用户名: 密码: 验证码:
Patch近场声全息及近场声全息分辨率增强方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近场声全息技术是一种功能强大的噪声源识别、定位及声场可视化技术。由于该技术采用近场测量,测得的全息声压中包含了携有丰富声源细节信息的“倏逝波”(Evanescent Wave)成分,因此近场声全息技术突破了瑞利分辨率判据的限制,其空间分辨率可达分析波长的几十分之一,在机械故障诊断及机械设备噪声治理工程中有着广泛的应用前景。
     然而,由于有效孔径造成的窗效应等误差因素的影响,普通近场声全息技术在小全息孔径、局部全息测量和大尺寸声源结构条件下存在较大误差,严重阻碍了近场声全息技术的推广。近年来,为解决小全息孔径条件下的声场重建问题,降低重建误差,Patch NAH技术逐渐兴起,成为国际研究的热点和近场声全息技术未来发展的趋势。本文针对Patch NAH技术中的关键问题——全息声压外推问题进行了深入的研究和探讨。论文首先对普通NAH的算法过程进行了理论研究,阐明了普通NAH过程中计算误差的主要来源及产生机理,并分析了这些误差与全息测量孔径尺寸大小间的关系,从而说明了Patch NAH技术中全息声压外推过程的必要性。在此基础上,提出了基于带限信号恢复算法(PGA)、波叠加(WSA)和正交球面波源(OSW)的全息声压外推方法,初步解决了不同情况下的全息声压外推问题,由此建立了相应的三种不同的Patch NAH技术,并通过仿真和实验证明了这些技术的有效性、正确性以及相对于普通NAH的优越性。同时,将全息声压外推方法用于全息声压的插值过程,提出通过全息声压插值来提高NAH图像的空间分辨率,建立了多种近场声全息分辨率增强方法,在达到相同空间分辨率的前提下,显著降低了所需的全息测量点数,大大节约了测量工作量,具有较大的实用价值。
     第一章简要地回顾了近场声全息技术的诞生、发展历史和研究现状,分析了近场声全息技术在应用中存在的一些亟需解决的问题,并提出了解决的途径——Patch NAH技术,随后详细阐述了Patch NAH的技术特点,算法流程和研究现状,并在此基础上确立了本文的主要研究内容。
     第二章根据傅立叶声学理论,研究了近场声全息重建过程中存在的主要算法误差以及这些误差的产生机理。通过分析Patch NAH中全息声压近场外推过程对这些算法误差的影响,发现通过外推可以有效抑制这些算法对重建结果的影响,从而证明了Patch NAH技术的有效性。
     第三章首先通过理论分析揭示了全息声压的波数域带限特性,紧接着从带限信号恢复的角度在理论上证明了全息声压近场外推的科学性和正确性。然后利用全息声压的波数域带限性质,提出了基于PGA的全息声压近场外推方法,建立了基于带限信号恢复算法的Patch NAH。在此基础上,将PGA用于全息声压插值,建立了基于带限信号恢复算法的近场声全息分辨率增强方法。最后通过固支板声源的全息重建和分辨率增强实验验证了所提出的上述两种方法的有效性,也进一步证明了全息声压的波数域带限特性。
     第四章将波叠加法引入Patch NAH,首先给出了声辐射问题的声学基础和定解问题描述,由此导出了波叠加方法的基本公式;在此基础上,提出采用波叠加法进行全息声压的近场外推和插值,建立了基于波叠加法的。Patch NAH以及相应的分辨率增强方法;详细分析了波叠加法中源强密度求解的病态性问题,提出通过优化模型参数来降低传递矩阵的病态程度,以及通过正则化方法来稳定求解过程,并介绍了几种常用的正则化方法和正则化参数的选择方法;最后进行了实验验证。
     第五章针对基于波叠加方法中存在的虚源位置确定困难的问题,提出采用一系列相互正交的球面波源来进行声场的拟合,并在此基础上进行全息声压的近场外推与插值,建立了基于正交球面波源的Patch NAH以及相应的分辨率增强方法。
     第六章总结了本文的主要研究成果,提出了需要进一步研究和解决的问题。
Nearfield acoustic holography (NAH) is a powerful technique for identifying noise sources and visualizing acoustic field. It has high resolution, because the evanescent waves which contain much detailed information of the acoustic field are utilized in the method. Therefore, it can be wildly used in mechanical equipment fault diagnosis and noise reduction.
     While NAH suffers from algorithmic errors, that are caused by finite measurement aperture effects and other factors. These errors would rise rapidly with the reduction of the measurement aperture. Therefore, NAH can not be applied when measurement aperture is small. This limitation is an obstacle to-extensive application of NAH technology. In order to overcome this shortage, a novel acoustic holography technique called as Patch NAH has been proposed in recent years. Compared with NAH technique, there exists a special procedure called as hologram pressure extrapolation in Patch NAH. By this procedure, the pressure measured in small aperture is extended or "continued" into a region which is larger than the original measurement aperture. That is why Patch NAH can sufficiently reduce algorithmic errors and keep the accuracy when the measurement aperture is small. Therefore, the hologram pressure extrapolation procedure is the key of Patch NAH, and the research work of this paper focuses on how to extrapolate hologram pressure. In this paper, three novel methods for extrapolating hologram pressure are proposed. And three kinds of Patch NAH technique based on these methods are also established. The validity of these methods has been verified by numerical simulations and experiments. Meanwhile, it is found that the proposed pressure extrapolation methods can also be used to interpolate the measured pressure for the NAH image spatial resolution enhancement. Therefore, the NAH image spatial resolution enhancing techniques were proposed in this paper. The experiment shows that these techniques can effectively improve the resolution of NAH image without increasing the measurement points. The main contents of the dissertation are shown as follows:
     In chapter one, the history of NAH was reviewed briefly. By analyzing the current status of NAH technique, the existing problem was discussed. To deal with this problem, the Patch NAH technique was introduced. By analyzing the research status of Patch NAH, the main research contents of this dissertation were determined. In chapter two, two kinds of the algorithmic errors of NAH were studied in detail. They are finite measurement aperture effects caused by truncating of acoustic field and wrap-around error related to dispersion in wave number domain. By analyzing the generation mechanisms of these errors, it shows that these errors have a close relationship with the measurement aperture size, and can be sufficient reduced by hologram pressure extrapolation. To prove the validity of hologram pressure extrapolation for reducing the algorithmic errors, numerical simulations and experiments were performed.
     In chapter three, to extrapolate the hologram pressure efficiently, the property of the hologram pressure was researched firstly. The band-limited property of the hologram pressure was illuminated. According to this property, the theoretical feasibility of hologram pressure extrapolation was proved and a novel hologram pressure extrapolating method based on a band-limited signal restoration method named Papoulis-Gerchberg algorithm (PGA) was proposed. The Patch NAH based on this method was also established. Furthermore, it is theoretically proved that the PGA-based pressure extrapolating method also can be used for hologram pressure interpolation. So that, a new method based on interpolation by using PGA was proposed for enhancing the resolution of the nearfield acoustic holography. The validity of the proposed methods was proved by numerical simulations and experiments.
     In chapter four, firstly, the theoretical base of acoustic radiation was reviewed and the basic equation of wave superposition approach (WSA) was deduced. According to the mechanism of WSA, the acoustic fields on and near the measurement surface can be approximated by the fields produced by fictitious sources placed inside the structure. Therefore, the pressure extrapolation can be realized by the superposition of fields generated by these fictitious sources. Based on this, the WSA was employed to realize hologram pressure extrapolation and interpolation. The Patch NAH and NAH image resolution enhancing method based on WSA were established. Then, the numerical stability of WSA was investigated. The model optimization and regularization strategy were proposed to deal with the ill-posed problem in solving the source strengths of fictitious sources.
     In chapter five, a new hologram pressure extrapolation method using orthogonal spherical wave source is proposed According to the solution of Helmholtz equation in spherical coordinates, any acoustic field can be approximately expressed as a linear sum of a series of orthogonal spherical wave functions. So that, the acoustic field generated by vibrator can be approximated, by superposing the fields generated by a series of orthogonal spherical wave sources of different orders, and the pressure exploration is realized by radiating process of these spherical wave sources. Because the orthogonal spherical wave sources of different orders are orthogonal with each other, they can be placed at one point inside the vibrator. So there is no need to design the position of all the fictitious sources.
     In chapter six, researches in this dissertation are summarized, and the topics which need to be further studied are proposed.
引文
[1] Gabor D. A new microscope principle. Nature, 1948,161:777~779
    [2] Ei-sum H M A, Kirkpatrickp. Mrciroscopy by reconstructed wave fronts. Phys. Rev, 1952, 85(4): 763~771
    [3] Orme R D, Anderson A P. High resolution microwave holographic technique : application to the imaging of objects obscured by dielectric media. Proc.IEE,1973 120(4): 401-406.
    [4] Metherell Hussein A F, Elsum H M A, et al. Introduction to acoustical Holography. J. Acoust. Soc. Am., 1967, 42(4): 733~742
    [5] Shewell J R, Wolf E. Inverse diffraction and a new reciprocity theorem. J. Opt. Soc. Am.,1968, 58(1): 1596
    [6] Greece D C. Use of acoustic holography for the Imaging of sources of radiated acoustic intensity. J. Acoust. Soc. Am., 1969, 46(1): 44~45
    [7] Sadayuki Ueha, Makoto Fujinami, et al. Imaging of acoustic radiation sources with acoustical holography. Optica Acta 1976, 23(2): 107~114
    [8]希尔德布兰德B P.声全息导论(中译本).北京:科学出版社,1978
    [9] Williams E G, Maynard J D, Skudrzyk E. Sound reconstruction using a microphone array. J. Acoust. Soc. Am., 1980, 68(1): 340~344
    [10] Williams E G., Maynard J D. Holographic imaging without wavelength resolution limit. Phys. Rev. Letts., 1980,45: 554~557
    [11] Williams E G, Dardy H D. Near field acoustical holography using an underwater, auomated scanner. J. Acoust. Soc. Am, 1985, 78(2): 789~798
    [12] Stepanishen P R, Chen H W. Near-field pressure and surface intensity for cylindrical vibrators. J. Acoust. Soc. Am., 1984, 76: 942~948
    [13] Williams E G, Dardy H D. Generalized near-field acoustical holography for cylindrical geometry: theory and experiment. J. Acoust. Soc. Am., 1987, 81(2): 389~407
    [14] Devries L A, Bolton J S, Lee J C. Acoustical holography in spherical coordinates for noise sources identification. Nois-Con94, Yokohama (Japan), 1994: 935~940
    [15] Lee J C. Spherical acoustical holography of low frequency noise sources. Applied Acoustics, 1996, 48(1): 85~95
    [16] Maynard J D, Williams E G, Lee Y. Near-field acoustic holography: I. theory of generalized holography and development of NAH. J.Acoust.Soc.Am., 1985,78(4):1395~1413
    [17] Veronesi W A, Maynard J D. Near-field acoustic holography (NAH) II. holographic recon- struction algorithms and computer implemention. J. Acoust. Soc. Am., 1987, 81(5): 1307~ 1322
    [18] Zhang Dejun, et al. A new method for low frequency NAH—Nearfield acoustic holography. 14th ICA, (Bejin, China),1992:L10-6
    [19] Li J F, Pascal J C, Carles C. A new K-Space optimal filter for acoustic holography. 3th Int. Congress on Air and Structure Borne Sound and Vib. Montreal (Canada), 13-15 June 1994,1059-1066
    [20] Hald J. Reduction of spatial windowing effects in acoustic holography, inter- Noise94,Yokohama(Japan), August, 1994:1887-1890
    [21]何元安.大型水下结构近场声全息的理论与实验研究.哈尔滨工程大学博士学位论文,2001
    [22] Hald J. STSF- a unique technique for scan-based Near-field Acoustic holography with restriction on coherence. B&K Technical Review, 1989,1:1~49
    [23] Hald J, Ginn K B. Vehicle noise investigation using spatial transform of sound field. Sound & Vibration, 1989,23(4): 38~45
    [24] Salin B M, Turchin V I. Holographic reconstruction of wave fields with arbitrary time dependence. Sov. Phys. Acoust., 1992, 38(1): 77~79
    [25]万泉,蒋伟康.循环平稳声场近场声全息理论与实验研究.声学学报, 2005, 30(4): 379~384
    [26] Wan Q, Jiang. Near field acoustic holography (NAH) theory for cyclostationary sound field and its application. J. Sound Vib., 290(3): 956~967
    [27] Park S H, Kim Y H. An improved moving frame acoustic holography for coherent band- limited noise. J. Acoust. Soc. Am., 1998, 104(4): 3179~3189
    [28] Park S H, Kim Y H. Visualization of pass-by noise by means of moving frame acoustic holography. J. Acoust. Soc. Am, 2000, 110(5): 2326~2339
    [29] Kwon H S, Kim Y H. Moving frame technique for planar acoustic holography. J. Acoust. Soc. Am., 1998, 103(4): 1734~1741
    [30]杨殿阁,刘峰,郑四发,等.声全息方法识别汽车运动噪声.汽车工程, 2001, 23 (5): 329~332
    [31] Ruhala R J, Swanson D C. Planar near-field acoustical holography in a moving medium. J. Acoust. Soc. Am, 2002, 112(2): 420~429
    [32] Mann J A III, Pascal J C. Locating noise sources on an industrial air compressor using broadband acoustical holography from intensity measurements (BAHIM). Noise Control Engineering Journal, 1992, 39(1): 3~12
    [33] Hallman D L, Boston J S, Dumbacher S M, et al. Acoustic source location in vehicle cabins andfree-field with nearfield acoustic holography via acoustic arrays, Proceedings of the 19th international seminar on Modal Analysis, Leuven, Belgium, September, 1994
    [34] Hallman D L, Boston J S, Dumbacher S M, et al. The application of Nearfreld acoustic holography to locate sources in enclosed spaces exhibiting acoustic modal behavior, Proceedings of the 12 th international Modal Analysis Conference, Leuven, Belgium, September, 1994,1076-1082
    [35] Hallman D L, Boston J S, Dumbacher S M, et al. Airborne sound Transmission into vehicle cabins through Door-Like structure, Proceedings of The 13 th international Modal Analysis Conference, Nashville, Tennessee,1995
    [36] Kim Y H, Kim S M. An analysis of the sound radiation characteristics of the King Song-Dok bell using cylinder acoustic holography. J. Acoust. Soc. Korea, 1997; 16(4): 94~100
    [37] Ruhala R J, Burroughs C B. Application of nearfield acoustical holography to tire /pavement interaction noise emissions, SAE972047, Proceeding of the 1997 SAE Noise and Vibration Conference,1997:1397-1406
    [38] Lee M, Bolton J S, Mongeau L. Application of cylindrical near-field acoustical holography to the visualization of aero-acoustic sources. J. Acoust. Soc. Am. 2003; 114 (2): 842~858
    [39] Deblauwe F. Transient holography—what is possible for engines. Proceedings of SPIE—The International Society for Optical Engineering, 2000:1052-1055
    [40] Hald J. Time domain acoustical holography and its application. Sound and vibration, 2001, 2: 6~24
    [41] Hald J. Non-stationary STSF .B&K Technical Review, 2000,1:1~36
    [42] Veronesi W A, Maynard J D. Digital holography reconstruction of sources with arbitrarily shaped surfaces. J. Acoust. Soc. Am., 1989, 85(2): 588~598
    [43] Borgitti G V. Conformal generalized near-field acoustic holography for axisymmetric geometries. J. Acoust. Soc. Am., 1990, 88(1): 199~209
    [44] Sarkissian A. Near-field acoustic holography for an axi-symmetric geometry: A new formulation. J. Acoust. Soc. Am., 1990, 88(2): 961~966
    [45] Borgiotti G V. The power radiated by a vibrating body in an acoustic field and its determination from boundary measurements. J. Acoust. Soc. Am., 1990, 88(4): 1884~1893
    [46] Photiads D M. The relationship of singular value decomposition to wave-vector filtering in sound radiation problems. J. Acoust. Soc. Am., 1990, 88(2): 1152~1159
    [47] Bai M R. Application of BEM (boundary element method) based acoustic holography to radiation analysis. J. Acoust. Soc. Am., 1992, 92(2): 533~549
    [48] Kim B K, Ih J G.. On the reconstruction of the vibro-acoustic field over the surface enclosing an interior space using the boundary element method. J. Acoust. Soc. Am, 1996, 105(5):3003~3016
    [49] Nelson P A,Yoon S H. Estimation of acoustic source strength by inverse methods:Part I,conditioning of the inverse problem. Journal of Sound and Vibration,2000,233: 643~668.
    [50] Yoon S,Nelson P. Estimation of acoustic source strength by inverse methods:Part 2,experimental investigation of methods for choosing regularization parameters. Journal of Sound and Vibration, 2000,233: 669~705.
    [51] Kim B K, Ih J G. Design of an optimal wave-vector filter for enhancing the resolution of reconstructed source field by near-field acoustical holography (NAH) J. Acoust. Soc. Am, 2000, 107(6): 3289~3297
    [52] Williams E G.. Regularization methods for near-field acoustical holography. J. Acoust. Soc. Am, 2001, 110: 1976~1988
    [53] Schuhmacher A. Sound source reconstruction using inverse sound field calculations. Ph.D. Dissertation, Technical University of Denmark, 2000
    [54] Schuhmacher A, Hald J, Rasmussen K B, et al. Sound source reconstruction using inverse sound field calculations. J. Acoust. Soc. Am, 2003, 113(1): 114~127
    [55] Kang S C, Ih J G. Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography. J. Acoust. Soc. Am, 2001, 109(4): 1320~1328
    [56] Zhang S Y, Chen X Z. The boundary point method for calculation of exterior acoustic radiation problem. J. Sound Vib., 1999, 228(4): 761~772
    [57]毕传兴,陈剑,陈心昭等.分布源边界点在声场全息重建和预测中的应用.机械工程学报,2003,39(8):81~85
    [58]毕传兴,陈剑,陈心昭.基于分布源边界点法的多源声场全息重建和预测技术理论研究.中国科学(E辑),2004,34(1): 111~120
    [59] Williams E G, Houston B H. Interior near-field acoustical holography in flight. J. Acoust. Soc. Am, 2000, 108(4): 1451~1463
    [60]何元安,何祚镛.用声场空间变换识别水下噪声源.应用声学,2000,19(2):9~13
    [61]何元安,何祚镛,商德江等.基于平面声全息的全空间场变换:I水下大面积平面发射声基阵的近场声全息实验.声学学报,2003,28 (l):45~51
    [62]暴雪梅,何祚镛.目标散射场全息重建方法研究.声学学报,2000,25(3):254~264
    [63] Koopmann G H, Song L, Fahnline J. A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am., 1989, 86(5): 2433~2438
    [64] Song L, Koopmann G H, Fahnline J. Numerical errors associated with the method of superposition for computing acoustic fields. J. Acoust. Soc. Am., 1991, 89(6): 2625~2633
    [65] Fahnline J, Koopmann G H. A numerical solution for the general radiation problem based onthe combined methods of superposition and singular value decomposition. J. Acoust. Soc. Am., 1991, 90: 2808~2819
    [66] Miller R D, Thomas E T, Huang H, et al. A comperion between the boundary element method and the wave superposition approach for the analysis of the scattered fields from rigid bodies and elastic shells. J. Acoust. Soc. Am., 1991, 89(5): 2185~2196
    [67]于飞,陈心昭,李卫兵等.空间声场全息重建的波叠加方法研究.物理学报, 2004, 53(8): 2607~2613
    [68] Yu F, Chen J, Chen X Z. A robust technique to reconstruct sound field for all wave number. Science In China (Ser. E), 2004, 34(5): 33~46
    [69]毕传兴,陈心昭,陈剑等.基于等效源法的近场声全息技术.中国科学E辑, 2005, 35(5): 535~548
    [70]于飞,陈剑,李卫兵等.腔体内三维声场重构和预测的波叠加方法.自然科学进展, 2005, 15(1): 90~96
    [71]薛玮飞,陈进,李加庆.机械噪声源识别的混合波叠加法[J].中国机械工程, 2006, 23:2503~2507
    [72] Xue W F, Chen J, Zhang G C. Sound sources identification for machine acoustic signals based on combined wave superposition method[J]. Acta Acustica United with Acustica, 2006, 92(1): 45~50
    [73] Chao Y C. An implicit least-square method for the inverse problem of acoustic radiation. J. Acoust. Soc. Am, 1987, 81(5): 1288~1292
    [74] Wang Z, Wu S F. Helmholtz Equation-Least Method for reconstructing the acoustic pressure field. J. Acoust. Soc. Am, 1997, 102(4): 2020~2032
    [75] Wu S F, Yu J. Reconstructing interior acoustic pressure fields via Helmholtz Equation-least Square method. J. Acoust. Soc. Am, 1998, 104(4): 2054~2060
    [76] Wu S F, Rayess N, Zhao X. Visualization of acoustic radiation from a vibrating bowling ball. J. Acoust. Soc. Am., 2001, 109(6): 2771~2779
    [77] Wu S F, Lim B D. Determination of the optimal number of expansion terms in the HELS method. J. Acoust. Soc. Am., 2000, 108: 2505~2513
    [78] Rayess N, Wu S F. Experimental validation of the HELS method for reconstructing acoustic radiation from a complex vibrating structure. J. Acoust. Soc. Am., 2000, 107: 2955~2964
    [79] Wu S F, Zhao X. Combined Helmholtz equation-least method for reconstructing the acoustic radiation from arbitrarily shaped objects. J. Acoust. Soc. Am., 2002, 112(1): 179~188
    [80] Wu S F. Hybrid near-field acoustic holography. J. Acoust. Soc. Am., 2004, 115(1): 207~217
    [81] Steiner R, Hald J. Near-field Acoustical Holography without the errors and limitations caused by the use of spatial DFT. In proceeding of ICSV6, 1999
    [82] Hald J. Near-field Acoustical Holography with arrays smaller than the sound source, In proceedings of ICA, 2001
    [83] Hald J. Patch near-field acoustical holography using a new statistically optimal method. Inter- Noise 03, Jeju (Korea), 2003:2203~2210
    [84] Thung C Y, Hald J. Souce visualization by using statistically optimized near- field acoustical holography in cylindrical coordinates[J]. J. Acoust. Soc. Am. 2005, 118(5): 2355-2364
    [85] Hald J. Patch holography in cabin environments using a two-layer handheld array with an extended SONAH algorithm[J], Acta Acustica United With Acustica vol.92, suppl.1: S24, May-June 2006
    [86] Hald J. A comparison of two patch NAH methods[C]. Proceedings of Inter-noise 2006
    [87]张德俊等.振动体及其辐射场的近场声全息实验研究.声学学报,1995;20(4): 250~255
    [88]张德俊.近场声全息对振动体及辐射场的成像.物理学进展,1996;16(3~4): 613-623
    [89] Hald J, Ginn K B.STSF-practical instrumentation and applications. B&K Technical Review, 1989,2:1~27
    [90] Hallman D L, Boston J S. A comparison of multi-reference near-field acoustic holography procedures. Proceedings of the 23th International Congress and Exposition on Noise Control Engineering, 1994, 929~934
    [91] Tamlinson M A. Partial source discrimination in near field acoustic holography. Applied Acoustics, 1999,57:243~261
    [92] Kwon H S, Kim Y J, Boston J S. Compensation for source nonstationary in multireference, scan-based near-field acoustical holography. J. Acoust. Soc. Am., 2003, 113(1): 360~368
    [93] Rasmussen P. Spatial transform of sound field. Sound & Vibration, 1995, 29: 18~24
    [94] Loyau T, Pascal J C. Broadband acoustic holography reconstruction from acoustic intensity measurement I: principle of the method. J.Acoust.Soc.Am, 1988, 84(5): 1744~1750
    [95] Mann J A III, Pascal J C. Locating noise sources on an industrial air compressor using broadband acoustical holography from intensity measurements (BAHIM). Noise Control Engineering Journal, 1992, 39(1): 3~12
    [96] Williams E G, Houston B H, Bucaro J A. Broadband near-field acoustical holography for vibrating cylinders. J. Acoust.Soc.Am.,1989, 85(2):674~679
    [97] Lee J C. Spherical surface vibration identification by spherical holography and acoustic intensity. J. Marine Science Technology. 1996, 4(1): 11~15
    [98] Laville F, Sidki M, Nicolas J. Spherical acoustical holography using sound intensity measurements: theory and simulation. Acoustica, 1992, 76:193~199
    [99] Finn J, Yang L. Near field acoustic holography with particle velocity transducers. J. Acoust. Soc. Am., 2005,118(5): 3139~3144
    [100] Williams E G. Fourier acoustics: Sound Radiation and Nearfield Acoustic Holography. London: Cambridge University Press, 1999
    [101] Wu S F. Methods for reconstructing acoustic quantities based on acoustic pressure measurements. J. Acoust.Soc. Am, 2008, 124(5): 2680 ~2697
    [102] Williams E G. Continuation of acoustic near fields. J. Acoust. Soc. Am, 2000, 113(3): 1273~1281
    [103] Williams E G,Houston B H,Herdic P C. Fast fourier transform and singular value decomposition formulations for patch nearfield acoustical holography. J. Acoust. Soc. Am,2003, 114(3): 1322 ~1333.
    [104] Williams E G.. Approaches to Patch NAH. Inter-Noise 2003, Jeju (Korea), 2003:2187~2194
    [105] Hald J. Patch near-field acoustical holography using a new statistically optimal method. Inter- Noise 03, Jeju (Korea), 2003:2203~2210
    [106] Saijyou K,Yoshikawa S. Reduction methods of the reconstruction error for large-scale implementation of near-field acoustical holography. J. Acoust.Soc. Am., 2001, 110(4): 2007 ~2023
    [107] Saijyou K, Uchida, Hiroshi. Data extrapolation method for boundary element method-based near-field acoustical holography. J. Acoust. Soc. Am., 2004, 115(2):785-796.
    [108] Sarkissian A. Extension of measurement surface in near-field acoustic holography. J. Acoust. Soc. Am, 2004, 115(4): 1593 ~1596.
    [109] Saijyou K. Regularization method of patch nearfield acoustical holography for planar geometry. Inter- Noise 03, Jeju (Korea), 2003:2195~2202
    [110] Lee M Y, Bolton J S. Patch near-field acoustical holography in cylindrical geometry. Journal of the Acoustical Society of America, 2005, 118(6): 3721-3732.
    [111] Lee M Y, Bolton J S. Reconstruction of source distributions from sound pressures measured over discontinuous regions: Multipatch holography and interpolation. J. Acoust. Soc.Am,1992,91(1): 2086~2096
    [112] Sarkissian A. Method of superposition applied to patch near-field acoustic holography. J. Acoust. Soc. Am., 2005, 118(2): 671-678
    [113] Bissinger G, Wlilliams E G, Valdivia N.Violin f-hole contribution to far-field radiation via patch near-field acoustical holography. J. Acoust. Soc. Am, 2007,121(6): 3899~3906
    [114] Bai M R. Acoustical source characterization by using recursive Wiener filtering. J. Acoust. Soc. Am., 1995, 97(5): 2657~2663
    [115] Harris M C, Blotter J D. Obtaining the complex pressure field at the hologram surface for use in near-field acoustical holography when pressure and in-plane velocities are measured. J Acoust Soc Am, 2006, 119: 809~816
    [116] Slepian D, Pollak H O. Prolate Spheroidal Wave Function, Fourier Analysis and Uncertainty-I. Bell Syst. Tech. J.,1961, Jan, 40:43~63
    [117] Gerchberg R W. Super-resolution through error energy reduction. Opt Acta, 1974, 21(9): 709~720
    [118] Papoulis A. A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans Circuits Syst, 1975, 22: 735~742
    [119]李衍达,常迥.信号重构理论及其应用.北京:清华大学出版社, 1999
    [120] Ones M C. The discrete Gerchberg algorithm. IEEE Trans Acoustic Speech Signal Proc, 1986, 34(3): 624~626
    [121] Ferreira P J S G. Interpolation and discrete Papoulis-Gerchberg algorithm. IEEE Trans Signal Process, 1994, 42(10): 2596~2606
    [122] Tikhonov A N. Solution of incorrectly formulated problems and the regularization method. Doklady Akad. Naul. SSSR,151,501-504, Soviet Math. Dokl, 4,1963: 1035~1038
    [123] Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. Springer-Verlag, New York, 1996
    [124] Hansen P C. Analysis of Discrete ill-posed Problems by means of the L-curve. SIAM Review, 1992, 34: 561~580
    [125] Hanke M, Hansen P C. Regularization methods for large-scale problems. Surv. Math. Ind. 1993, 3: 253~315
    [126]莫尔斯P M,英格特K U.理论声学[D].北京:科学出版社,1984
    [127]毕传兴.基于分布源边界点法的近场声全息理论与实验研究.合肥工业大学博士学位论文. 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700