,1999,10:L37-L39.
    [65]Jang J D,Lee S H,Kim K Y,Choi B Y.Modified iterative Landweber method in electrical capacitance tomography.Measurement Science and Technology,2006,17:1909-1917.
    [66]Kortschak B,Wegleiter H,Brandstatter B.Formulation of cost functionals for different measurement principles in nonlinear capacitance tomography.Measurement Science and Technology,2007,18:71-78.
    [67]Soleimani M,Lionheart W R B.Nonlinear image reconstruction for electrical capacitance tomography using experimental data.Measurement Science and Technology,2005,16:1987-1996.
    [68]Wang H X,Tang L,Cao Z.An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT.Flow Measurement and Instrumentation,2007,18:262-267.
    [69]Fang W F.A nonlinear image reconstruction algorithm for electrical capacitance tomography.Measurement Science and Technology,2004,15:2124-2132.
    [70]Lei J,Liu S,Li Z H,Schlaberg H I,Sun M.An image reconstruction algorithm based on new objective functional for electrical capacitance tomography.Measurement Science and Technology,2008,19,1-5.
    [71]Lei J,Liu S,Li Z H,Sun M.An image reconstruction algorithm based on extended objective functional for electrical capacitance tomography.Journal of Thermal Science (to appear).
    [72]Lei J,Liu S,Li Z H,Sun M.An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography.Measurement,2008,doi:10.1016.
    [73]雷兢,孙猛,董向元,刘石.基于预优化变换的电容层析成像图像重建算法.仪器仪表学报,2007,28(3):1421-1426.
    [74]Lei J,Liu S,Li Z H,Schlaberg H I,Sun M.An image reconstruction algorithm based on regularized total least squares method for electrical capacitance tomography.Flow Measurement and Instrumentation,2008,19:325-330.
    [75]黄志尧,冀海峰,王保良,李海清.电容层析成像技术在线测量气固流化床空隙率的研究.高校化学工程学报,2002,16(5):490-495.
    [76]Takei M.GVSPM image reconstruction for capacitance CT images of particles in a vertical pipe and comparison with the conventional method.Measurement Science and Technology,2006,17:2104-2112.
    [77]Su B L,Zhang Y H,Peng L H,Yao D Y,Zhang B F.The use of simultaneous iterative reconstruction technique for electrical capacitance tomography.Chemical Engineering Journal,2000,77:37-41.
    [78]Ortiz-Aleman C,Martin R,Gamio J C.Reconstruction of permittivity images from capacitance tomography data by using very fast simulated annealing.Measurement Science and Technology,2004,15:1382-1390.
    [79]Mou C H,Peng L H,Yao D Y,Xiao D Y.Image reconstruction using a genetic algorithm for electrical capacitance tomography.Tsinghua Science and Technology,2005,10:587-592.
    [80]Warsito W,Fan L S.Neural network based multi-criterion optimization image reconstruction technique for imaging two-and three-phase flow systems using electrical capacitance tomography.Measurement Science and Technology,2001,12:2198-2210.
    [81]Marashdeh Q,Warsito W,Fan L S,Teixeira F L.Non-linear image reconstruction technique for ECT using a combined neural network approach.Measurement Science and Technology,2006,17:2097-2103.
    [82]江鹏,彭黎辉,陆耿,萧德云.基于贝叶斯理论的电容层析成像图像重建迭代算法.中国电机工程学报,2008,28(11):65-71.
    [83]Herman G T.Image Reconstruction From Projections:The Fundamentals of Computerized Tomography.New York:Academic,1980.
    [84]肖庭延,于慎根,王彦飞.反问题的数值解法.北京:科学出版社,2003.
    [85]王彦飞.反演问题的计算方法及其应用.北京:高等教育出版社,2007.
    [86]齐欢.测量信息的分析与处理.北京:科学出版社,2003.
    [87]刘继军.不适定问题的正则化方法及应用.北京:科学出版社,2005.
    [88]黄卡玛,赵翔.电磁场中的逆问题及应用.北京:科学出版社,2005.
    [89]王振杰.测量中不适定问题的正则化解法.北京:科学出版社,2006.
    [90]Denisov AM.Elements ofthe Theory ofInverse Problems.The Netherlands:VSP,1999.
    [91]Isakov V.Inverse Problems for Partial Differential Equations.New York:Springer,1997.
    [92]黄联捷,李幼铭.层析成象和反演问题的基本方法.北京:石油工业出版社,1997.
    [93]Tikhonov A N,Arsenin V Y.Solution of Ill-Posed Problems.Washington:V.H.Winston & Sons,1977.
    [94]Gilyazov S F,Gol'dman N L.Regularization of Ill-Posed Problems by Iteration Methods.Dordrecht:Kluwer Academic Publishers,2000.
    [95]Kirsch A.An Introduction to the Mathematical Theory of Inverse Problems.New York:Springer-Verlag,1996.
    [96]Groetsch C W.The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind.Melbourne:Pitman Publishing Pty Ltd,1984.
    [97]Engl H W,Hanke M,Neubauer A.Regularization of Inverse Problems.Dordrecht:Kluwer Academic Publishers,2000.
    [98]Golub G H,Van Load C F.Matrix Computations.Maryland:Johns Hopkins University Press,1996.
    [99]张贤达.矩阵分析与应用.北京:清华大学出版社,2004.
    [100]张贤达.信号处理中的线性代数.北京:清华大学出版社,1997.
    [101]Varga R S.Matrix Iterative Analysis.Beijing:Science Press,2006.
    [102]刘慧,袁文燕,姜冬靑.矩阵论及应用.北京:化学工业出版社,2003.
    [103]Wang G R.Generalized Inverses:Theory and Computations.Beijing:Science Press,2004.
    [104]陈杰.广义逆矩阵与正则化方法.北京:高等教育出版社,1985.
    [105]孙继广,矩阵扰动分析.北京:科学出版社,1987.
    [106]Lawson C L,Hanson R J.Solving Least Squares Problems.Prentice-Hall Inc,1974.
    [107]王国荣.矩阵与算子广义逆.北京:科学出版社,1994.
    [108]何旭初.广义逆矩阵的基本理论和计算方法.上海:上海科学技术出版社,1985.
    [109]谢政,李建平,汤泽滢.非线性最优化.北京:国防科技大学出版社,2003.
    [110]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2005.
    [111]席少霖,赵凤治.最优化计算方法.上海:上海科学技术出版社,1983.
    [112]徐成贤,陈志平,李乃成.近代优化方法.北京:科学出版社,2002.
    [113]袁亚湘.非线性优化计算方法.北京:科学出版社,2008.
    [114]黄红选,韩继业.数学规划.北京:清华大学出版社,2006.
    [115]邓乃扬.无约束最优化计算方法.北京:科学出版社,1982.
    [116]薛履中.工程最优化技术.天津:天津大学出版社,1989.
    [117]戴虹,袁亚湘.非线性共轭梯度法.上海:上海科学技术出版社,2000.
    [118]Huber P J.Robust Statistics.New York:John Wiley & Sons,1981.
    [119]王彤.线性回归模型的稳健估计及多个异常点诊断方法研究.第四军医大学博士学位论文.2000.
    [120]Dodge Y,Jureckova J.Adaptive Regression.New York:Spring-Verlag,2000.
    [121]Acar R,Vogel C R.Analysis of bounded variation penalty methods for ill posed problem.Inverse Problems,1994,10:1217-1229.
    [122]Hebert T,Leahy R.A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors.IEEE Transactions on Medical Imaging,1989,8:194-202.
    [123]Xu S.Smoothing method for minimax problems.Computational Optimization and Applications,2001,20:267-279.
    [124]Markovsky I,Van Huffel S.Overview of total least-squares methods.Signal Processing,2007,87:2283-2302.
    [125]Beck A,Ben-Tal A.On the solution of the Tikhonov regularization of the total least squares problems.SIAM J Optimization,2006,17:98-118.
    [126]Cirrincione G,Cirrincione M.Robust total least squares by the nonlinear MCA EXIN neuron.IEEE International Joint Symposia on Intelligence and Systems,Rochville,Maryland,May 21-23,1998,295-300.
    [127]刘涛,曾祥利,曾军.实用小波分析入门.北京:国防工业出版社,2006.
    [128]唐远炎,王玲.小波分析与文本文字识别.北京:科学出版社,2004.
    [129]Mix D F,Olejniczak K.Elements of Wavelets for Engineers and Scientists.John Wiley & Sons,2003.
    [130]Misiti M,Misiti Y,Oppenheim G,Poggi J M.Wavelets and Their Applications.Herms Science,2007.
    [131]Burrus C S,Gopinath R A,Guo H T.Introduction to Wavelets and Wavelet Transforms:A Primer.Beijing:China Machine Press,2007.
    [132]Daubechies I.Ten Lectures on Wavelets.Philadelphia:SIAM,1992.
    [133]Mallat S.A Wavelet Tour of Signal Processing.San Diego:Academic Press,1999.
    [134]Chui C K.An Introduction to Wavelets.New York:Academic Press,1992.
    [135]王文圣,丁晶,李跃清.水文小波分析.北京:化学工业出版社,2005.
    [136]程正兴,杨守志,冯小霞.小波分析的理论算法进展和应用.北京:国防工业 出版社,2007.
    [137]成礼智,王红霞,罗永.小波的理论和应用.北京:科学出版社,2004.
    [138]潘泉,张磊,孟晋丽,张洪才.小波滤波方法及应用.北京:清华大学出版, 2004.
    [139]李建平,唐远炎.小波分析方法的应用.重庆:重庆大学出版社,1999.
    [140]Percival D,Walden A T.Wavelet Methods for Time Series Analysis.Cambridge:Cambridge University Press,2000.
    [141]Goswami J C,Chart A K.Fundamentals of Wavelets:Theory,Algorithm,and Applications.John Wiley & Sons,1999.
    [142]徐义贤,王家映.大地电磁的多尺度反演.地球物理学报,1998,41(5):704-711.
    [143]刘天佑.位场勘探数据处理新方法.北京:科学出版社,2007.
    [144]Deuflhard P.Newton Methods for Nonlinear Problems:Affine Invariance and Adaptive Algorithm.Springer-Verlag,2004.
    [145]马振华.现代应用数学手册.北京:清华大学出版社,2005.
    [146]Heath M T.Scientific Computing:An Introductory Survey.Tsinghua University Press,Beijing,2001.
    [147]黄象鼎,曾钟钢,马亚南.武汉:武汉大学出版社,2004.
    [148]李庆扬,莫孜中,祁力群.非线性方程组的数值解法.北京:科学出版社,1987.
    [149]陈传淼,谢资清.非线性微分方程多解计算的搜索延拓法.北京:科学出版社, 2005.
    [150]陈传淼.科学计算概论.北京:科学出版社,2007.
    [151]Ortega J M,Rheinboldt W C.Iterative Solution of Nonliear Equations in Several Variables.Academic Press,1970.
    [152]冯果忱.非线性方程组迭代解法.上海:上海科学技术出版社,1989.
    [153]韩崇昭,朱洪艳,段战胜.多源信息融合.北京:清华大学出版社,2006.
    [154]贾永红.多源遥感影像数据融合技术.北京:测绘出版社,2005.
    [155]覃征,鲍夏明,李爱国,杨博,弓亚歌.数字图像融合.西安:西安交通大学出版社,2004.
    [156]夏明革,何友,唐小明,夏仕昌.多传感器图像融合综述.电光控制,2002,9(4):1-7.
    [157]叶阿忠.非参数计量经济学.天津:南开大学出版社,1998.
    [158]柴根象,洪圣岩.半参数回归模型.合肥:安徽教育出版社,1995.
    [159]刘运航,宋力杰.病态半参数回归模型的岭估计求解.海洋测绘,2008,28(4):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700