用户名: 密码: 验证码:
球面空腹网壳静、动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空腹网壳结构是由空腹网架结构发展而来的新型曲面形空间网格结构。国内外均有工程实例,国外在日本有上野县训练馆,为木材制作的空腹网壳(屋面材料为膜材)。国内有国家大剧院,为钢空腹网壳,贵阳市金阳水电科技园健身中心篮球训练馆为混凝土柱面空腹网壳空腹网壳的结构形式众多,造型各异。既具有单层网壳简洁美观的特点,又具有双层网壳稳定性好的优点。
     不同的结构形式受力各异,本文主要以肋环形球面空腹网壳和肋环斜杆形球面空腹网壳为研究对象。这两种网壳的主要传力途径为径向,因此本文在分析具体结构之前还讨论了空腹拱架的力学性能。
     本文的研究方法主要为参数化分析,采用空间梁单元进行了大量算例计算,重点讨论了矢跨比、网格划分频数、弦层刚度、网壳厚度和支承条件等因素对结构静、动力性能的影响。结构的静力性能分析考虑的是竖向荷载,全部算例均基于荷载总量不变原则,以使计算结果具有相应的可比性。
     分析表明,球面空腹网壳的腹杆内力较小,在边界上、下弦节点均支承条件下,可以将球面空腹网壳看作两个单层网壳通过腹杆连接而共同工作,结构的静、动力性能明显受矢跨比的影响,过低的矢跨比将导致结构过高的应力和过大的变形。文中建议这种结构的合理矢跨比范围为1/4-1/6。
     对于肋环形球面空腹网壳,网格圈数的加密对结构高阶振型的频率影响较大,但对基频影响很小。静载作用下,加密网格圈数对结构强度和整体刚度的改善作用不大,但提高上、下弦层杆件的刚度后能够明显增强结构的整体刚度。因此跨度较大时可以采用上、下弦层均设置有斜杆的肋环斜杆形球面空腹网壳
     静载作用下的计算表明,周边上、下弦节点均支承时,结构厚度的改变明显影响球面空腹网壳的强度和刚度。动力分析表明,结构的基频会随着结构厚度的增加而增加,但厚跨比大于1/40后,增加结构的计算厚度并不能有效提高结构的整体刚度。
     本文的计算主要考虑了两种支承条件,即边界上、下弦节点均固支和仅支承上弦边界节点。分析表明,在较小的厚跨比条件下,当仅支承上弦边界节点时,结构的受力性能类似于单层网壳,其内力和变形要明显大于边界上、下弦均支承的情况,因此厚跨比较小的结构中,球面空腹网壳的边界上、下弦节点均宜支承。
     动力特性计算表明,结构的频谱较为密集,对地震响应贡献较大的对称振型出现较晚。因此结构采用振型分解反应谱法进行抗震设计时,频率的截断及地震作用最大效应的计算是还需要深入研究的问题。
     本文最后指出了下一步研究中亟待解决的一些问题。
The open web reticulated shell is developed from open web space truss. There are many projects in domestic and abroad, The Ueno County Training Center of Japan is produced with timber by reticulated shell.( roofing materials are membranes). National Grand Theater in domestic is a steel open web reticulated shell, Jinyang hydropower Science Park Fitness Center Basketball Training Center in Guiyang is concrete cylindrical open web reticulated shell. The open web reticulated shell has a large number of different shapes. It has the characteristics of simple and beautiful, also has the advantages of good stability.
     Different structures have different forms of stress. This article mainly talks about open web reticulated shell and meridian open web dome reticulated shell. The ways of transmission are mainly radial. Therefore the analysis of open web arch steel frame was also discussed before the analysis of specific structure.
     The main research methods of analysis for the parameters, space beam element used to calculate a large number of examples. The rise-to-span ratio, grid frequency, stiffness string layer, reticulated shell angle and boundary conditions and other factors on the structure of static and dynamic properties was focused on. Structural performance analysis of static vertical load is taken into account. All examples are based on the same principle of the total load in order to make results comparable with the corresponding.
     Analysis showed that the force of belly bar is smaller, at the border, under the conditions that the all nodes are supported, the open web reticulated shell can looked as two single-layer reticulated shell work through the rod connected, the structure of the static, dynamic performance significantly by the rise-to-span, low rise-to-span ratio is too high will lead to the structure of the stress and deformation is too large. It was suggested that the reasonable range of the rise-to-span ratio is 1/4-1/6.
     For the meridian open web dome reticulated shell, encrypting the number of grid circle will influence the higher-order vibration mode, but the effect on the fundamental frequency is little. Under static load, the role of improving structural strength and overall stiffness by encrypting the number of grid circle is not evidence, but improving the stiffness of the upper and lower layer bars can enhance the overall stiffness of the structure obviously.
     The calculations under static show that when the upper and lower surrounding nodes are supported, the changes in the thickness of the open web reticulated shell can influence the strength and stiffness of the shell. Dynamic analysis shows that the frequency of structure increases with the increasing of the thickness, but when thick-span ratio is greater than 1 / 40, increasing the thickness of the calculation can not improve the overall stiffness of the structure effectively.
     In this article, the calculation mainly consider two kinds of boundary conditions, which is border upper and lower nodes are all clamped and only the upper node is clamped. Analysis showed that when the thick-to-span is smaller and only the upper node is clamped, the performance of force is similar to the mechanical properties of single-layer reticulated shell, its internal force and deformation are larger than figure of the condition which is that the upper and lower layer bars are all clamped. So when the thick-to-span is smaller, the border upper and lower nodes are advised to be all supported.
     The results of dynamic characteristics show that the spectrum of structure is more intensive symmetric vibration mode whose contribution to the seismic response is larger appears late. Therefore when use the response spectrum modal decomposition method for seismic design, cut-off frequency the calculation of the largest effect of the earthquake is also to examine in depth.
     Finally, the study pointed out that the problems which need to be resolve urgently in the next study.
引文
[1].马克俭.韦明辉.等.装配整体式钢筋混凝土空腹网架结构的设计与研究.贵州工学院学报,1987,16(1):7-23.
    [2].马克俭.张华刚.肖建春.卢亚琴.中国钢筋混凝土空间网格结构新体系的开拓与发展(下).中国工程科学,2008,10(8):22-34.
    [3].马克俭.张华刚.肖建春.等.贵州建筑空间结构的开拓与发展.工业建筑增刊,2003:176-192.
    [4].马克俭.张华刚.郑涛.新型建筑空间网格结构理论与实践.北京:人民交通出版社.2006年.
    [5].马克俭.张华刚.等.大跨度钢筋混凝土空腹夹层板柱结构的研究与应用.建筑结构学报,2000,21(6):16-23.
    [6].马克俭.李晓红.等.预应力网格结构体系的研究与应用前景.空间结构,1994年,第2期:1-10.
    [7].马克俭.肖建春.钢筋混凝土空腹夹层板整体稳定分析.贵州工业大学学报,1997,26(4):16-23.
    [8].马克俭.黄勇.等.钢筋混凝土空腹网架与空腹夹层板空间结构的研究与应力综述.空间结构,1995,1(3):28-36.
    [9].尹思明.胡瀛珊.多次预应力钢网壳屋顶结构的设计研究与工程实践.建筑结构学报,1996,17(6):26-39.
    [10].王正光,刘福祺.林胜良.某正交空腹网壳结构抗震性能分析.钢结构,2006,21(6).1-3.
    [11].王焕定.吴德伦.主编.有限单元法及计算程序.北京:中国建筑工业出版社.1997年.
    [12].包世华.结构动力学.武汉:武汉理工大学出版社.2005年.
    [13].卢亚琴.马克俭.李莉.等.钢筋混凝土空腹夹层网状筒拱和筒壳结构的试验研究.贵州工业大学学报,2008,37(4).71-74.
    [14].刘锡良.韩庆华.网格结构设计与施工.天津:天津大学出版社.2004年.
    [15].约翰奇尔顿著,高立人译.空间网格结构.北京:中国建筑工业出版社.2004年.
    [16].张华刚.马克俭.钢筋混凝土空腹夹层板楼盖结构技术规程.DB22/48-2005的编制及应用.贵州工业大学学报,2008,37(4):6-12.
    [17].张华刚.马克俭.黄勇.钢空腹夹层板在建筑楼盖改造中的应用.贵州工业大学学报,2003,32(4):83-87.
    [18].张华刚.马克俭.等.钢筋混凝土空腹夹层板柱剪力墒结构性能的试验研究.建筑结构学报,2002,21(6):24-33.
    [19].张华刚.胡岚.马克俭.郑涛.空腹夹层板的静力性能分析及其实用计算方法.贵州工业大学学报,2006,35(3):82-87.
    [20].张志宏.傅学怡.董石麟.等.济南奥体中心体育馆弦支穹顶结构设计.空间结构,2008,14(4):8-13.
    [21].沈世钊.陈昕.网壳结构稳定性.北京:科学出版社.1999年.
    [22].沈祖炎.陈扬骥.网架与网壳.上海:同济大学出版社.1997年.
    [23].肖南.董石麟.大跨度跳层空腹网架结构的简化分析方法.建筑结构学报,2002,23(2):61-69.
    [24].卓新.冯阿巧.樊益棠.等.瓣形穹顶的建筑特点与结构形体研究.空间结构,2005年,11(2):46-49.
    [25].罗九林.钢筋混凝土空腹夹层网状筒拱和筒壳结构的研究与应用.[硕士学位论文].贵 州大学.2008年.
    [26].罗尧治.胡峰.董石麟.等.折叠展开式计算机同步控制整体提升施工技术的工程应用.第十届空间结构学术会议论文集.北京.2002年.
    [27].胡学仁.穹顶网壳的稳定理论和实验结果的若干回顾.空间网格结构论文集.上海:同济大学出版社.1991年.
    [28].斋藤公男著.季小莲.徐华译.空间结构的发展与展望-空间结构设计的过去.现在.未来.北京:中国建筑工业出版社.2006年.
    [29].曹资.薛素铎.空间结构抗震理论与设计.北京:科学出版社.2005年.
    [30].董石麟.马克俭.严慧.苗春芳.组合网架结构与空腹网架结构.杭州:浙江大学出版社.1992年.
    [31].董石麟.赵阳.论空间结构的形式和分类.土木工程学报,2004,37(1):7-12.
    [32].董石麟.袁行飞.中国网壳结构的发展.第四届海峡两岸及香港钢结构技术交流会论文集.上海,2006:26-41.
    [33].董石麟.钱若军.空间网格结构分析理论与计算方法.北京.中国建筑工业出版社.2000年.
    [34].董石麟.罗尧治.赵阳.等.新型空间结构分析设计与施工.北京:人民交通出版社.2000年.
    [35].鲍科峰.正交空腹网壳结构的静、动力性能研究.[硕士学位论文].浙江大学.2004年.
    [36].R.W.克拉夫.J.彭津著.王光远等译.结构动力学(第二版).北京:高等教育出版社.2006年.
    [37].Auger.B.Solomon,E.W.and Alcock,D.G.(1966).Au aluminium Space frame Construction.In International Conference on space structures,Department of Civil Engineering,University of Surrey.Paper J2.
    [38].Kawaguchi,M.and Abe,M.(1992).Design and construction of sant Jordi sports palace,a venue for Barcelona Olympics.Bulletin of the International Association for shell and spatial structures,33(109),69-88.
    [39].Marks,R.W.(1960) The Dymaxion World of Buckminster Fuller.Southern Illinois University Press.
    [40].McHale,J.(1962).R.Buckminster Fuller.Prentice Hall.PP.30,32,Photos 60-64 and 83.
    [41].Pearce,P.J.(1993).From snow Crystals to space en closure systems:implementing the future of architecture.In space structure 4(G.A.R.Parke and C.M.Howard.eds) Vol.2.99.2063-2073.Thomas Telford.
    [42].Yoh,S.(1989) Oguni Dome,The Japan Architect,February 384,35-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700