用户名: 密码: 验证码:
结构光照明超分辨微分干涉相衬显微成像技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微分干涉相衬(Differential interference contrast, DIC)显微镜,是60年前发展起来的用于观察未染色透明的生物样品(相位样品)。目前,其已经成为使用最广泛的显微成像技术中的一种技术,且在生物医学研究领域具有广泛的应用。DIC成像技术是将样品中相位梯度的变化转化为强度变化,并且由两束横向上有略微距离(几百纳米)的光干涉产生相位的一阶导数信息。对比于荧光显微成像技术,DIC显微镜具有非侵入性和无需样品标记或染色的优点,可以允许人们观察没有处理过的天然的样品,在实际应用中很有意义。而对比于相衬显微镜,DIC显微镜具有以下优点:高空间分辨率;无光晕伪像;光学层析能力。然而,作为一种远场光学显微镜,DIC显微镜的空间分辨率受到了光学成像中衍射法则的限制,这使得许多小于衍射极限的生物结构在DIC成像中不可分辨。因此,为了观察更加精细的结构并且理解它们的功能,提高DIC成像的空间分辨率(打破分辨率衍射极限)显得极为重要。
     我们提出了一种打破分辨率衍射极限的DIC成像技术,称之为结构光照明DIC(structured illumination DIC, SI-DIC)显微镜。此技术的物理思想是将结构光照明的观念应用于传统的DIC显微镜来扩宽DIC成像系统的相干传递函数(coherent transferfunction, CTF)的带宽,从而使重构得到的DIC图像的分辨率明显优于传统DIC显微镜的成像分辨率。接着,我们进一步发展了结构光照明超分辨DIC成像技术,提出了基于空间光调制器DIC的结构光照明成像技术。此技术在实现超分辨DIC成像的同时,具有结构相对简单且DIC的重要参数(剪切方向、大小及基延迟)很容易变换的优点。
     本文取得的主要创新研究结果如下:
     (1)提出了结构光照明DIC超分辨显微成像技术。发展了结构光照明DIC成像理论,并通过计算机仿真的方法,验证了提出的结构光照明DIC成像理论。设计并建立了结构光照明DIC超分辨显微成像系统。使用数值孔径为0.8的聚光镜与物镜,以53nm聚苯乙烯小球样品,测量系统成像分辨率,获得了190nm的成像分辨率,打破了传统DIC成像分辨率衍射极限(380nm)。较传统DIC成像,结构光照明DIC成像的分辨率提高了两倍。并使用结构光照明DIC成像系统观察了生物样品(人脐静脉内皮细胞),同样获得了超分辨的实验结果,展示了此技术在生物学方面的应用。
     (2)提出了基于空间光调制器DIC的结构光照明成像技术。研究了基于空间光调制器的DIC成像原理,建立了基于空间光调制器DIC的结构光照明成像系统。由于空间光调制器的灵活性,应用此成像系统可以方便地获得各种DIC重要参数(剪切方向、大小及基延迟)的DIC成像结果。使用数值孔径为0.8的聚光镜与物镜,以53nm聚苯乙烯小球样品,测量基于空间光调制器DIC的结构光照明成像系统分辨率,获得了211nm的成像分辨率,同样打破了DIC成像分辨率极限。较基于空间光调制器的DIC成像(435nm),基于空间光调制器的DIC结构光照明成像的分辨率提高了两倍。
Differential interference contrast (DIC) microscopy is developed60years ago forobserving unstained and transparent biological specimens (phase object). Recently, it hasbeen one of the most widely used techniques and gained broad application in thebiomedical community. The DIC microscopy converts the variations of phase gradients inthe specimen into intensity variations, and produces the first-order derivative of the phaseby the interference of two identical but laterally displaced beams. In contrast tofluorescence microscopy, DIC microscopy is valuable owing to the non-invasive andlabel-free advantages that allow us to observe untreated ‘native’ samples. Compared tophase contrast (PhC) microscopy, DIC microscopy has several benefits, including highspatial resolution, free of halo and shade-off artifacts and optical sectioning capability.However, since DIC microscopy is one kind of far-field optical microscopy, its spatialresolution is limited by the law of diffraction. This makes many biological structuressmaller than the diffraction limit unresolvable. Therefore, the enhancement of spatialresolution below the classical diffraction limit is critically important to reveal the finerstructures for an increasing understanding of their functions.
     We present a method termed as structured illumination differential interferencecontrast (SI-DIC) microscopy to break the diffraction resolution limit of the DICmicroscopy. The idea is to apply the concept of structured illumination to the conventionalDIC microscopy to expand the bandwidth of coherent transfer function (CTF) of DICimaging system, and thus reconstruct DIC image with resolution significantly better thanthe diffraction limit. Then, we further develop the structured illumination differentialinterference contrast microscopy, and propose structured illumination SLM-based DICmicroscopy. The technique can realize super-resolution DIC imaging, meanwhile, itsstructure is relatively simple and the important parameters (the direction and size of theshear and bias retardation) of DIC imaging can be changed easily.
     The main innovative results of this thesis are as follows:
     (1) We propose a structured illumination DIC super-resolution microscopy. Wedevelop the theory of the structured illumination DIC. By computer simulation, we verifythe theory of the structured illumination DIC. We design and constructe the structuredillumination DIC super-resolution imaging system. With0.8numerical aperture condenserand objective, we use53nm polystyrene beads to measure the imaging resolution of the system, and obtain190nm spatial resolution, breaking the resolution diffraction limit (380nm) of traditional DIC microscopy. The imaging resolution of structured illumination DICmicroscopy doubles that of the conventional DIC microscopy. With this system, weobserve biological sample (Human umbilical vein endothelial cells), and also obtainsuper-resolution imaging results, demonstrating biological application of this technique.
     (2) We introduce structured illumination spatial light modulator (SLM) based DICmicroscopy. We study the image formation principle of SLM-based DIC. We buildstructured illumination SLM-based DIC imaging system. Because of the flexibility ofSLM, with this imaging system, we can easily achieve DIC imaging with all kinds ofimportant parameters (the direction and size of the shear and bias retardation) of DIC.With0.8numerical aperture condenser and objective, we use53nm polystyrene beads tomeasure the imaging resolution of this system, and obtain211nm spatial resolution,breaking the resolution limit (435nm) of SLM-based DIC microscopy. The imagingresolution of structured illumination SLM-based DIC microscopy doubles that of theSLM-based DIC microscopy.
引文
[1] Abbe E. Beitr ge zur Theorie des Mikroskops und der mikroskopischenWahrnehmung. Archiv für mikroskopische Anatomie,1873,9(1):413-418.
    [2] Bradbury S., Evennett P. Contrast Techniques in Light Microscopy. Oxford: BIOSScientific,1996:118.
    [3] Hoebe R. A., Van Oven C. H., Gadella T. W. J., et al. Controlled light-exposuremicroscopy reduces photobleaching and phototoxicity in fluorescence live-cellimaging. Nature Biotechnology,2007,25(2):249-253.
    [4] Patterson G. H. Fluorescence microscopy below the diffraction limit. Seminars inCell and Developmental Biology,2009,20(8):886-893.
    [5] Zernike F. Diffraction theory of the knife-edge test and its improved form, thephase-contrast method. Monthly Notices of the Royal Astronomical Society,1934,94:377-384.
    [6] Nomarski G. Brevet francais.1952, no.1059:123.
    [7] Nomarski G. Differential microinterferometer with polarized waves. Journal dePhysique et le Radium,1955,16:9S-13S.
    [8] Gundlach H. Phase contrast and differential interference contrast instrumentationand applications in cell, developmental, and marine biology. Optical Engineering,1993,32(12):3223-3228.
    [9] Ooki H., Iwasaki Y., Iwasaki J. Differential interference contrast microscope withdifferential detection for optimizing image contrast. Applied Optics,1996,35(13):2230-2234.
    [10] Preza C., Snyder D. L., Conchello J. A. Theoretical development and experimentalevaluation of imaging models for differential-interference-contrast microscopy.Journal of the Optical Society of America A-Optics Image Science and Vision,1999,16(9):2185-2199.
    [11] Mcintyre T. J., Maurer C., Bernet S., et al. Differential interference contrast imagingusing a spatial light modulator. Optics Letters,2009,34(19):2988-2990.
    [12] Kim T., Sridharan S., Popescu G. Gradient field microscopy of unstained specimens.Optics Express,2012,20(6):6737-6745.
    [13] Pluta M. Advanced Light Micrscopy Vol2. Specialized Methods. NY: Elsevier,1989.
    [14] Allen R. D., David G. B., Nomarski G. The zeiss-Nomarski differential interferenceequipment for transmitted-light microscopy. Zeitschrift für wissenschaftlicheMikroskopie und mikroskopische Technik,1969,69(4):193-221.
    [15] Holmes T. J., Levy W. J. Signal-processing characteristics ofdifferential-interference-contrast microscopy. Applied Optics,1987,26:3929-3939.
    [16] Dana K. Three Dimensional Reconstruction of the Tectorial Membrane: An ImageProcessing Method using Nomarski Differential Interference Contrast Microscopy:
    [Master thesis]. Cambridge,1992.
    [17] Cogswell C. J., Sheppard C. Confocal differential interference contrast (DIC)microscopy: including a theoretical analysis of conventional and confocal DICimaging. Journal of Microscopy,1992,165(1):81-101.
    [18] Galbraith W. The image of a point of light in differential interference contrastmicroscopy: computer simulation. Microsc. Acta,1982,85(3):233-254.
    [19] Preza C. Phase estimation using rotational diversity from differential interferencecontrast microscopy:[Ph.D dissertation]. Washington University,1998.
    [20] Kagalwala F., Kanade T. Simulating DIC Microscope Images: From PhysicalPrinciples to a Computational Model. Proceedings of Workshop on PhotometricModelling in Computer Vision and Graphics,1999:48-55.
    [21] Munro P., T r k P. Vectorial, high numerical aperture study of Nomarski'sdifferential interference contrast microscope. Optics Express,2005,13(18):6833-6847.
    [22] Hartman J. S., Gordon R. L., Lessor D. L. Quantitative surface topographydetermination by Nomarski reflection microscopy.2: Microscope modification,calibration, and planar sample experiments. Applied Optics,1980,19(17):2998-3009.
    [23] Cogswell C. J., Smith N. I., Larkin K. G., et al. Quantitative DIC microscopy usinga geometric phase shifter. Proc. SPIE,1997,2984:72-81.
    [24] Van Munster E. B., Van Vliet L. J., Aten J. A. Reconstruction of optical pathlengthdistributions from images obtained by a wide-field differential interference contrastmicroscope. Journal of Microscopy-oxford,1997,188(Part2):149-157.
    [25] Preza C., Snyder D. L., Rosenberger F. U., et al. Phase estimation fromtransmitted-light DIC images using rotational diversity. Proc. SPIE,1997,3170:97-107.
    [26] Preza C. Rotational-diversity phase estimation fromdifferential-interference-contrast microscopy images. Journal of the Optical Societyof America A-Optics Image Science and Vision,2000,17(3):415-424.
    [27] Kagalwala F., Kanade T. Reconstructing specimens using DIC microscope images.IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2003,33(5):728-737.
    [28] Liu Z., Dong X., Chen Q., et al. Nondestructive measurement of an optical fiberrefractive-index profile by a transmitted-light differential interference contactmicroscope. Applied Optics,2004,43(7):1485-1492.
    [29] Arnison M. R., Larkin K. G., Sheppard C., et al. Linear phase imaging usingdifferential interference contrast microscopy. Journal of Microscopy-oxford,2004,214(Part1):7-12.
    [30] King S. V., Cogswell C. J. A phase-shifting DIC technique for measuring3D phaseobjects: experimental verification. Proc. SPIE,2004,5324:191-196.
    [31] Preza C., King S. V., Cogswell C. J. Algorithms for extracting true phase fromrotationally-diverse and phase-shifted DIC images. Proc. SPIE,2006,6090:60900E.
    [32] O'Sullivan J. A., Preza C. Alternating minimization algorithm for quantitativedifferential-interference contrast (DIC) microscopy. Proc. SPIE,2008,6814:68140Y.
    [33] Ishiwata H., Itoh M., Yatagai T. A new method of three-dimensional measurementby differential interference contrast microscope. Optics Communications,2006,260(1):117-126.
    [34] Danz R., Gretscher P. C–DIC: a new microscopy method for rational study ofphase structures in incident light arrangement. Thin Solid Films,2004,462:257-262.
    [35] Shribak M. Orientation independent differential interference contrast microscopytechnique and device. U.S. Patent Application,2005:2005-152030.
    [36] Cui X. Q., Lew M., Yang C. H. Quantitative differential interference contrastmicroscopy based on structured-aperture interference. Applied Physics Letters,2008,93:911139.
    [37] Fu D., Oh S., Choi W., et al. Quantitative DIC microscopy using an off-axisself-interference approach. Optics Letters,2010,35(14):2370-2372.
    [38] Mcintyre T. J., Maurer C., Bernet S., et al. Differential interference contrast imagingusing a spatial light modulator. Optics Letters,2009,34(19):2988-2990.
    [39] Mcintyre T. J., Maurer C., Fassl S., et al. Quantitative SLM-based differentialinterference contrast imaging. Optics Express,2010,18(13):14063-14078.
    [40] Allen R. D., Allen N. S., Travis J. L. Video-enhanced contrast, differentialinterference contrast (AVEC-DIC) microscopy: A new method capable of analyzingmicrotubule-related motility in the reticulopodial network of allogromia laticollaris.Cell Motility,1981,1(3):291-302.
    [41] Langford G. M. Video-enhanced microscopy for analysis of cytoskeleton structureand function. Methods in Molecular Biology,2001,161:31-43.
    [42] Feineigle P. A., Witkin A. P., Stonick V. L. Processing of3D DIC microscopyimages for data visualization. Proc. IEEE, Acoustics, Speech and Signal Processing,1996,4:2160-2163.
    [43] Kam Z. Microscopic differential interference contrast image processing by lineintegration (LID) and deconvolution. Bioimaging,1998,6(4):166-176.
    [44] Heise B., Sonnleitner A., Klement E. P. DIC image reconstruction on large cellscans. Microscopy Research and Technique,2005,66(6):312-320.
    [45] Arnison M. R., Cogswell C. J., Smith N. I., et al. Using the Hilbert transform for3Dvisualization of differential interference contrast microscope images. Journal ofMicroscopy-oxford,2000,199(Part1):79-84.
    [46] Holzwarth G. M., Hill D. B., Mclaughlin E. B. Polarization-modulateddifferential-interference contrast microscopy with a variable retarder. AppliedOptics,2000,39(34):6288-6294.
    [47] Alexopoulos L. G., Erickson G. R., Guilak F. A method for quantifying cell sizefrom differential interference contrast images: validation and application toosmotically stressed chondrocytes. Journal of Microscopy-oxford,2002,205(Part2):125-135.
    [48] Hell S. W., Wichmann J. Breaking the diffraction resolution limit by stimulatedemission: stimulated-emission-depletion fluorescence microscopy. Optics Letters,1994,19(11):780-782.
    [49] Gustafsson M. G. L. Surpassing the lateral resolution limit by a factor of two usingstructured illumination microscopy. Journal of Microscopy-oxford,2000,198(Part2):82-87.
    [50] Rust M. J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic opticalreconstruction microscopy (STORM). Nature Methods,2006,3(10):793-796.
    [51] Betzig E., Patterson G. H., Sougrat R., et al. Imaging intracellular fluorescentproteins at nanometer resolution. Science,2006,313(5793):1642-1645.
    [52] Neil M., Juskaitis R., Wilson T. Method of obtaining optical sectioning by usingstructured light in a conventional microscope. Optics Letters,1997,22(24):1905-1907.
    [53] Conchello J. A., Lichtman J. W. Optical sectioning microscopy. Nature Methods,2005,2(12):920-931.
    [54] Heintzmann R., Cremer C. Laterally modulated excitation microscopy:Improvement of resolution by using a diffraction grating. Proc. SPIE,1999,3568:185-196.
    [55] Gustafsson M. G. L., Agard D. A., Sedat J. W. Doubling the lateral resolution ofwide-field fluorescence microscopy using structured illumination. Proc. SPIE,2000,3919:141-150.
    [56] Heintzmann R., Jovin T. M., Cremer C. Saturated patterned excitation microscopy-a concept for optical resolution improvement. Journal of the Optical Society ofAmerica A-Optics Image Science and Vision,2002,19(8):1599-1609.
    [57] Heintzmann R. Saturated patterned excitation microscopy with two-dimensionalexcitation patterns. Micron,2003,34(6-7):283-291.
    [58] Gustafsson M. G. L. Nonlinear structured-illumination microscopy: Wide-fieldfluorescence imaging with theoretically unlimited resolution. Proceedings of theNational Academy of Sciences of the United States of America,2005,102(37):13081-13086.
    [59] Hirvonen L., Mandula O., Wicker K., et al. Structured illumination microscopyusing photoswitchable fluorescent proteins. Proc. of SPIE,2008,6861:68610L.
    [60] Rego E. H., Shao L., Macklin J. J., et al. Nonlinear structured-illuminationmicroscopy with a photoswitchable protein reveals cellular structures at50-nmresolution. Proceedings of the National Academy of Sciences of the United States ofAmerica,2012,109(3): E135-E143.
    [61] Gustafsson M. G. L., Shao L., Carlton P. M., et al. Three-dimensional resolutiondoubling in wide-field fluorescence microscopy by structured illumination.Biophysical Journal,2008,94(12):4957-4970.
    [62] Gustafsson M. G. L., Agard D. A., Sedat J. W. I5M:3D widefield light microscopywith better than100nm axial resolution. Journal of Microscopy-oxford,1999,195(Part1):10-16.
    [63] Shao L., Isaac B., Uzawa S., et al. I5S: wide-field light microscopy with100-nm-scale resolution in three dimensions. Biophysical Journal,2008,94(12):4971-4983.
    [64] Kner P., Chhun B. B., Griffis E. R., et al. Super-resolution video microscopy of livecells by structured illumination. Nature Methods,2009,6(5):336-339.
    [65] Hirvonen L. M., Wicker K., Mandula O., et al. Structured illumination microscopyof a living cell. European Biophysics Journal,2009,38(6):807-812.
    [66] Shao L., Kner P., Rego E. H., et al. Super-resolution3D microscopy of live wholecells using structured illumination. Nature Methods,2011,8(12):1044-1046.
    [67] Fiolka R., Shao L., Rego E. H., et al. Time-lapse two-color3D imaging of live cellswith doubled resolution using structured illumination. Proceedings of the NationalAcademy of Sciences of the United States of America,2012,109(14):5311-5315.
    [68] Mandula O., Kielhorn M., Wicker K., et al. Line scan-structured illuminationmicroscopy super-resolution imaging in thick fluorescent samples. Optics Express,2012,20(22):24167-24174.
    [69] Chung E., Kim D. K., So P. Extended resolution wide-field optical imaging:objective-launched standing-wave total internal reflection fluorescence microscopy.Optics Letters,2006,31(7):945-947.
    [70] Fiolka R., Beck M., Stemmer A. Structured illumination in total internal reflectionfluorescence microscopy using a spatial light modulator. Optics Letters,2008,33(14):1629-1631.
    [71] Gliko O., Brownell W. E., Saggau P. Fast two-dimensional standing-wavetotal-internal-reflection fluorescence microscopy using acousto-optic deflectors.Optics Letters,2009,34(6):836-838.
    [72] Gliko O., Reddy D. G., Brownell W. E., et al. Development of fast two-dimensionalstanding wave microscopy using acousto-optic deflectors. Proc. of SPIE,2008,6861:68610B.
    [73] Kim T., Gweon D., Lee J. H. Enhancement of fluorescence confocal scanningmicroscopy lateral resolution by use of structured illumination. MeasurementScience&Technology,2009,20(5):55501.
    [74] Chang B., Chou L., Chang Y., et al. Isotropic image in structured illuminationmicroscopy patterned with a spatial light modulator. Optics Express,2009,17(17):14710-14721.
    [75] Wang L., Pitter M. C., Somekh M. G. Wide-field high-resolution structuredillumination solid immersion fluorescence microscopy. Optics Letters,2011,36(15):2794-2796.
    [76] Dan D., Lei M., Yao B. L., et al. DMD-based LED-illumination Super-resolutionand optical sectioning microscopy. Scientific Reports,2013,3(1116).
    [77] Littleton B., Lai K., Longstaff D., et al. Coherent super-resolution microscopy vialaterally structured illumination. Micron,2007,38(2):150-157.
    [78] Hajek K. M., Littleton B., Turk D., et al. A method for achieving super-resolvedwidefield CARS microscopy. Optics Express,2010,18(18):19263-19272.
    [79] Chang B., Lin S. H., Chou L., et al. Subdiffraction scattered light imaging of goldnanoparticles using structured illumination. Optics Letters,2011,36(24):4773-4775.
    [80] Chowdhury S., Dhalla A., Izatt J. Structured oblique illumination microscopy forenhanced resolution imaging of non-fluorescent, coherently scattering samples.Biomedical Optics Express,2012,3(8):1841-1854.
    [81] Rasmussen A., Deckert V. New dimension in nano-imaging: breaking through thediffraction limit with scanning near-field optical microscopy. Analytical andbioanalytical chemistry,2005,381(1):165-172.
    [82] Hein B., Willig K. I., Hell S. W. Stimulated emission depletion (STED) nanoscopyof a fluorescent protein-labeled organelle inside a living cell. Proceedings of theNational Academy of Sciences,2008,105(38):14271-14276.
    [83] Klar T. A., Engel E., Hell S. W. Breaking Abbe s diffraction resolution limit influorescence microscopy with stimulated emission depletion beams of variousshapes. Physical Review E,2001,64(6):66613.
    [84] Rittweger E., Han K. Y., Irvine S. E., et al. STED microscopy reveals crystal colourcentres with nanometric resolution. Nature Photonics,2009,3(3):144-147.
    [85] Schonbrun E., Piestun R., Jordan P., et al.3D interferometric optical tweezers usinga single spatial light modulator. Optics Express,2005,13(10):3777-3786.
    [86] Grier D. G. A revolution in optical manipulation. Nature,2003,424(6950):810-816.
    [87] Fürhapter S., Jesacher A., Bernet S., et al. Spiral phase contrast imaging inmicroscopy. Optics Express,2005,13(3):689-694.
    [88] Ji N., Milkie D. E., Betzig E. Adaptive optics via pupil segmentation forhigh-resolution imaging in biological tissues. Nature Methods,2009,7(2):141-147.
    [89] Milkie D. E., Betzig E., Ji N. Pupil-segmentation-based adaptive optical microscopywith full-pupil illumination. Optics Letters,2011,36(21):4206-4208.
    [90] Kim T., Sridharan S., Popescu G. Gradient field microscopy of unstained specimens.Optics Express,2012,20(6):6737-6745.
    [91] Booth M. J. Direct measurement of Zernike aberration modes with a modalwavefront sensor. Proc. SPIE, Advanced Wavefront Control: Methods, Devices, andApplications,2003,5162:79-90.
    [92] Goodman J. W. Introduction to Fourier optics2nd Edition. NewYork: McGraw Hill,1996:155.
    [93] Mehta S. B., Sheppard C. Partially coherent image formation in differentialinterference contrast (DIC) microscope. Optics Express,2008,16(24):19462-19479.
    [94] Babacan S. D., Wang Z., Do M., et al. Cell imaging beyond the diffraction limitusing sparse deconvolution spatial light interference microscopy. Biomedical OpticsExpress,2011,2(7):1815-1827.
    [95] Hariharan P. The Sénarmont Compensator: An Early Application of the GeometricPhase. Journal of Modern Optics,1993,40(11):2061-2064.
    [96] Danz R., Vogelgsang A., K A Thner R. PlasDIC-a useful modification of thedifferential interference contrast according to Smith/Nomarski in transmitted lightarrangement. Photonik,2004,1:42.
    [97] Chen J. L., Xu Y., Lv X. H., et al. Super-resolution differential interference contrastmicroscopy by structured illumination. Optics Express,2013,21(1):112-121.
    [98] Davis J. A., Cottrell D. M. Random mask encoding of multiplexed phase-only andbinary phase-only filters. Optics Letters,1994,19(7):496-498.
    [99] Montes-Usategui M., Pleguezuelos E., Andilla J., et al. Fast generation ofholographic optical tweezers by random mask encoding of Fourier components.Optics Express,2006,14(6):2101-2107.
    [100] Ng A., See C. W., Somekh M. G. Quantitative optical microscope with enhancedresolution using a pixelated liquid crystal spatial light modulator. Journal ofMicroscopy-oxford,2004,214(Part3):334-340.
    [101] Maurer C., Khan S., Fassl S., et al. Depth of field multiplexing in microscopy.Optics Express,2010,18(3):3023-3034.
    [102] Warber M., Hasler M., Haist T., et al. Vertical differential interference contrastusing SLMs. Proc. SPIE,2011,8086:80861E.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700