用户名: 密码: 验证码:
基于成像系统建模提高遥感图像分辨率方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球信息化进程的飞速发展,军事和商业应用对高分辨率、高质量遥感图像的需求越来越迫切。但是由于探测器固有物理特性的限制,利用减小探测器像元尺寸、增加相机焦距等传统手段在提高空间分辨率方面取得新的突破越来越困难,成本越来越高。研究基于图像处理的方法以提高遥感图像的分辨率就成为一种有效可行的思路,具有重要的理论意义和应用价值。本文以基于成像建模理论的遥感图像分辨率提高方法为主线,针对遥感图像尤其是斜采样模式等亚像元技术中的分辨率分析、图像复原、超分辨率重建等方法进行研究,主要工作和研究成果如下:
     (1)研究了光学遥感器的成像系统模型,建立了包括大气、卫星平台、光学系统、探测器、传感电路的成像模型,对造成遥感图像分辨率降低的因素进行了分析和讨论;从采样定理的角度分析了亚像元技术超分辨率重建的适用条件及能够提高分辨率的上限;指出利用亚像元采样技术提高遥感器的分辨率,可以充分利用光学系统的成像潜能,但是在不改变探测器像元尺寸和光学系统相对孔径的情况下,亚像元技术只能突破采样分辨率的极限,无限逼近系统光学衍射分辨率而不能超越这个极限。
     (2)针对调制传递函数过零点问题,提出了一种单幅遥感图像频域校正超分辨率重建方法。由于卫星平台运动等因素的影响,调制传递函数在截止频率内存在大量过零点,这些过零点附近的噪声在图像复原过程中会被进一步放大甚至造成虚假的边缘和纹理。为了降低过零点对图像复原的不良影响,提出了一种频域校正方法,引入了遥感器有效载荷成像参数作为先验知识,将维纳滤波的结果作为全变分复原的初始值,通过对频域信息的校正,获得了更好的遥感图像超分辨率重建效果。
     (3)混叠是影响采样式光学遥感器图像质量的重要因素之一。在分析了推扫式采样成像系统中的混叠形成原因的基础上,研究了基于模糊、混叠、噪声三元组的有效分辨率模型,通过对亚像元采样系统的有效分辨率进行定量计算和分析,指出了较为有效的采样;研究了单线阵斜采样模式和超模式斜采样模式中线阵倾斜角度及飞行方向采样间距对有效分辨率和成像质量的影响,得出了有效分辨率意义上的最佳成像参数。
     (4)针对遥感图像中的混叠问题,提出了一种基于MAP-MRF的最佳倒易晶胞复原方法。通过对光学遥感图像存在模糊、混叠、噪声等三元退化因素成因的深入分析,建立了单线阵斜采样技术的最佳倒易晶胞模型,最大限度的获取斜采样模式下的图像有效信息。在MAP-MRF图像复原框架下,通过耦合有效分辨率最佳倒易晶胞,进一步减少了模糊、混叠、噪声对图像质量的影响,充分利用了由于混叠而错位的高频信息,获得了较好的复原效果;基于Majorization-Minimization的数值解法降低了计算复杂度,提高了运算速度和效率。
     (5)针对超模式斜采样模式下的遥感图像重建问题,提出了一种新的超分辨率重建框架。由于超模式斜采样成像方式采用倾斜一定角度的两排CCD线阵,在传统超分辨率重建框架的基础上融合了纠偏策略。首先用Forstner算子提取图像特征点,采用基于粗细结合的匹配策略对图像序列进行刚性配准;然后在加入线阵倾斜角度的变换模型基础上,通过基于B样条的多帧图像插值方法得到高分辨率的初始图像;最后通过耦合最佳倒易晶胞的复原方法,建立了完整的超模式斜采样成像方式下的配准、插值、重建框架,有效地提高了超模式斜采样下的遥感图像的空间分辨率。
Remote sensing images are badly demanded for the military and commercial applications. The development of high resolution and good image quality sensors has become the main focus of earth observation technology. There are three traditional ways to improve spatial resolution: using smaller detector, increasing the camera focal length, reducing the satellite orbital altitude. But due to the inherent limitations of the physical properties, these methods are more and more difficult to achieve new breakthroughs. Image processing provides a new method to improve the remote sensing image resolution. The sub-pixel sampling technology is proved to be effective and feasible; meanwhile, the cost of is less expensive. This paper mainly focuses on the meth-ods of improving the image resolution, especially the effective resolution analysis of sub-pixel technology, image restoration and super resolution reconstruction.
     (1) The optical remote sensing image system is studied. The image acquisition system includes the atmosphere, platform movement, optical system, detectors and noise. We analyzed the limits of the sub-pixel technology from the perspective of sampling theorem. Using sub-pixel technique can take advantage of the optical system. If the detector size and the optical system aperture are decided, the sub-pixel technology can only infinitely approximate to the system optical diffraction resolution but could not go beyond this limit.
     (2) A novel single image super-resolution reconstruction method with frequency domain correction is proposed to solve the ill-posed problem imported by zero-crossing-points of mod-ulation transfer function (MTF). The satellite movement and some other factors bring lots of zero-crossing-points below the cut-off frequency. Noise near these zero-crossing-points would be amplified in the image restoration process, even cause false edges. To solve this problem, the geometrical characteristics of acquisition system are considered in the frequency domain cor-rection algorithm. In our method, the total variation restoration is used to revise the frequency spectral above the cut-off frequency; the wiener filter is used to initialize the TV restoration;the frequency domain correction can reduce the artifact caused by zero-crossing-points. Experi-mental results indicate that the proposed methods considering the modeling of image acqui-sition systems reconstruct high-quality super-resolution image for both composite image and remote sensing images with different physiognomy.
     (3) Remote sensing image is degraded by a variety of factors. Aliasing is one of the important factors which affect the image quality of optical sampling remote sensing imaging system. After analyzing the aliasing-blurring-noise model in push-broom linear CCD imaging system, we quantitative calculated the aliasing, blurring and noise in sub-pixel sampling system with effective resolution. The tilting sampling mode includes the single linear tilting sampling and the super-mode tilting sampling. These two modes get a better resolution by rotating the CCD linear with a degree θ and/or reducing agent the sampling distance d. The impact of different parameters is discussed by calculating the effective resolution and optimal parameters are suggested.
     (4) A novel image restoration method in the MAP-MRF frame is proposed to reduce the impact of aliasing and blurring. The optimal reciprocal cell is designed based on the effective resolution calculation. This optimal reciprocal cell is used to maximize the tilting sampling remote sensing image information. In the frame of MAP-MRF image restoration method, the optimal reciprocal cell is coupling with Huber-MRF image prior to reduce the blurring, aliasing and noise. After the restoration, the higher frequency part dislocated by sampling is corrected. A majorization-minimization approach is used to reduce the computational complexity. Exper-imental results indicate that the proposed method considers the modeling of image acquisition systems and obtains an effectives image restoration result, improves the image effective resolu-tion.
     (5) Super-tilting mode improves the spatial resolution by rotating the two dedicated linear arrays with a degree. The bias-correct and interpolation is need to get uniformity image. The framework of super-tilting mode image super-resolution is built with registration, interpolation and deblurring. We use Forstner operator to extract image futures. Correlation is used to get a rough match, and then a distance constraint is used to remove the wrong matches. After the rigid registration, the angle of linear arrays is added into the transformation model, and a B-spline based interpolation is used to get the initial image of the high-resolution. Then we use the MAP based super-resolution reconstruction with optimal reciprocal cell to get the final result. Experimental results indicate that the proposed method reduces the aliasing in recovery and obtains an effectives image super-resolution restoration result.
引文
[1]李德熊.遥感技术.北京:北京工业学院出版社,1987
    [2]李树楷.全球资源环境遥感分析.北京:测绘出版社,1992
    [3]梁顺林.定量遥感.北京:科学出版社,2009
    [4]Almanasa A, Burand S, Rouge B. Measuring and improving image resolution by adap-tation of the reciprocal cell. Journal of Mathematical Imaging and Vision,2004,21(3): 235-279
    [5]古德曼.傅里叶光学导论.北京:电子工业出版社,2006
    [6]Wu W, Kundu A. Image estimation using fast modified reduced update Kalman filter. IEEE Transactions on Signal Processing,1992,40(4):915-926
    [7]Chen W. F, Chen M, Zhou J. Adaptively regularized constrained total least-squares image restoration. IEEE Transactions on Image Processing,2000,9(4):588-596
    [8]Belge M, Kilmer M. E, Miller E. L. Wavelet domain image restortaion with adaptive edge-preserving regularization. IEEE Transactions on Image Processing,2000,9(4): 597-608
    [9]Richardson W. H. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America,1972,62(1):55-59
    [10]Lucy L. B. An iteration technique for the rectification of observed distributions. Astro-nomical Journal,1974,79(6):745-754
    [11]Park J. A, Kenyon R. V, Troxel D. E. Comparison of interpolation methods for image resampling. IEEE Transactions on medical imaging,1983,2(1):31-39
    [12]Jain A. K. Fundaments of Digital Image Processing. Englewood Cliffs,1989
    [13]Keys R. G. Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Processing,1981,29(6):1153-1160
    [14]Yang Z, Lu F, Guan L. Image enlargement and reduction with arbitraty accuracy through scaling relation of B-spline. Journal of Computer-Aided Design and Computer Graphics, 2001,13(9):824-827
    [15]van Ouwerkerk J. D. Image super-resolution survey. Image and vision compution,2006, 24(10):1039-1052
    [16]Tekalp A. M. Digital Video processing. Prentice Hall Signal Processing Series,1995
    [17]Atkins C. B, Bouman C. A, Allebach J. P. Optimal image scaling using pixel classifica-tion.2001 International Conference on Image Processing,2001:864-867
    [18]Staelin C, C Greig D, Fischer M. Neural network image scaling using spatial errors. Technion City:HP laboratories Isreal,2003
    [19]Guichard F, Malgouyres F. Total variation based interpolation. Proceedings of the Euro-pean Signal Processing Conference,1998:1741-1744
    [20]Kim H, Cha Y, Kim S. Curvature Interpolation Method for Image Zooming. IEEE Transactions on Image Processing,2011,20(7):1985-1903. CIM基于PDE的插值方法
    [21]Schultz R. R, Stevenson R. L. A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing,1994,3(3):233-242
    [22]Harris J. L. Diffraction and Resolving Power. Jouran of the Optical Society of America, 1964,54(7):931-936
    [23]Goodman J. W. Introduction to Fourier Optics. New York:McGrow Hill,1968
    [24]李衍达.信号重构理论及其应用.北京:清华大学出版社,1991
    [25]Andrews H. C, Hunt B. R. Digital Image Restoration. Englewood Cliffs:Prentice-Hall, 1977
    [26]Tsai R. Y, Huang T. S. Multiframe image resortaion and registration. Advances In Computer Vision and Image Processing,1984:317-319
    [27]Hunt B. R. Super-resolution of images:algorithms, principles, performance. Internation-al Journal of Imaging Systems and Technology,1995, (6):297-304
    [28]Irani M, Peleg S. Improving resolution by image registration. CVGIP:Graphical Models and Image Proc.,1991:231-239
    [29]Youla D. C, Webb H. Image restoration by the method of convex projections:part1-theory. IEEE Transactions on Medical Imaging,1982,1(2):81-94
    [30]Park S. C, Park M. K, Kang M. G. Super-resolution image reconstruction:a technical overview. IEEE Signal Processing Magazine,2003,20(3):21-36
    [31]Kim S. P, Bose N. K, Valenzuela H. M. Recursive reconstruction of high resolution image from noisy undersampled multiframe. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(6):1013-1027
    [32]Tekalp A. M, Ozkan M. K, Sezan M. I. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration. IEEE Transactions on Acoustics, Speech, and Signal Processing,1992,3:169-172
    [33]Bose N. K, Kim H. C, Valenzuela H. M. Recursive implementation of total least squares algorithm for image reconstruction from noisy undersampled multiframes. IEEE Trans-action on Acoustics, Speech, and Signal Processing,1993:269-272
    [34]Davila C. E. Efficient recursive total least squares algorithms for FIR adaptive filtering. IEEE Transactions on Signal Processing,1994,42(2):268-280
    [35]Kaltenbacher E, Hardie R. C. High-resolution infrared image reconstruction using mul-tiple low resolution aliased frames. IEEE National Aerospace Electronics Conference, 1996:702-709
    [36]Keren D, Peleg S, Brada R. Image sequence enhancement using sub-pixel displacement. EEEE Conference on Computer Vision and Pattern Recognition,1988:742-746
    [37]Ur H, Gross D. Improved resolution from subpixel shifted pictures. CVGIP:Graphical Models and Image Processing,1992,54(2):181-186
    [38]Papoulis A. Generalized sampling expansion. IEEE Transactions on Circuits and Sys-tems,1977,24(11):652-654
    [39]Brown J. L. Multi-channel sampling of low pass signals. IEEE Transactions on Circuits System,1981,2(28):101-106
    [40]Komatsu T, Aizawa K, Saito T. Very high resolution imaging scheme with multiple different-aperature cameras. Signal Processing:Image Communication,1993,5(6):511-526
    [41]Trussell H. J, Civanlar M. R. The landweber iteration and projection onto convex sets. IEEE Transactions on Acoustics, Speech, and Signal Processing,1985,33(6):1632-1633
    [42]Landweber L. An Iteration Formula for Fredholm Integral Equations of the First Kind. American Journal of Mathematics,1951,73(3):615-624
    [43]Hardie R. C, Barnard K. J, Armstrong E. E. Joint MAP registration and high-resolution image estimation using a sequences of undersampled images. IEEE Transactions on Image Processing,1997,6(12):1621-1633
    [44]Franke R. Smooth interpolation of scattered data by local thin plate splines. Computers and Mathematics with Applications,1982,8(4):273-281
    [45]Sandwell D. T. Biharmonic spline interpolation of Geo-3 and Seasat altimeter data. Geo-physical Research Letters,1987,14(2):139-142
    [46]Lertrattanapanich S, Bose N. K. High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Transactions on Image Processing,2002, 11(12):1427-1441
    [47]Vandewalle P. Super-resolution from Unregistered Aliased Images. Ph.D. Thesis, EPFL, 2006
    [48]Pham T. Q, Van Vliet L. J, Schutte K. Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP Journal on Applied Signal Processing,2006, 2006(1):1-12
    [49]Katartzis A, Petrou M. Robust Bayesian Estimation and Normalized Convolution for Super-resolution Image Reconstruction. IEEE Conference on Computer Vision and Pat-tern Recognition,2007,2007:1-7
    [50]Mann S, Picard R. W. Virtual bellows:Constructing high quality stills from video. Inter-national Conference on Image Processing,1994:363-367
    [51]Tom B. C, Katsaggelos A. K. Resolution enhancement of video sequences using motion compensation. IEEE International Conference on Image Processing,1996,1:713-716
    [52]Sezan M. I, Stark H. Image restoration by the method of convex projections:Part2-applications and numerical results. IEEE Transactions on Medical Imaging,1982,1(2): 95-101
    [53]Ozkan M. K, Tekalp A. M, Sezan M. I. POCS-based restoration of spacing-varying blurred images. IEEE Transactions on Image Processing,1994,3(4):450-454
    [54]Patti A. J, Sezan M. I, Tekalp A. M. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Transactions on Image Processing, 1997,6(8):1064-1076
    [55]Stern A, Kemper E, Shukrun A. Restoration and resolution enhancement of a single im-age from a vibration-disorted image sequence. Optical Engineering,2000,39(9):2451-2456
    [56]Hong L, Sannino R, Kari J. A multi-stage block matching motion estimation for super resolution video reconstruction. Proc. SPIE 4671,2002:1052-1060
    [57]Schultz R. R, Stevenson R. L. Improved definition image expansion.1992 IEEE Inter-national Conference on Acoustics, Speech, and Signal Processing,1992,3:173-176
    [58]Schultz R. R, Stevenson R. L. Improved definition video frame enhancement.1995 In-ternational Conference on Acoustics, Speech, and Signal Processing,1995:2169-2172
    [59]Schultz R. R, Stevenson R. L. Extraction of high-resolution frames from video sequences. IEEE Transaction on Image Processing,1996,5(6):996-1011
    [60]Sementilli P. J, Nadar M. S, Hunt B. R. Poisson MAP super-resolution estimator with smoothness constraint. Proceedings of the SPIE,Neural and stochastic methods in image and signal processing,1993:2-13
    [61]Cheeseman P, Kanefsky B, Kraft R, Hanson R. Super-resolved surface reconstruction from multiple images,1994
    [62]Chan T. F, Wong C.-K. Total variation blind deconvolution. IEEE Transactions on Image Processing,1998,7(3):370-375
    [63]Zhang W, Cham W.-K. A Single Image Based Blind Super-Resolution Approach.15th Proceedings of IEEE International Conference on Image Processing,2008:329-332
    [64]Protter M, Elad M. Super Resolution With Probabilistic Motion Estimation. IEEE Trans-actions on Image Processing,2009,18(8):1899-1904
    [65]Capel D, Zisserman A. Super-resolution enhancement of text image sequences.15th International Conference on Pattern Recongnition,2000,1:600-605
    [66]Gilboa G, Sochen N. A, Zeevi Y. Forward and backward diffusion processes for adaptive image enhancement and denosing. IEEE Transactions on Image Processing,2002,11(7): 689-703
    [67]Kim H, Hong K. S. Variational approaches to super-resolution with contrast enhancement and anisotropic diffusion. Journal of Electronic Imaging,2003,12(2):244-251
    [68]Farsiu S. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing,2004,13(10):1327-1344
    [69]Nguyen N, Milanfar P, Golub G. A computationally efficient superresolution image re-construction algorithm. IEEE Transactions on Image Processing,2001,10(4):573-583
    [70]Nguyen N, Milanfar P. A wavelet-based interpolation-restoration method for superresolu-tion (wavelet superresolution). Cirsuits Systems Signal Processing,2000,9(4):321-338
    [71]Ji H, Cornelia F. Robust wavelet-based super-resolution reconstruction:theory and al-gorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(4): 649-660
    [72]Jiji C. V, Chaudhuri S. Single-frame image super-resolution through contourlet learning. Journal on Applied Signal Processing,2006,1:1-11
    [73]Gillette J. C, Stadtmiller T. M, Hardie R. C. Aliasing reduction in starting infrared im-agers utilizing sub-pixel techniques. Optical Engineering,1995,34(11):3130-3137
    [74]Christophe L, Bernard R. SPOT5 THR MODE. Proc. SPIE 3439,1998:480-491
    [75]DhereteP, RougeB. Image De-blurring and Application to SPOT5 THR Satellite Imag-ing. IEEE International Proceedings Geoscience and Remote Sensing Symposium,2003., 2003,1:318-320
    [76]Skrbek W, Lorenz E. HSRS:an infrared sensor for hot spot detection. Infrared Space-borne Remote Sensing Ⅵ,1998
    [77]Sandau R, Braunecker B, Driescher H, ECKARDT A, HILBERT3 S, HUTTON J, KIRCHHOFER W, LITHOPOULOS E, REULKE R, WICKI S. Design principles of the LH Systems ADS40 Airborne Digital Sensor. International Archives of Photogram-metry and Remote Sensing,2003:258-265
    [78]Blommel F. P, Dennis P. N, Bradley D. J. The effects of microscan operation on staring infrared sensor imager. Proc. SPIE 1540,1991,1540:653-664
    [79]Awamoto A, Ito Y, Ishizaki H, Yoshida Y. Resolution improvement for HgCdTe IRCCD. Proc. SPIE 1685,1992,1685:213-220
    [80]Fortin J, Chevrette P. Realization of a fast microscanning device for infrared focal plane arrays. Proc. SPIE 2743,1996,2743:185-196
    [81]Sanders J. G, Wan W. H, van Harris, Newton D, Tylinski G, Wolschon M, Imamura J. J. Compact airbone staring FPA sensor with microscanning. Proc. SPIE 2743,1996,2743: 158-165
    [82]郝鹏威,徐冠华,朱重光.数字图像空间分辨率改善的频率域方法.中国科学E辑,1999,29(3):235-244
    [83]郝云彩,杨秉新,张国瑞.线阵CCD相机细分采样成像的像质研究.光学学报,2000,20(10):1407-1411
    [84]周春平,田越,季统凯,吴胜利,张凤坡,许东,时春雨,姚勇航.一种提高CCD成像卫星空间分辨率的方法研究.遥感学报,2002,6(3):179-182
    [85]钱霖,叶燕.一种提高CCD像元分辨率方法的初步探讨.光学技术,2002,28(4):374-375
    [86]周峰,王怀义,马文坡,刘兆军,周春平,陈强,欧阳晓丽,蒋斌,夏德深.传输型光学遥感器斜模式采样新方法研究.航天返回与遥感,2005,26(3):51
    [87]周峰,王怀义,马文坡,刘兆军.提高线阵采样式光学遥感器图像空间分辨率的新方法研究.宇航学报,2006,27(2):227-232
    [88]周峰,王怀义,马文坡,刘兆军,周春平.传输型光学遥感器超模式斜采样新方法研究.航天返回与遥感,2005,26(3):43-46
    [89]张海涛,赵达尊.微扫描减少光电成像系统频谱混淆的数学原理及实现.光学学报,1999,19(9):1263-1268
    [90]白俊奇,陈钱,王娴雅.一种改进的凝视红外图像高分辨率重建算法.光学学报,2010,30(1):86-90
    [91]赵英时等.遥感应用分析原理与方法.北京:科学出版社,2003
    [92]冈萨雷斯.数字图像处理(第二版).北京:电子工业出版社,2003
    [93]孙家抦.遥感原理与应用.武汉:武汉大学出版社,2003
    [94]谭兵.多帧图像空间分辨率增强技术研究.Ph.D. Thesis,中国人民解放军信息工程大学,2004
    [95]王桥.数字图像处理.北京:科学出版社,2009
    [96]Friedenberg A. Microscan in infrared staring systems. Optical Engineering,1997,36(6): 1745-1749
    [97]左月萍,张建奇.几种工作模式的微扫描成像系统的理论建模和仿真.红外与毫米 波学报,2003,22(2):145-148
    [98]张剑.图像超分辨率重建问题研究.Ph.D. Thesis,中南大学,2010
    [99]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and asso-ciated variational problems. Communications on Pure and Applied Mathematics,1989, 42(5):577-685
    [100]Rudin L. I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D:Nonlinear Phenomena,1992,60(1):259-268
    [101]Chen D, Schultz R. R. Extraction of high-resolution video stills from MPEG image sequences. IEEE International Conference on Image Processing,1998:465-469
    [102]Bioucas-Dias J. M, Figueiredo M. A. T, Oliveira J. P. Total Variation-Based Image De-convolution:a Majorization-Minimization Approach. IEEE International Conference on Acoustics, Speech and Signal Processing,2006.,2006,2:861-864
    [103]Babacan S. D, Molina R, Katsaggelos A. K. Variational Bayesian Blind Deconvolution Using a Total Variation Prior. IEEE Transactions on Image Processing,2009,18(1): 12-26
    [104]Dahl J, Hansen P. C, Jensen S. H, Jensen T. L. Algorithms and software for total varia-tion image reconstruction via first-order methods. NUMERICAL ALGORITHMS,2010, 53(1):67-92
    [105]Chan T. F, Yip A. M, Park F. E. Simultaneous total variation image inpainting and blind deconvolution. International Journal of Imaging Systems and Technology,2005,15(1): 92-102
    [106]Chan T. F, Shen J, Zhou H.-M. Total Variation Wavelet Inpainting. JOURNAL OF MATHEMATICAL IMAGING AND VISION,2006,25(1):107-125
    [107]Malgouvres F, Guichard F. Edge direction preserving image zooming:A mathemati-cal,numerical analysis. SIAM Journal on Numerical Analysis,2001,39(1):1-37
    [108]Chambolle A. An algorithm for total variation minimization and applications. Jouranl of Mathematical Imaging and Vision,2004,20(1):89-97
    [109]Ng M. K, Shen H, Lam E. Y, Zhang L. A Total Variation Regularization Based Super-Resolution Reconstruction Algorithmfor Digital Video. EURASIP Journal on Advances in Signal Processing,2007, (1-16)
    [110]Babacan S. D, Molina R, Katsaggelos A. K. Total variation super resolution using a variational approach.15th IEEE International Conference on Image Processing,2008: 641-644
    [111]Rodriguez P, Wohlberg B. Efficient Minimization Method for a Generalized Total Varia-tion Functional. IEEE Transactions on Image Processing,2009,18(2):322-332
    [112]Beck A, Teboulle M. Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems. IEEE Transactions on Image Processing, 2009,18(11):2419-2434
    [113]Zhu M, Wright S. J, Chan T. F. Duality-based algorithms for total-variation-regularized image restoration. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS,2010, 47(3):377-400
    [114]Aujol J.-F. Some First-Order Algorithms for Total Variation Based Image Restoration. JOURNAL OF MATHEMATICAL IMAGING AND VISION,2009,34(3):307-327
    [115]Marchywka M. Modulation transfer function (MTF), aliasing, and dithering with high-precision CCD imagers. SPIE,2416,1995:174-180
    [116]Choi T. Y. Ikonos satellite in orbit Modulation Transfer Function(MTF) measurement using edge and pluse method. Ph.D. Thesis,2002
    [117]Kohm K. MTF measurement method and results for the OrbView-3 high resolution imaging satellite. International Society for Photogrammetry and Remote Sensing,2004, 20:1-6
    [118]Schowengerdt R, Archwamety C, Wrigley R. C. Landsat Thematic Mapper image derived MTF. Photogram Eng Remote Sens,1985,51:1395-1406
    [119]Ruiz C. P, Lopez F. J. A. Restoring SPOT images using PSF-derived deconvolution filters. Int J Remote Sens,2002,23:2379-2391
    [120]Hardie R. A fast image super-resolution algorithm using an adaptive Wiener filter. IEEE Transactions on Image Processing,2007,16(12):2953-2964
    [121]Vogel C. R, Oman M. E. Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Transactions on Image Processing,1998,7(6):813-824
    [122]Chan T. F, Golub G. H, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. Lecture Notes in Control and Information Sciences,1996,219: 241-252
    [123]Wang Z, Bovik A. C, Sheikh H. R, Simoncelli E. P. Image Quality Assessment:From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing,2004, 13(4):600-612
    [124]Skrbek W, Lorenz E. HSRS:an infrared sensor for hot spot detection. Infrared Space-borne Remote Sensing VI,1998:167-175
    [125]郝鹏威.数字图像空间分辨率改善的方法研究Ph.D. Thesis,中国科学院,1998
    [126]迟学芬,韩昌元,金辉.CCD推扫遥感成像中的欠采样噪声处理.电子学报,2003,31(9):1323-1326
    [127]车双良,汶德胜.亚象元动态成象系统空间分辨率研究.光子学报,2001,30(11):1418-1420
    [128]郝云彩,杨秉新,张国瑞,纪强.提高线阵CCD相机MTF的细分采样理论与方法.航天返回与遥感,1999,20(2):27-31
    [129]吴新社,蔡毅.红外凝视成像系统中的光学微扫描技术.红外与毫米波学报,2007,26(1):10-14
    [130]Yeary M. B, Griswold N. C. Adaptive IIR filter design for single sensor applications. IEEE Transactions on Instrumentation and Measurement,2002,51(2):259-267
    [131]高志文,陶然,单涛.外辐射源雷达互模糊函数的两种快速算法.电子学报,2009,37(3):669-672
    [132]Hajlaoui N, Chaux C, Perrin G, Falzon F, Benazza-Benyahia A. Satellite image restora-tion in the context of a spatially varying point spread function. Optical Society of Amer-ica,2010,27(6):1473-1481
    [133]Tzikas D. G, Likas A. C, Galatsanos N. P. Variational bayesian sparese kernel-based blind image deconvolution with student's-t priors. IEEE Transactions on Image Processing, 2009,18(4):753-764
    [134]Chantas C, Galatsanos N. P, Molina R, Katsaggelo A. K. Variational Bayesian Image Restoration With a Product of Spatially Weighted Total Variation Image Priors. IEEE Transactions on Image Processing,2010,19(2):351-362
    [135]Michailovich O. V. An Iterative Shrinkage Approach to Total-Variation Image Restora-tion. IEEE Transactions on Image Processing,2011,20(5):1281-1299
    [136]Babacan S. D, Molina R, Katsaggelos A. K. Variational Bayesian Super Resolution. IEEE Transactions on Image Processing,2011,20(4):984-999.考虑亚像元级运动估计的超分
    [137]Glasner D, Bagon S, Irani M. Super-resolution from a single image. IEEE 12th Interna-tional Conference on Computer Vision,2009:349-356
    [138]Molina R, Nunez J, Cortijo F. J, Mateos J. Image restoration in astronomy-a Bayesian perspective. IEEE Signal Processing Magazine,2001,18(2):11-29
    [139]Dempster A. P, Laird N. M, Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society,1977,39(1):1-38
    [140]Bahnam M. R, Katsaggelo A. K. Digital image restoration. IEEE Signal Processing Magazine,1997,14(2):24-41
    [141]Spitzer F. Markov random fields and Gibbs ensembles. The American Mathematical Monthly,1971,78:142-154
    [142]Besag J. Spatial interaction and the statistical analysis of lattice system. Journal of the Royal Statistical Society:Series B,1974,36(2):192-236
    [143]Geman S, Geman D. Stochastic relaxation,Gibbs distributions,and the Bayesian restora-tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984, 6(6):721-741
    [144]邹谋炎.反卷积和信号复原.北京:国防工业出版社,2001
    [145]Felzenszwalb P. F, Huttenlocher D. P. Efficient belief propagation for early vision. Inter-national Journal of Computer Vision,2006,70(1):41-54
    [146]Geman S, Reynolds G. Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(3):367-383
    [147]Roth S, Black M. J. Fields of Experts:a framework for learning image priors. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2: 860-867
    [148]Tappen M. F. Utilizing variational optimization to learn Markov random fields. IEEE Conference on Computer Vision and Pattern Recongnition,2007,1:1-8
    [149]Huber P. J. Robust Statistics. New York:Wiley,1981
    [150]Pan R, Reeves S. J. Efficient Huber-markov edge-preserving image restoration. IEEE Transactions on Image Processing,2006,15(12):3728-3735
    [151]Zhao W, Sawhney H. S. Is super-resolution with optical flow feasible. European Confer-ence on Computer Vision,2002,1:599-613
    [152]Wang Z, Qi F. On ambiguities in super-resolution modeling. IEEE Signal Processing Letters,2004,11(8):678-681
    [153]邵文泽.基于图像建模理论的多幅图像正则化超分辨率重建算法研究Ph.D. Thesis,南京理工大学,2008
    [154]Brown L. G. A survey of image registration techniques. ACM Computing Surveys (CSUR),1992,24(4):325-376
    [155]张继贤,李国胜,曾钰.多源遥感影像高精度自动配准的方法研究.遥感学报,2005,9(1):73-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700