用户名: 密码: 验证码:
地理信息系统及卫星遥感图像在广东省登革热监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
登革热是由伊蚊引起的一种急性热性传染病,主要分布于热带和亚热带的国家和地区,是分布最广、发病人数最多的虫媒病之一,估计全球每年有1亿例感染者。不但对人群健康造成极大威胁,而且对部队战斗力有重要影响。同时,该病毒可大量培养,其冻干粉可保存数年,可通过气溶胶和蚊虫引起感染,因此可以作为生物战剂与恐怖袭击的工具。在我国主要分布在东南沿海的广东、福建、海南和台湾四省,呈现明显的地域性,现已被列为我国新增的重要的传染病。同时,全球化趋势、自然生态系统的破坏使得该传染病的预防和控制工作越发复杂。由于登革热媒介伊蚊的种群受多种环境因素的影响,传统的监测和控制较为困难,因而新的监测手段的探索及应用成为传染病工作者所急需。为摸清影响登革热伊蚊动态变化规律,我们在常规的研究基础上,运用地理信息系统空间分析功能、卫星遥感图像提取环境因素信息功能、主成分分析压缩与综合指标功能,对影响登革热发病和媒介伊种群动态变化的因素进行了探讨,为建立登革热媒介伊蚊分布的模型、预测与控制提供理论依据。
    
    一
     我们选择高发区的广东省(潮州市)作为研究现场,分四个
    部分进行了初步探讨。
     第一部分:本研究首先从流行病学分析的角度,研究了登革
    热伊蚊动态变化与气候因素的相关性,结果发现:与媒介伊蚊密
    度有关的气象参数是:降雨量、日照时间、降雨天数、平均气温、
    最低平均气温、相对湿度;经逐步回归分析得到回归方程:
    八,=24.800+0.826 XI十0.020 X。-0.418 X。其中局代表最低平均
    气温、XZ代表降雨量、X3代表相对湿度。登革热发病的L吗。
    回归方程:P(l)=川l+e-(-’·”’+‘·”’“)l,BI为伊蚊密度指数。
     第二部分:为进一步探讨广东省登革热伊蚊的空间分布特征,
    以潮州市为例,建立了潮州市的伊蚊媒介的地理信息系统,并对
    其空间分布特征进行分析。结果显示:潮州市各监测点的伊蚊分
    布不是随机的,而是存在一定的空间聚集性。各监测点距离水系
    的不同,其伊蚊密度也不一样,且存在,距离水系越近,伊蚊密
    度越高,高密度的监测点集中于水系附近。统计分析表明,1000 m
    以内的监测点的伊蚊密度明显高于 1000 m范围以外的伊蚊密度
     (尸25.354,P<0刀1)。空间数据探索分析得出,伊蚊在空间分布
    上具有空间自相关性。其空间分布图显示:每年的伊蚊疫情虽有
    变化,但基本上仍保持高、中、低三类分布区域,伊蚊高密度区
    主要集中于韩江三角的潮州市区湘桥区、潮安县的官塘镇和铁铺
    镇等沿江地区;伊蚊密度低的区域为潮州地区的北部。枕…ng分
    析最后产生四个交叉核验指标:反映预期值的偏性的MPE、估计
    方差的RMSE、反映预期值与实测数据的一致性的ASE、预期误
    差变异程度的RMSSE,本研究中分布图的四项指标均较为理想。
     5
    
     摘要 第四军医大学硕士学位论文
     第三部分:我们利用ERDASS.5对卫星遥感图像所包含环境
    因素信息提取的功能,探讨了登革热媒介伊蚊密度与标准化植被
    指数之间的关系,结果得出:从NOAA-AVHRR卫星图片提取全
    省1995年流行季节和非流行季节的NDVI得到,广东省全境全年
    都有植被覆盖,流行季节和非流行季节的NDVI平均值分别为
    142.95和 126.19。从提取的流行区域和非流行区域来看,流行区
    域的平均NDVI为140.98,非流行区域的平均NDVI为124.02。
    方差分析表明流行季节与非流行季节之间总体均数不等或不全
    等,即流行季节的NDVI要高于非流行季节的NDVI(F=96.943,P
    <0.of),对应的流行区域的 NDVI也高于非流行季节的 NDVI
     (F=56.348,P<0.of),相关分析表明,与伊蚊密度相关的植被指
    数有 7、8、9、10、12月的最大 NDVI,3、7、11、12的平均 NDVI
    和 11月的最小NDVI(P<0刀1),且存在:
    fBI二一14586y0691b,Thlx-Sp十0325if&zx.A呕+0126llka,,--Jul 十0.054lljin-NOv
     0功.01,R’-0.80人其中广表示各市县的伊蚊密度,局佃.S6p、
    XMax、。、XM。n、I、XMn-NOv分别表W 9月最大NDVI、8月最大NDVI、
    7月平均 NDVI和 11月最小 NDVI。
     在指标替换中,我们运用了Co七opng,分析表明:媒介分布
    与发病地区呈现高度一致性,即媒介密度高的地区发病也高,且
    与NDVI有较强的一致性。用NDVI对登革热发病、BI同时替代
    进行三者协同时也取得了一致性的效果,即NDVI高的地域其发
    病和媒介密度也关联性增高。
     第四部分:运用主成分分析,对广东省各监测点的3类共门
     个与登革热发病相关的指标分析得出初始特征值显示:第一、第
     二、第三、第四主成分的特征值较大,分别为10.334,2.322,1石92,
     6
    
     摘要 第四军医大学硕士学位论文
Dengue fever is acute, hot property infectious disease, it is vector disease of distribution most widely, patient most, distributing primary in tropical and subtropical countries or regions, estimated at one hundred million cases to be infected annual in the world. Once being epidemiolocal, armed force will loss fight capability, Simultaneity, this virus can be large-scale cultured, its lyophilized powder can be preserved few years, it can be infected with aerosol and vector, so, it can be used in biological warfares and terror attacks. It mostly distributes in Guangdong, Fujian, Hainan and Taiwan at southeast along the coast. Meanwhile, because of global tendency and destroy of nature ecosystem, its prevention and control became more complicated. As vector aedes is affected by many environmental factors, its supervision and control is relatively difficulty, and new prevention means became quickly need. In order to find out the regularity of aedes vector dynamic change, we make use of spatial
    
    
    analysis function of geographic information systems (GIS), extracting environmental agent information's function of satellite remote sensing and compressing index's function of principal component analysis's (PCA), explore affecting factor on dengue and aedes, and provide theory evidences to construction distribution model, prediction and prevention of aedes vector.
    We select Guangdong (Chaozhou) with high incidence of dengue disease as our study site, and have accidence exploration with fourth sects.
    Sect I : exploring relation between vector dynamic change and climate factors from epidemical analysis' view. The results indicate: Meteorology parameters correlating with aedes density are rainfall, sunlight, average air temperature, lowest average air temperature and relative humidity. Stepwise regression analysis leads to the regression equation,
    Viz.: YBI = 24.800 + 0.826X1 + 0.020X 2- 0.418 X 3 (X1 represents lowest average air temperature, X2 rainfall and X3, relative humidity).
    The logistic regression equation is
    Sect II : For further exploring character of vector spatial distribution in Guangdong, we established GIS of vector in Chaozhou and analyzed spatial autocorrelation, the results show that aedes distribution of supervision spots in Chaozhou wasn't stochastic rather than existing stated spatial cluster. All supervision spots have different densities with different distance, and the more the
    
    supervision spots are close to water, the more the supervision spots are occupied and higher in density. Statistic analysis show that the density of the spots within 1000 meters to waterside is significantly higher than the spots which exceed 1000 meters to waterside (F=25.354, P<0.01). Exploratory spatial data analysis (ESDA) demonstrates aedes's spatial distribution has spatial autocorrelation. Its spatial distribution maps show that annual aedes epidemic situation change but basically maintain high, middle and low incidence three types distribution area, high density primary distributed in Xianqiao district, Guangtang tower and Tiepu tower of Chao'an county, and the low density area is north of Chaozhou. Kriging finally bring four cross-validation indices, they are MPE (mean prediction error) which reflecting predictive bias, RMSE (root-mean- square error) which estimating variance, ASE (average standard error) which reflecting consistency between predicate value and true value, and RMSSE (root-mean- square standard error) which being predictive error variation degree. Four indices of this study were ideal.
    Sect III : We use function of ERDAS8.5 which distill environmental factors from remote sensing image, and explore the relation between vector density and normalized difference vegetation index (NDVI).The result lead that vegetation covered all over Guangdong all through year, the mean NDVI of epidemical season and non- epidemical season were 142.95, 126.19, respectively. And epidemical area and non-epidemical area were 140.98, 140.98,
    
    respe
引文
[1]Halsetead SB. Dengue haemorrhagic fever-A public health problem and a field for research[J]. Bull WHO 1980; 58(1)1: 1-22.
    [2]张海林.登革热和登革出血热国际会议简介.国外医学(流行病学传染病学分册)[J],2001;28(2):73-6.
    [3]阚飙,中国登革热的流行及对临测研究的建议[J].中国媒介生物学及控制杂志,1997;8(2) 152-56.
    [4]许龙善.台湾登革热的流行与控制.海峡预防医学杂志[J],2000;6(1):20~2.
    [5]济宁,王新国,李惠.东南亚国家和地区登革热流行简况.实用寄生虫病杂志[J],1999:7(1):25-7.
    [6]潘志明,邱季春,陈小霜,等.90年代中期广州市登革热流行情况综合报告.中国媒介生物学及控制杂志[J],2000;11(2):141-3.
    [7]方美玉,陈翠华,李锦清,等.广东省1990—1998年登革热流行病学监测分析[J].中国公共卫生,1999;15(11):990-1.
    [8]关育青,黄祖星,廖华东,等.1978-1998年佛山市登革热流行病学调查分析[J].广东卫生防疫,2000:26(1):7-10.
    [9]赵惠霖,罗庆洪,沈柱章.1978年佛山市石湾镇登革热流行的调查报告.中华医学杂志[J],1981;61(8):466.
    [10]崔君兆编著.中国登革热[M].广西:广西壮族自治区卫生防疫站,1983;3-25.
    [11]白纹伊蚊和埃及伊蚊及其综合防制研究组.埃及伊蚊在我国的分布及其综合防制[J].中华流行病学杂志,1982;3(6):354-6.
    [12]李雪东,赵桂芳.致倦库蚊实验室传播登革病毒的研究[J].中华
    
    微生物与免疫学杂志.1985;5(4):247.
    [13] 罗庆洪,林镇城,郝瑞峰,等.致倦库蚊传播登革热研究[J].中华流行病学杂志.1993;14(2):67.
    [14] 潘志明,刘树国,邱季春,等.广州市1990年登革热流行特点分析[J].中国媒介生物学及控制杂志.1992;3:369.
    [15] 张海林,白登云,龚正达.云南省登革热流行病学调查分析[J].地方病通报.1999;14(3):50-4.
    [16] 邵焰,江丽芳,叶嗣颖.登革热分子流行病学研究进展[J].中国微生态学杂志,2000,12(6):365-8.
    [17] 卢志坚.一起传入北纬25°地方的登革暴发流行[J].公共卫生与疾病控制杂志.1984;3(3):39.
    [18] Gubler DJ. Surveillance of dengue fever and dengue hemorrhagic fever[J]. Bull PAHO. 1989;23(4):397.
    [19] 行政院卫生署.传染病防治法[M].1999.
    [20] 黎正伦,赵治国,王传滋.环境与社区登革热的控制效果和分析[J].海南医学.2000;11(4):4-5,
    [21] 杨佩英,秦鄂德主编.登革热和登革出血热[M].第1版.北京:人民军医出版社,1999.
    [22] Innis BL. Virulence of a live dengue vires vaccine candiadate: a possible new marker of dengue virus attenuation[J]. J Infect Dis, 1988; 158: 876.
    [23] Bham N, Yoksan S. Live attenuated tetravalent dengue vaccine. In: Gubler DJ, Kuno G, eds. Dengue and dengue Hemorrhagic fever. Wallingford, United Kingdom: CAB Internation[z], 1997 367.
    
    
    [24] 赵卫.登革热减毒活疫苗的研究进展[J].中国公共卫生,2001;17(7):653-5.
    [25] Su MD & Chang NT. Framework for application of GIS on the monitoring of dengue vectors. Kaohsiung[J] J. Med. Sci, 1994; 10:94-101.
    [26] 邬伦,刘瑜,张晶,等.地理信息系统-原理、方法和应用[M],北京:科学出版社,2001。
    [27] 李德仁,李青泉.论地球空间信息科学的形成[J].地球科学进展,1998;13(4):319-326.
    [28] 马荣华,黄杏元,蒲英霞.数字地球时代“3S”集成的发展[J].地理科学进展,2001;20(1):89-96.
    [29] 李德仁.论RS、GPS与GIS的集成的定义、理论与关键技术[J].遥感科学,1997;1(1):64-68.
    [30] 陆锋,崔伟宏.车辆导航与监控中GPS/GIS实时定位配准误差分析[J],遥感学报,1999:3(4):312-317.
    [31] Daniel M; Kolar J, Zeman P, et al. Tick-borne encephalitis and Lyme borreliosis: comparison of habitat risk assessments using satellite data (an experience from the Central Bohemian region of the Czech Republic)[J]. Cent Eur J Public Health, 1999 Feb; 7(1):35-9.
    [32] 杨长虹,文松,熊茂恩,等.GIS概况及在地方病中的应用简介[J].实用寄生虫病杂志,1999:7(1):33-4.
    [33] 周晓农,胡晓抒,孙宁生,等.地理信息系统用于血吸虫病的监测:Ⅰ.应用预测模型的可能性[J].中国血吸虫病防治杂志,1998;10(6):321-4.
    
    
    [34] 周晓农,胡晓抒,孙宁生,等.地理信息系统用于血吸虫病的监测:Ⅱ.应用预测模型的可能性[J].中国血吸虫病防治杂志,1999;11(2):66-70.
    [35] 周晓农,胡晓抒,孙宁生,等.地理信息系统用于血吸虫病的监测:Ⅲ.应用预测模型的可能性[J].中国血吸虫病防治杂志,1999;11(4):199-202.
    [36] Scholten HJ, Lepper MJ. The benefits of the application of geographical systes in public and environmental health[J]. WHO Statistical (Quarterly), 1997; 44-8.
    [37] Schellenberg. An analysis of the geographical distribution of sever malaria in children in Kilifi district. Kenya[J]. Inter J Epidemiol. 1998; 27:323.
    [38] Yilma JM Malone JB. A geographic information system forecast mode for strategic control of fasciolosis in Ethiopia[J]. Vet Parasitol. 1998; 1421:1.
    [39] 张青锁.地理信息系统介绍[J].河南地质,2000;18(3):228-229.
    [40] 徐业昌,李树祥,俞守义.地理信息系统及其在医学领域的应用[J].北京医学生物工程,1997;16(4):249-253.
    [41]Bavia ME, Hale LE, Malone JB, et al. Geographic information systems add the environment risk of schistosomiaisi in Bahia, Brazil[J]. Am J Trop Med Hyg, 1999;60:566-572.
    [42] 陈秀万.洪涝灾损失评估系统—遥感与GIS技术应用研究[M].北京:中国水利水电出版社.1999,2(1);6—39.
    [43] 中华人民共和国卫生部.大灾之年无大疫-1991年救灾防病纪实[M].北京:人民卫生出版社,1992;9.
    
    
    [44] 范宝俊.1998年中国的灾情和救灾工作情况[J].自然灾害学报.1999.
    [45] 李纪人.遥感技术在1998年洪涝灾害监测与评估中应用[J].中国航天,1998;11:3-5.
    [46] 郑立中.中国遥感技术应用的现状与发展[J].中国航天,1997,10:6—8.
    [47] Cross ER, Charles S, Rick P, et al. Predicting areas endemic for schistose-miasis Using weather variables and a LANDSAT database[J]. Mil Med, 1984; 149:542-44.
    [48] 陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.5.
    [49] Clarke KC, Mclafferty SL, Tempalaki BJ. On epidemiology and geographic information systems: a review and discussion of future directions[J]. Emerging Infect Dis, 1996; 2:85-92.
    [50] Scholten HJ, Lepper MJ. The benefits of the application of geographical systes in public and environmental health[J]. WHO Statistical Quarterly, 1997; 44-8.
    [51] 胡著智,王慧麟,陈庆峦.遥感技术与地学应用[M].南京:南京大学出版社,1999.
    [52] http://www. chinadci.com/remote/#
    [53] Donald R, Roberts T, Mario H, Rodriguez, S. The environment, remote sensing, and malaria control[J]. Annals New York Academy of Sciences. 1994,396-402
    [54] Hayes RO. Detection, identification, and classification of mosquito larval habitats using remote sensing scanners in
    
    earth-orbiting satellites[J]. Bull WHO, 1985; 63(2);375-86.
    [55] Cline BL. New eyes for epidemiologists: aerial photography and other remote sensing techniques[J]. Am J Epidemio. 1970; 92:82-89.
    [56] Hugh-Jones M. Application of remote sensing to identification of the habitats of parasites and disease vectors[J]. Parasitol today, 1989; 5(8): 244-251.
    [57] Provost MW. Report of the 46th annual meeting of the Florida anti-mosquito association[J]. Bull WHO, 1988; 65(2);377-86
    [58] Branes CM. Some implications of remote sensing technology in insect control programes including mosquitoes[J]. Mosquuito News 1979; 39(2): 271-281.
    [59] Gleiser RM., Gorla DE. Monitoring the abundances of aedes albifasciatu to the south of Mar Chiquita Lake, central Argentina, with the aid of remote sensing[J]. Annals of Tropical Medicine & Parasitology, 1997; 91(8): 917-926.
    [60] Dale PE. An Overview of Remote sensing and GIS for Surveillance of Mosquito Vector Habitats and Risk Assessment[J]. Journal of Vector Ecology, 1998; 23(1): 54-61.
    [61] Washino RK. Mosqutito control research[J]. annual report. Univ Cali, 1987.
    [62] 顾卫东.遥感技术在蚊虫孳生地监测中的应用[J].医学动物防制.1991;7(3):151-154.
    [63] Louisa R, Beck, Mario H, Rodriguez, Sheri W. Dister. Remote sensing as landscape epidemologic tool to identify villages at
    
    high risk for malaria transmission[J]. Am J Trop Med Hyg., 1994; 51(3):271-280.
    [64] Louisa R, Beck, Mario H, Rodriguez, Sheri W. Dister. Assessment of a remote sensing-based for prediction malaria transmission risk in villages of Chiapas, Mexico[J]. Am J Trop Med Hyg, 1997; 56(1):99-106.
    [65] Eliska Rejmankova, Donald R, Roberts, Anitra Pawley, et al. Predictions of adult anopheles albimanus densities in villages based on distances to remotely sensed larval habitats[J]. Am J Trop Med Hyg, 1995; 53(5): 482-488.
    [66] Steel JW. Direction general de la recherché scientifique et technique gites larvaires de moustiques: Mangroves et autres formations marecageuses littorals en Guadeloup. Carte de Indicateurs Phytoecologuque Delta Productions[J]. Am J Trop Med Hyg, 1994; 52(6): 632-635.
    [70] Noboru Minakawa, Clifford M. Mutero, John I. Githure, et al. Spatial ditrubtion and habitat characterization of anopheline mosquito larvae in Western Kenya[J]. Am J Med. Hyg, 1999; 61(6):1010-1016.
    [71] Steelman, CD, Schilling PE. Applications of remote sensing and GIS to disease control and health management[J]. J Econ Entomol, 70: 15-17.
    [72] Olsen, JK, Meek CL. New eyes for epidemiologist: Aerial photography and other remote sensing techniques[J]. Mosq News, 1980; 40, 55-66.
    
    
    [73] Fleetwood SC, Chambers MD, Terracinal L. Distinguishing high and low anopheline-producing rice fields using remote sensing and GIS technologies [J]. Mosq News 1981; 41:174-177.
    [74] World Health Organization. Tropic Diseases 1990, Special Program for Research and Training in Tropical Diseases. Geneva: World Health Organization[J]. WHO Statistical, 1991: 40-44.
    [75] MARA/ARMA. Towards an Atlas of Malaria Risk in Africa. First Technical Report of the MARA/ARMA Collaboration. Durban, South Africa. Aussi disponible en francais[J]. Bull WHO, 1998; 86(1):15-19.
    [76] Srivastava A, Nagpal BN, Saxena R, et al. Geographic information system as a tool to study malaria receptivity in Nadiad Taluka, Kheda district, Gujarat, India[J]. Southeast Asian J Trop Med Public Health 1999; 30(4): 650-656.
    [77] Hay SI, Snow RW, Rogers DJ, et al. Predicting malaria seasons in Kenya using multi-temporal meteorology satellite sensor data[J]. Trans R Soc Trop Med Hyg, 1998; 92(1): 12-20.
    [78] Jmes MM, Chris S, Philip W, et al. Domestic Aedes Aegypti breeding site surveillance: Limitation of remote sensing as a predictive surveillance tool[J]. Am J Trop Med Hyg, 1998; 59(2): 261-64.
    [79] Ratana Sithiprasasna, Kenneth J. Lithicum, et al. Use of geographical information system to study the epidemiology of dengue haemorrhagic fever in Thailand. Dengue Bulletin, 1997; 21; 68-72.
    
    
    [80] Linthicum, K. L. Detection of Rift Vally Fever viral activity in Kenya by satellite remote sensing[J]. Science, 1987; 235: 1656-1659.
    [81] Moncay AC, Edman JD, Finn JT. Application of Geographic information technology in determing risk of eastern equine encephalomyelitis virus transmission[J]. J Am Mosq Control Assoc 2000; 16(1): 28-35.
    [82] Hay SI, Tucker CJ, Rogers DJ, et al. Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease[J]. Annals of Tropical Medicine and Parasitology, 1996; 90(1): 1-19.
    [83] Oscar KH, Malone JB. New tools: potential medical applications of data from new and old environmental satellites[J]. Acta Tropical, 2001; 79:35-47.
    [84] Yates HW, Tarpley JD, Schneider SR, et al. The role of meteorolohical satellites in agricultural remote sensing[J]. Remote Sens Enviro 1984; 14:219-233.
    [85] Luduena AF. Ecologí a poblacional de Aedes(Ochlerotatus) albifasciatus Macquart, (diptera: Culicidae) en el arco sur de Mar Chiquita(Córdoba). Doctoral thesis, Universidad Naci onal de Có rdoba, Argentiana[J]. 1994; 1838
    [86] Hay SI, Lennon JJ. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate[J]. Trop Med and Inter Health, 1999; 4(1):58-71.
    
    
    [87] Hayes MO, Eugene LM, Carl JM. Detection, identification and classification of mosquito larval habitats using remote sensing scanners in earth-orbiting satellites[J]. Bull WHO, 1985; 6392):361-74.
    [88] Louise AB, Marion HR, Sheri WD, et al. Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission[J]. Am J Trop Med Hyg, 1994; 51(3): 271-280.
    [89] Louise AB, Marion HR, Sheri WD, et al. Assessing of a remote sensing based model for predicting malaria transmission risk in villages ofchiapas, Mexico[J]. Am J Trop Med Hyg, 1997; 56(1): 99-106.
    [90] Byron Wood, Robert Washino, Louisa Beck, et al. Distinguishing high and low anopheline-producing rice fields using remote sensing and GIS technologies[J]. Prev Vet Med, 1991; 11: 277-288.
    [91] Alastair MN. 亚洲的遥感和地理信息系统—AIT院长访谈录[J].测绘通报,1997;7:34-35.
    [92] Charles M. Croner, Jonathan sperling, Frederick R. Broome. Geographic information systems: New perspective in understanding human health and environment relationships[J]. Statistics Med 1996; 15:1961-1977.
    [93] Arambulo PV. Prerspctives on the application of remote sensing and GIS to disease control and health management[J]. Prev Vet Med, 1991; 11:345-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700