用户名: 密码: 验证码:
面向高分辨率遥感光学成像的压缩感知理论及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益增长的军事需求对星载遥感成像系统的分辨率提出了越来越高的要求。高分辨率成像系统需要更大的探测器像元阵列和更小的像元尺寸,其产生的庞大数据量也给数据存储和实时传输系统带来巨大的压力。压缩感知理论突破香农/奈奎斯特采样定理限制,它充分利用信号稀疏性或可压缩性,以远低于奈奎斯特采样速率采集信号,然后通过求解优化问题,从少量的信号投影值中准确或高精确地重构原始信号。这种新兴信号采集理论为高分辨率成像系统的方法设计提供了一种新的思路。
     本文以高分辨率遥感光学成像系统为研究对象,对压缩感知进行基础理论和应用方法研究。
     理论研究方面,①分析了完备基下和过完备冗余字典下的图像稀疏表示方法,研究了基于样本图像的K-SVD字典训练和更新方法,为压缩感知理论在成像系统中的应用奠定了基础。②在分析几种常用测量矩阵构造方法和重构性能的基础上,从约束等距性质出发,构造了正交对称循环测量矩阵和分块循环测量矩阵,并利用Golay互补序列对正交对称循环测量矩阵进行了优化设计,仿真实验验证了两类测量矩阵良好的可重构特性。在此基础上,研究了循环测量矩阵构造的硬件实现方法,仿真验证了FPGA构造循环测量矩阵的可行性和高效性。测量矩阵的研究为压缩成像系统信号的获取提供了理论支撑。③研究了两类图像稀疏重构算法,通过对二维图像信号仿真测试,比较了各类算法的性能。针对凸优化算法对二维图像信号重构精度高而重构速度慢的特点,对凸优化算法中的GPSR算法进行了改进,利用分阶段取对数策略,在迭代的不同阶段选取不同的约束参数和迭代终止条件阈值,实现了在迭代前期阶段快速收敛保证运算速度、在迭代后期阶段保证重构精度的效果。重构算法的研究是压缩成像系统图像重构质量的保证。
     应用方法方面,①研究了基于频域调制编码和空域孔径编码的高分辨率红外成像方法。其中,频域调制编码成像方法是利用光学透镜的傅里叶变换性质,对变换后的光场进行频域调制,然后利用逆傅里叶变换透镜对调制后的光场逆变换,最后通过下采样操作现实图像的压缩采样;空域孔径编码成像方法是通过对焦平面上的光场进行孔径掩模编码,实现光场的压缩采样。通过数值仿真实验验证了上述两种成像方法的有效性,并进行了对比分析。②研究了基于压缩感知的CMOS压缩成像方法。利用图像的二维行列可分离变换特性,通过CMOS外部电路设计实现图像模拟域内的二维压缩采样。构造了基于DCT变换矩阵的测量矩阵,从累加互相关性方面分析了其可重构特性。设计了压缩采样的硬件电路,利用列像素电流的加权求和实现图像的行变换,利用向量矩阵乘法实现图像的列变换,以实现图像在电流域内的压缩采样。数值仿真实验验证了压缩成像的有效性,这种压缩采样方式降低了数据率,从而缓解了数模转换以及数据存储和传输的压力。
     本文研究了面向高分辨率遥感光学成像的压缩感知理论和应用方法,进一步发展和完善了现有压缩感知理论体系,仿真验证了压缩感知在成像系统应用上的有效性,为高分辨率压缩成像系统的设计提供一种新的技术途径。
Spaceborne remote sensing imaging systems call for more stringent requirement ofthe imaging resolution. High resolution imaging systems require larger pixel arrays andsmaller pixel-pitch, the resulting huge amount of data also cause considerable burdenwith regard to data storage and real-time transmission. Compressed sensing (CS) breaksShannon/Nyquist sampling theorem bottleneck. It captures and represents signals at asampling rate significantly below the Nyquist rate, and then original signals can beaccurately or high precisely recovered by solving sparse optimization problems basedon signal sparsity or compressibility. This emerging signal acquisition theory provides anew method for designing high-resolution imaging systems.
     In this paper, we mainly research on the basis of the CS theory and its applicationfor high-resolution remote sensing imaging systems.
     In theoretical aspect, we have studied three basic theoretical problems.①Theimage sparse representation based on complete basis and over-complete dictionary areanalyzed. The K-SVD dictionary training and update methods based on sample imagesare also researched. These researches pave the way for its application on imagingsystems.②After an analysis of construction methods and recovery performances ofthe common measurement matrices. We put forward a method for constructingorthogonal sysmmetric circulant matrices (OSCM) and block circulant matrices (BCM).The optimization of OSCM is conducted by using Golay complementary. Thesimulations validate the benign reconstruction performance of the two measurementmatrices. On this basis, the hardware implementation of constructing cyclemeasurement matrices is studied, and the FPGA simulations validate the feasibility andefficiency of construction process. These works provide a theoretical support of signalacquirement in compressive imaging system.③Two kinds of image sparsereconstruction algorithms are studied, and their performance are contrastively analyzedthrough simulation experiments on two-dimensional images. Convex optimizationalgorithms are slower but more accurate than pursuit algorithms for two-dimensionalimage reconstruction. Therefore, we studied for improvement of gradient projection forsparse reconstruction (GPSR). The strategy is that the constraint parameter and thetermination threshold are selected differently at various iteration stages. Theseparameter steps are according to logarithmic scale. This strategy ensures that thealgorithm converges fast at the early stages and performs high precision at the laterstages. The research on reconstruction algorithms guarantees imaging quality incompressive imaging systems.
     As for application aspect, we have projected two high resolution imaging systems. ①We proposed a high resolution infrared imaging method based on frequency domainmodulation and coded aperture mask. For the frequency domain modulation method, theFourier transform and inverse Fourier transform of images are implemented by opticallenses. The light field after Fourier transform is modulated, and then Compressiveobservations are obtained by downsampling. For coded aperture method in spacedomain, a coded aperture mask is placed on the focal plane in the optical system to codeand capture the light field. The two approaches are validated by numerical experimentsand a comparative analysis is given out.②We researched a CMOS compressiveimaging method based on CS. On the basic property of two-dimensional separabletransform of images, the compressive samples are obtained by designing suitableperipheral circuit for the sensor. The DCT measurement matrix is constructed and itsperformance is analyzed based on cumulative mutual coherence. The circuit designcomprises tow aspects: the row transforms of images are implemented by the currentweighting summation of each column and the column transforms are performed byvector–matrix multiplier (VMM). All these operate in current domain. Experimentalresults demonstrate the effectiveness of the proposed method which reduces the datarate and thus lowers the pressure of digital-to-analog conversion, data storage andtransmission.
     In this paper, the theory and application of CS for high-resolution remote sensingoptical imaging have been researched. The work makes a contribution on furtherdevelopment and improvement the CS theory. The proposed application methods havebeen verified by some experiments, which provide a novel approach for designing acompressed imaging system.
引文
[1] Stanley Kishner, David Flynn, Charles Cox, etal. Reconnaissance Payloads for ResponsiveSpace[C]. Paper No.AIAA-RS4-2006-5003, presented at4th Responsive SpaceConference, Los Angeles, CA, April,2006,24-27.
    [2]陈世平.高分辨率卫星遥感数据传输技术发展的若干问题[J].空间电子技术,2003(3):1-5.
    [3]龚海梅,刘大福.航天红外探测器的发展现状与进展[J].红外与激光工程,2008,37(1):18-24.
    [4] E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information [J]. IEEE Trans. OnInformation Theory,2006,52(2):489-509.
    [5] D. L. Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory,2006,52(4):1289-1306.
    [6] E. J. Candes, T. Tao. Decoding by linear programming [J]. IEEE Trans. On InformationTheory,2005,51(12):4203-4215.
    [7] E. J. Candes, T. Tao. Near optimal signal recovery from random projections: Universalencoding strategies [J]. IEEE Trans. On Information Theory,2006,52(12):5406-5425.
    [8] D.Gabor.Theory of communication [M]. J. Inst. Electr. Engrg.,1946.
    [9] H. CtFeichtinger, T. Strohmer. Gabor analysis and algorithms: theory and applications[M].Birkhauser: Boston,1997.
    [10] S. H. Nawab, T. Equatieri. Short-time Fourier transform[M]. Advanced topics in signalprocessing,1987,289-337.
    [11] S. Mallat, A wavelet tour of signal processing[M]. San Diego: Academic Press,2nd Ed.,1998.
    [12]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2009.
    [13] E. J. Candes. Ridgelets: theory and applications [D]. Ph.D. Thesis, Department of Statistics,Stanford University,1998.
    [14] E. J. Candes, D. L. Donoho. Curvelets[R]. Technical Report of Dept. Statist.Univ. Stanford,1999.
    [15] D. L. Donoho. Wedgelets: nearly minimax estimation of edges[R]. Technical report ofDept. Statist. Univ. Stanford,1997.
    [16] M. N. Do, M. Vetterli. The contourlet transform: an efficient directional multiresolutionimage representation [J]. IEEE Transaction on Image Processing,2005,14(12):2091-2106.
    [17] E. L. Pennec, S. Mallat. Non linear image approximation with bandelets[R]. Technicalreport of CMAP Ecole Poly technique,2003.
    [18] V. Velisavljevic, B. Beferull-lozano, M. Vetterli, etal. Directionlets: anisotropicmulti-directional representation with separable filtering [J]. IEEE Transactions on ImageProcessing,2006,15(7):1916-1933.
    [19] Y. M. Lu, M. N. Do. Multi dimensional directional filter banks and surfacelets [J]. IEEETransactions on Image Processing,2007,16(4):918-931.
    [20] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries [J]. IEEETrans. on Signal Processing,1993,41(12):3397-3415.
    [21] J. L. Starck, M. J. Fadili and F. Murtagh. The undecimated wavelet decomposition and itsapplication [J]. IEEE Transactions on Image Processing,2007,16(2):297-309.
    [22] J. Portilla, V. Strela, M. Wainwright and E. P. Simoncelli. Image denoising using scalemixtures of Gaussians in the wavelet domain [J]. IEEE Transactions on Image Processing,2003,12(11):1338-1351.
    [23] F. G. Meyer, A. Averbuch and J. O. Stromberg. Fast adaptive wavelet packet imagecompression [J]. IEEE Transactions on Image Processing,2000,9(5):792-800.
    [24] G. Peyre and S. Mallat. Surface compression with geometric bandelets [J]. ACMTransactions on Graphics,2005,24(3):601-608.
    [25] B. A. Olshausen and D. J. Field. Sparse coding with an over complete basis set: a strategyemployed by V1[J]. Vision Research,1997,37(23):3311-3325.
    [26] M. S. Lewicki and T. J. Sejnowski. Learning over complete representations [J]. NeuralComputation,2000,12:337-365.
    [27] K. Engan, S. O. Aase and J.H. Hakon-Husoy. Method of optimal directions for framedesign [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,1999,5:2443-2446.
    [28] J. F. Murray and K. Kreutz-Delgado. An improved focuss-based learning algorithm forsolving sparse linear inverse problems [C]. In IEEE Intl Conf. on Signals, Systems andComputers,2001,41:19-53.
    [29]王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用[M].西南交通大学出版社,2006年7月.
    [30]李恒建,尹忠科,王建英.基于量子遗传优化算法的图像稀疏分解[J].西南交通大学学报,2007,42(1):19-23.
    [31]张静,方辉,王建英,尹忠科.基于GA和MP的信号稀疏分解算法的改进[J].计算机工程与应用,2008,44(29):79-81.
    [32]刘浩,杨辉,尹忠科,王建英.基于MPI并行计算的信号稀疏分解[J].计算机工程,2008,34(12):19-21.
    [33]李小燕,尹忠科.图像1DFFT_MP稀疏分解算法研究[J].计算机科学,2010,37(10):246-248.
    [34]张悦庭,孟晓锋,尹忠科,王建英.一种Contourlet图像块编码算法[J].铁道学报,2010,32(4):56-62.
    [35]宋蓓蓓.图像的多尺度多方向变换及其应用研究[D].西安电子科技大学博士论文,2008年4月.
    [36]邓承志.图像稀疏表示理论及其应用研究[D].华中科技大学博士论文,2008年4月.
    [37] E. J. Candes, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccuratemeasurements [J]. Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
    [38] A. C. Gilbert, S. Guha, P. Indyk, et al. Near-optimal sparse Fourier representations viasampling[C]. Proceedings of the34th Annual ACM Symposium on Theory of Computing.Quebec, Canada: ACM Press,2006,152-161.
    [39] Y. Tsaig, D. L. Donoho. Extensions of compressed sensing [J]. Signal Processing,2006,86(3):549-571.
    [40] D. L. Donoho. For most large underdetermined systems of linear equations, the minimalL1norm solution is also the sparsest solution [J]. Communications on Pure and AppliedMathematics,2006,59(6):797-829.
    [41] W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright,e tal. Toeplitz-structured compressedsensing matrices[J]. Proceedings of the IEEE Workshop on Statistical Signal Processing.Washington D. C., USA: IEEE,2007:294-298.
    [42] A. D. Ronald. Deterministic constructions of compressed sensing matrices[J] Journal ofComplexity,2007:918-925.
    [43]李小波.基于压缩感知的测量矩阵研究[D].北京交通大学硕士论文,2010.
    [44]李浩.用于压缩感知的确定性测量矩阵研究[D].北京交通大学硕士论文,2011.
    [45] M. Sheikh, O. Milenkovic, R. Baraniuk. Designing compressive sensing DNAmicroarrays[C]. IEEE Workshop on Computational Advances in Multi-Sensor AdaptiveProcessing(CANSAP), St. Thomas, U.S. Virgin Islands, Dec.2007:141-144.
    [46] M. Sheikh, O. Milenkovic, R. Baraniuk. Compressed sensing DNA microarrays[R]. RiceECE Department Technical Report TREE0706, May,2007.
    [47] R. Baraniuk. Alecture on compressive sensing [J]. IEEE Signal Processing Magazine. July2007,24(4):118-121.
    [48] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit [J].SIAM Journal on Scientific Computing,1998,20(1):33-61.
    [49] S. Kim, K. Koh, M. Lustig, etal. An interior point method for large-scale l1regularizedleast squares[J]. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606-617.
    [50] M. A. T. Fiqueiredo, R. D., S. J. Nowak Wright. Gradient projection for sparsereconstruction: Application to compressed sensing and other inverse problems [J]. IEEEJournal of Selected Topics in Signal Processing,2007,1(4):586-598.
    [51] N. G. Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals [J].Journal of Applied and Computational Harmonic Analysis,2001,10(3):234-253.
    [52] K. K. Herrity, A. C. Gilbert, J. A. Tropp. Sparse approximation via iterativethresholding[C]. Proceedings of the IEEE International Conference on Acoustics, Speechand Signal Processing. Washington D. C., USA: IEEE,2006,624-627.
    [53] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonalmatching pursuit [J]. IEEE Trans. on Information Theory,2007,53(12):4655-4666.
    [54] D. L. Donoho, Y. Tsaig, I. Drori and J.-L. Starck. Sparse solution of underdetermined linearequations by stagewise orthogonal matching pursuit [J]. IEEE Transactions on InformationTheory,2012,58(2):1094-1121.
    [55] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery from viaregularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics.2008,9(3):317-334.
    [56] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete andinaccurate samples[J]. Applied and Computational Harmonic Analysis,2009,26(3):301-321.
    [57] L. Rebollo-Neira and D. Lowe. Optimized Orthogonal Matching Pursuit Approach[J].IEEE Signal Processing Letters.2002,9(4):137-140.
    [58] T. D. Thong, Lu Gan, Nam Nguyen, Trac D. Tran. Sparsity adaptive matching pursuitalgorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems,and Computers, California,2008:581-587.
    [59] C. La, M. N. Do. Signal reconstruction using sparse tree representation[A].Proceedings ofSPIE[C]. San Diego, CA, United States: International Society for OpticalEngineering.2005,5914:1-11.
    [60] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEESignal Processing Letters,2007,14(10):707-710.
    [61] R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressivesensing[J]. Inverse Problems,2008,24:1-14.
    [62] Z. Xu, H. Zhang, Y. Wang and X. Chang. L1/2regularizer[J]. Sci. China Ser.F-inf. Sci.,2009,52(1):1-9.
    [63] M. F. Duarte, M. A. Davenport, D. Takhar, etal. Single-pixel imaging via compressivesampling [J]. IEEE Signal Processing Magazine,2008,25(2):83-91.
    [64] R. F. Marcia, R. M. Willett. Compressive coded aperture super-resolution imagereconstruction. Proc. of the IEEE International Conference on Acoustics, Speech andSignal Processing,2008:833-836.
    [65] R. M. Willett, R. F. Marcia and J. M. Nichols, Compressed sensing for practical opticalimaging systems: a tutorial, Optical Engineering,2011,50(7),072601.
    [66] R. Robucci, L. K. Chiu, J. Gray, etal. Compressive sensing on a CMOS separabletransform image sensor[J], Proceedings of the IEEE,2010,98(6):1089-1101.
    [67] M. E. Gehm, R. John, D. J. Brady, etal. Single-shot compressive spectral imaging with adual-disperser architecture [J]. Opt. Express,2007,15(21):14013-14027.
    [68] A. Wagadarikar, R. John, R. Willett, and D. Brady. Single disperser design for codedaperture snapshot spectral imaging. Applied Optics,2008,47(10): B44-B51.
    [69] V. Cevher, A. Sankaranarayanan, M. F. Duarte, etal. Compressive Sensing for BackgroundSubtraction[J]. Computer Vision: Lecture notes in Computer Science.2008,3503(2008):155-168.
    [70] R.Baraniuk, P.Steeghs. Compressive radar imaging [C]. Proc. of IEEE2007RadarConference,2007:128-133.
    [71] I. Stojanovic, W. Karl, M. Cetin, Compressed sensing of mono-static and multi-staticSAR[C].SPIE Defense and Security Symposium, Algorithms for Synthetic Aperture RadarImagery XVI, Orlando, FL,2009.
    [72] J. H. G. Ender. On compressive sensing applied to radar[J]. Signal Processing,2010,90(5):1402-1414.
    [73] M. Wakin, J. Laska, M. Duarte, etal. An architecture for compressive imaging[C].Proceedings of IEEE International Conference on Image Processing. Washington D. C.,USA: IEEE,2006:1273-1276.
    [74] V. Stankovic, L. Stankovic, S. Cheng. Compressive video sampling[C]. Proceedings of theEuropean Signal Processing Conference. Lausanne, Switzerland,2008.
    [75] R. F. Marcia, R. M. Willett. Compressive coded aperture video reconstruction[C].Proceedings of the European Signal Processing Conference. Lausanne, Switzerland,2008.
    [76] L.Gan. Block compressed sensing of natural images. In: Proceedings of the15thInternational Conference on Digital Signal Processing. Washington D. C., USA: IEEE,2007.
    [77] S. Kirolos, J. Laska, M. Wakin, etal. Analog-to-information conversion via randomdemodulation[C]. Proceedings of the IEEE Dallas Circuits and Systems Workshop.Washington D. C., USA: IEEE,2006:71-74.
    [78] T. Ragheb, S. Kirolos, J. Laska, A. C. Gilbert, etal. Implementation models foranalog-to-information conversion via random sampling[C]. Proceedings of the50thMidwest Symposium on Circuits and Systems. Washington D. C., USA: IEEE,2007:325-328.
    [79] J. Laska, S. Kirolos, Y. Massoud, etal. Random sampling for analog-to-informationconversion of wideband signals[C]. Proceedings of the IEEE Dallas/CAS Workshop onDesign, Applications, Integration and Software. Washington D. C., USA: IEEE,2006:119-122.
    [80] M. Sheikh, S. Sarvotham, O. Milenkovic, R. Baraniuk. DNA array decoding fromnonlinear measurements by belief propagation[C]. Proceedings of the14th Workshop onStatistical Signal Processing. Washington D. C., USA: IEEE,2007:215-219.
    [81] M. Lustig, D. L. Donoho, J. M. Pauly. Sparse MRI: The application of compressed sensingfor rapid MR imaging. Magnetic Resonance in Medicine,2007,58(6):1182-1195.
    [82] J. Haupt, R. Nowak. Compressive sampling for signal detection[C]. Proceedings of theIEEE International Conference on Acoustics, Speech and Signal Processing. WashingtonD.C., USA: IEEE,2007:1509-1512.
    [83] M. Davenport, M. Wakin, R. Baraniuk. Detection and estimation with compressivemeasurements[R]. Technical Report TREE0610, Department of Electrical Engineering,Rice University, USA,2006.
    [84] J. Haupt, R. Castro, R. Nowak, etal. Compressive sampling for signal classication[C].Proceedings of the Fortieth Asilomar Conference on the Signals, Systems and Computers.Washington D. C., USA: IEEE,2006:1430-1434.
    [85] W. Bajwa, J. Haupt, A. Sayeed, R. Nowak. Compressive wireless sensing[C]. Proceedingsof the International conference on Information Processing in Sensor Networks. WashingtonD. C., USA: IEEE,2006:134-142.
    [86] G. Taubock, F. Hlawatsch. A compressed sensing technique for OFDM channel estimationin mobile environments: Exploiting channel sparsity for reducing pilots[C]. Proceedings ofthe IEEE International conference on Acoustics, Speech, and SignalProcessing.Washington D. C., USA: IEEE,2008:2885-2888.
    [87] W. Bajwa, G. R.Jarvis Haupt, R. Nowak. Compressed channel sensing[C]. Proceedings ofConference on Information Sciences and Systems. Washington D. C., USA: IEEE,2008:5-10.
    [88] G. Hennenfent, F. J. Herrmann. Simply denoise: wavefield reconstruction via jitteredundersampling [J]. Geophysics.2008,73(3):19-28.
    [89] R. Bracewell. The Fourier transform and its application[M]. McGraw Hill,1965.
    [90] N. Ahmed, T. Natarajan and K. R. Rao. Discrete cosine transform [J]. IEEE Transactionson Computers,1974,23(1):90-93.
    [91] I. Daubechies. Ten lectures on wavelets[M]. CBMS-NSF Regional Conference Series inApplied Mathmatics, SIAM: Philadelphia,1992.
    [92] E. Duhamel, M. Vetterli. Fast Fourier transforms:a tutorial review and a state of the art[J].Signal Processing,1990,19(4):259-299.
    [93] B. G. Lee. A new algorithm to compute the discrete cosine transform[J]. IEEE Transactionson Acoustics,Speech and Signal Processing,1984,32(12):1243-1245.
    [94] H. S. Hou. A fast recursive algorithm for computing the discrete cosine transform[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1987,35(10):1445-1461.
    [95] Chan. S. C, Ho. kL.A new two-dimensional fast cosine transform algorithm[J].IEEETransactions on Signal Processing,1991,39(2):481-485.
    [96] H.Wu, E. J. Paoloni. A two-dimensional fast cosine transform algorithm based on Hou’Sapproach[J]. IEEE Transactions on Signal Processing,1991,39(2):544-546.
    [97] F. Arguello, E.L. Zapata. Fast cosine transform based on the successive doublingmethod[J].Electronics Letters,1990,26(20):1616-1618.
    [98] R. Britanak. On the discrete cosine transform computation. Signal Processing,1994,40(2):184-194.
    [99] A.Haar.The theory of orthogonal function systerms[J]. Mathematische Annalen,1910,(69):331-371.
    [100] W. Sweldens. The lifting scheme: A new philosophy in biorthogonal waveletconstructions[C]. Proc. SPIE Wavelet Applications in Signal and Image Processing III,1995,(2569):68-79.
    [101] W. Sweldens. The lifting scheme: construction of second generation wavelets[J]. SIAM J.Math. Anal.,1997,29(2):511-546.
    [102] I. Daubechies,W Sweldens.Factoring wavelet transforms into lifting steps[J]. J. FourierAnal. Appl.,1998,4(3):245-267.
    [103] E. J. Candes. Monoscale Ridgelets for the Representation of Images with Edges[R]. USA:Department of Statistics, Stanford University,1999.
    [104] M. N. Do, M. Vetterli. The finite Ridgdet Transform for Image Representation[J]. IEEETransaction On Image Processing,2002.
    [105] D. L. Donoho. Orthonormal Ridgelets and Linear Singularities[J]. SIAM J.Math. Anal,2000.
    [106] D. L. Donoho and M. R. Duncan. Digital curvelet transform: strategy, implementation andexperiments [J]. Proc. SPIE,2000,(4056):12-29.
    [107] J. L. Starck, E. J. Candes and D. L. Donoho. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing,2002,11(6):670-684.
    [108] J. L. Starck, F. Murtagh, E. J. Candes, D. Donoho. Gray and color image contrastenhancement by the curvelet transform[J]. IEEE Trans on Image Processing,2003,12(6):706-717.
    [109] E. J. Candes and D. L. Donoho. New tight frames of curvelets and optimal representationof objects with C2sigularities [J]. Communication on Pure and Applied Mathematic,2004,57(2):219-266.
    [110] E. J. Candes, L. Demanet, D. L. Donoho, L. Ying. Fast discrete curvelet transforms [J].Multiscale Modeling Simulation,2006,5(3):861-899.
    [111] M. N. Do, M. Vetterli. Contourlets: a new directional multiresolution image representation,ICIP2002,2002:497-501.
    [112] M. N. Do. Contourlets and Sparse Image Expansions [C]. SPIE wavelets: application insignal and image processing,2003,(5207):560-570.
    [113] D. D. Y. Po, M. N. Do. Directional multiscale modeling of images using the contourlettransform, IEEE Trans. on Image Processing,2006,15(6):1610-1620.
    [114] E. L. Pennec and S. Mallat. Sparse geometric image representations with bandelets [J].IEEE Transaction on Image Processing,2005,14(4):423-438.
    [115] G. Peyre, S. Mallat. Discrete bandelets with geometric orthogonal filters[C]. Proceedingsof ICIP.Los Alamitos, USA: IEEE Computer Society,2005:65-68.
    [116] J. Romberg, M. Wakin, R. Baraniuk. Multiscale Wedgelet Image Analysis: FastDecompositions and Modeling[J]. IEEE, ICIP,2002,(3):585-588.
    [117] G. M. Francois, R. Ronald Coifman. Directional Image Compression with Breshlets[C].Proceedings of the IEEE SP International Symposium on Time-Frequency and Time-ScaleAnalysis,1996:189-192.
    [118] L.D. David, X. M. Huo. Beamlets and Multiscale Image Analysis[J].Multi-scale andMulti-resolution Methods, Springer Lecture Notes in Computational Science andEngineering,2002.(20):149-196.
    [119] L. D. David, X. M. Huo. Beamlet pyramids: a new form of multi-resolution analysis,suited for extracting lines, curves and objects from very noisy image data[J]. Waveletapplications in signal and image processing VIII, Proc. SPIE.2000. Vol,4119:434-444.
    [120] V. Velisavljevic. Directionlets: Anisotropic Multi-directional Representation withSeparable Filtering [D]. Ph.D. Thesis no.3358(2005), LCAV, School of Computer andCommunication Sciences, EPFL, Lausanne, Switzerland, October2005.
    [121] Y. Lu and M. N. Do.3-D directional filter banks and surfacelets[C]. Invited Paper,Proc. ofSPIE conference on wavelet Applications in Signal and Image Processing,2005.
    [122] S. Mallat, Z. Zhang. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans. OnSignal Processing,1993,41(12):3397-3415.
    [123] Aharon M, Elad M, Bruckstein A. K-SVD, An Algorithm for Designing OvercompleteDictionaries for Sparse Representation [J]. IEEE Trans. On Signal Processing,2006,54(11):4311-4323.
    [124] R. Baraniuk, M. Davenport, R. DeVore, M. Wakin. A simple proof of the restrictedIsometry Property for random matrices [J]. Constructive Approximation,2008,28(3):253-263.
    [125]张贤达.矩阵分析与应用[M].清华大学出版社,2009.
    [126] W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, e tal. Toeplitz structured compressedsensing matrices[C]. Proceedings of the2007IEEE/SP14th Workshop on Statistical SignalProcessing,2007:294-298.
    [127] A. Bottcher. Orthogonal symmetric toeplitz matrices [J]. Complex Analysis and OperatorTheory,2008,2(2):285-298.
    [128] K. Li, C. Ling, L. Gan. Statistical restricted isometry property of orthogonal symmetricToeplitz matrices[C]. IEEE Information Theory Workshop,2009:183-187.
    [129] K. Li, L. Gan, C. Ling. Orthogonal Symmetric Toeplitz Matrices for Compressed Sensing:Statistical Isometry Property [EB/OL]. Available: http://arxiv.org/abs/1012.5947.pdf
    [130] M. Golay. Complementary series [J]. IEEE Trans. Inf. Theory,1961,7(2):82-87.
    [131] F. Sebert, Y. M. Zou, Leslie Ying. Toeplitz block matrices in compressed sensing and theirapplications in imaging [C]. Proceedings of the5th International Conference onInformation Technology and Application in Biomedicine,2008:47-50.
    [132] F. Sebert, L. Ying, Y. M. Zou. Toeplitz block matrices in compressed sensing [EB/OL].Available: http://arXiv:0803.0755v1.
    [133]徐欣,于红旗,易凡等.基于FPGA的嵌入式系统设计[M].机械工业出版社,2005年1月.
    [134] S. Boyd and L. Vandenberghe. Convex Optimization [M]. Cambridge University Press,2004.
    [135] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizingpain. Manuscript, August1994.
    [136] T. Blumensath, M. E. Davies. Normalised iterative hard Thresholding: guaranteed stabilityand performance [J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):298-309.
    [137] K. Qiu, A. Dogandzic. ECME thresholding methods for sparse signal reconstruction
    [EB/OL]. http://arXiv, no.1004.4880v3.
    [138] T. Blumensath and M. E. Davies. Iterative thresholding for sparse approximations[J].Journal of Fourier Analysis and Applications, Special issueon sparsity,2008,14(5):629-654.
    [139] M. Fornasier and H. Rauhut. Iterative thresholding algorithm [J]. Appl. Comput. HarmonicAnal.,2008,25(2):187-208.
    [140] S. Osher, M. Burger, et al. An iterated regularization method for total variation-basedimage restoration [J]. Multiscale Model. Simul.,2005(4):460-489.
    [141] T. GoldStein and S. Osher. The split bregman method for l1regularized problems [J].SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [142] W. Yin, S. Osher, D. Goldfarb and J. Darbon. Bregman iterative algorithms forl1-minimization with applications to compressed sensing [J]. SIAM Journal on ImagingSciences,2008,1(1):143-168.
    [143] D. Needell and R. Vershynin. Signal Recovery from Incomplete and InaccurateMeasurements Via Regularized Orthogonal Matching Pursuit [J]. IEEE Journal of SelectedTopics in Signal Processing.2010,4(2):310-316.
    [144] M. Figueiredo and R. Nowak. An EM algorithm for wavelet-based image restoration[J]IEEE Transactions on Image Processing,2003,(12):906-916.
    [145]刘吉英.压缩感知理论及在成像中的应用[D].国防科技大学研究生院博士论文,2010.10.
    [146]张洪鑫,张健,吴丽莹.液晶空间光调制器用于光学测量的研究[J].红外与激光工程,2008,37(S1):39-42.
    [147] A. D. Portnoy, N. P. Pitsianis, D. J. Brady, etal. Thin digital imaging system using focalplane coding[C]. Proc. of SPIE-IS&T Electronic Imaging, SPIE,2006,(6065):108-115.
    [148] D. Voelz. Computational Fourier Optics: A Matlab Tutorial[M]. Washington, SPIE PRESS,2010.
    [149] R. Robucci, J. D. Gray, D. Abramson, etal. A256×256Separable Transform CMOSImager[C]. IEEE International Symposium on Circuits and System,2008:1420-1423.
    [150] D. Litwiller. CCD vs. CMOS: facts and fiction [M]. Photonics Spectra,2001,35(1):154-158.
    [151]尤政,李涛. CMOS图像传感器在空间技术中的应用[J].光学技术,2002,28(1):31-35.
    [152] R. Coifman, F. Geshwind, Y. Meyer. Noiselets [J]. Applied and Computational HarmonicAnalysis,2001(10):27-44.
    [153] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation [J]. IEEE Trans.on Information Theory,2006(50):2231-2342.
    [154] R. Chawla, A. Bandyopadhyay, V. Srinivasan, etal. A531nw/mhz,128×32current-modeprogrammable analog vector-matrix multiplier with over two decades of linearity[C]. IEEECustom Integrated Circuits Conference,2004:651-654.
    [155] A. Fisha, O. Yadid-Pecht. Circuits at the nanoscale: communications, imaging, and sensing
    [M]. CRC press,2008:458-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700