用户名: 密码: 验证码:
质子交换膜燃料电池系统建模及其控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变暖问题的出现,燃料电池技术由于具有高效、环境友好的特点,被视为一种具有发展前景的能源技术。与其它类型的燃料电池相比,质子交换膜燃料电池(PEMFC)具有运行温度低、功率密度高、响应快、稳定性好以及当使用纯氢气时不会造成环境污染等特点,适用于便携式动力源、混合动力车辆及分布式发电。
     本文主要对车用PEMFC系统建模、改进粒子群优化算法(MPSO)及其在PEMFC模型参数辨识中的应用、基于H∞次优控制方法的PEMFC控制问题、燃料电池混合动力车辆建模及其多能源控制策略进行了研究。本文主要研究成果如下。
     (1)根据PEMFC机理模型和辨识模型的建模原理,建立了包括PEMFC机理模型和辅助设备模型的车用PEMFC系统混合动态模型。其中机理模型部分由输出电压模型、阴极流量模型、阳极流量模型以及膜水合模型组成;系统辅助设备模型部分由空气压缩机模型、管道集总模型、冷却器模型以及增湿器模型组成。该系统模型克服了既有PEMFC系统机理模型较复杂和参数繁多以及辨识模型需要实验数据量大、成本高等问题,而且模型中综合考虑输出电压系统、空气供应系统和增湿系统等相关子系统的建模。所建立的系统模型作为后续章节控制系统设计的基础;
     (2)针对传统PSO算法难以跳出局部极值点,易使平衡点陷入停滞状态,造成早熟收敛的问题,本文提出了一种具有较好全局搜索能力和寻优速度的MPSO算法。该算法主要包括有效信息策略、自适应惯性权值和加速度因子策略、BFGS拟牛顿法局部搜索策略以及随机重组策略。本文采用MPSO算法对benchmark函数问题进行函数优化测试,以验证该算法的性能,同时与其它已被广泛采用的改进PSO算法进行分析比较;
     (3)在新加坡淡马锡理工学院清洁能源研究中心(CEC)建立了PEMFC实验测试平台,利用燃料电池测试系统对CEC自主研发的PEMFC进行了极化特性曲线测试。根据具体实验数据,结合所建立的PEMFC模型,在无噪声和含噪声条件下,采用MPSO算法对输出电压模型的关键参数进行了辨识,并与其它改进PSO算法的辨识结果进行了分析比较,以验证MPSO算法的优越性;
     (4)针对PEMFC系统过氧保护问题,根据所建立的非线性PEMFC系统模型,本文提出一种将降阶H∞次优输出反馈控制器与前馈补偿器相结合的2自由度控制器(2DOF),使系统过氧比(OER)能够维持在最优值附近。在仿真模拟电动车的动态行驶过程时,考虑了多种不确定性参数摄动和外部扰动的影响,以检验控制系统的鲁棒性能,同时与其它控制方法进行了比较,并使用Ballard 1.2kW Nexa实验系统进行定性实验分析比较,以验证所建控制系统的可行性和有效性;
     (5)为了防止质子交换膜损坏、保证PEMFC系统稳定运行及延长其使用寿命,本文提出了一种非线性H∞次优输出反馈控制方法,建立了PEMFC压力控制系统模型。该方法通过非线性坐标变换和动态扩展算法,求解了非线性状态反馈控制律,得到了线性可控的Brunovsky标准型结构,进而将前文提出的基于LMI的H∞次优输出反馈控制方法与状态反馈精确线性化方法相结合,进一步设计了非线性H∞次优输出反馈控制器。通过模拟燃料电池测试系统的负载电流出现连续突变情况,对PEMFC压力控制系统进了动态仿真,以检验所设计的非线性控制器的抑制扰动能力,同时与其它非线性控制方法进行了比较分析;
     (6)本文在燃料电池和蓄电池(FC+B)双混合驱动型车辆的仿真系统结构基础上,对电动车辆仿真软件ADVISOR进行了二次开发,重新配置了装载文件,建立了燃料电池、蓄电池和超级电容器(FC+B+UC)混合驱动型车辆的仿真模型。此外为了提高燃料电池混合动力车辆的燃料经济性,增加车辆的续航里程,本文针对FC+B双能量源混合驱动系统以及FC+B+UC三能量源混合驱动系统,采用模糊控制方法设计了相应的多能量源控制策略。根据不同标准循环工况,通过与ADVISOR中广泛采用的功率跟随控制策略在燃料经济性和动力性指标上分别进行对比分析,验证了所提出的多能量源控制策略在满足工况功率需求的前提下,在各动力源之间功率分配方面的合理性和有效性。
With the world facing the global warming problem, fuel cell technologies are viewed as one of the promising energy technologies for sustainable future due to their high energy efficiency and environment friendliness. Compared with the other types of fuel cells, a proton exchange membrane fuel cell (PEMFC) shows promising results with its advantages such as low temperature, high power density, fast response, good stability and zero emission if it runs with pure hydrogen, and it is suitable to be used in portable power supply, hybrid vehicles, and distributed power plants.
     The dissertation researches on modeling of PEMFC system for vehicles, modified particle swarm optimization as well as parameter identification for PEMFC model, PEMFC control problems based on H∞suboptimal control and multi-energy control strategies of hybrid vehicles based on fuel cell. The main contributions obtained in this dissertation are as follows.
     (1) According to the modeling principle of mechanism model and identification model of PEMFC, a mixed dynamic model of PEMFC system for vehicles which includes mechanism model and auxiliary equipment model of PEMFC is proposed. In this system model, the mechanism model part is composed of output voltage model, cathode flow model, anode flow model and membrane hydration model;the auxiliary equipment model part is composed of air compressor model, manifold lumped model, air cooler model and humidifier model. This system model overcomes the drawbacks of high complexity and too many parameters in the mechanism model of PEMFC system and the shortcoming of large amounts of experimental data needed and high cost in the identification model. This system model also considers output voltage subsystem, air supply subsystem and humidifying subsystem, etc. This proposed system model will be the foundation for the control system design in follow-up chapters.
     (2) Due to the problem of standard PSO wihich is difficult to jump out of local optimum and can make equilibrium point fall into logjam, causing premature convergence, a modified particle swarm optimization (MPSO) algorithm which has preferable global search ability and search speed is proposed in this dissertation. This algorithm main includes effective informed strategy; adaptive inertia weight and acceleration coefficients strategies; local search strategy based on BFGS Quasi-Newton method; randomized regrouping strategy. In this dissertation, MPSO is carried out to test function optimization for the benchmark function problem to verify the performance of proposed algorithm. Meanwhile, MPSO is compared with other wide improved PSOs.
     (3) A PEMFC experimental test bench is developed in Clean Energy Centre (CEC), Temasek Polytechnic, Singapore. A PEMFC designed and fabricated by CEC is used to achieve the testing of polarization characteristics with the fuel cell testing system. Based on the experimental data and combined with the proposed PEMFC model, MPSO is utilized to achieve the parameter identification for the key parameters of output voltage model under the condition of noise and absence of noise. In order to verify the advantage of MPSO, the comparisons of identified results with other improved PSOs are carried out.
     (4) In order to protect a PEMFC system because of oxygen excess, a novel reduced H∞suboptimal output feedback controller as 2 degrees of freedom (2DOF) controller which can maintain oxygen excess ratio (OER) better at the optimal operating point combined with a pre-compensator is designed for a nonlinear PEMFC system. Considering the existence of uncertainties and disturbances, the robust performance of the control system is verfied as dynamic running process of electrical vehicle is simulated. Meanwhile, the comprehensive comparisons with other control methods are carried out. The experimental system of Ballard 1.2kW Nexa is performed qualitatively to compare with the simulation results and also the feasibility and the validity is verified for the proposed control system.
     (5) In order to prevent the damage of proton exchange membrane, guarantee stable operation of a PEMFC system and prolong its working lifetime, a nonlinear H∞, suboptimal output feedback method is proposed and a PEMFC pressure control system is developed. According to a nonlinear transformation of coordinate and a dynamic extension algorithm, a nonlinear state feedback control rule could be solved and a linear and controllable Brunovsky canonical form is then obtained. Furthermore, the proposed H∞suboptimal output feedback method based on LMI is combined with state feedback exact linearization and then a nonlinear H∞suboptimal output feedback contoller is designed. To verify the disturbance restraint ability of the proposed controller, the dynamic simulation is carried out for the pressure control system as load current of fuel cell testing system with continuous step is simulated. Meanwhile, the comprehensive comparisons with other nonlinear control approaches are achieved.
     (6) A secondary development for electric vehicle simulation software ADVISOR is implemented with the system architecture of hybrid vehicle based on fuel cell and battery (FC+B) in this dissertation. The loading files are reconfiguration and then a model of hybrid vehicle based on fuel cell, battery and ultra-capacitor (FC+B+UC) is developed. In order to enhance the fuel economy of hybrid vehicle and increase the mileage of continuation of the journey, a fuzzy control method is utilized to design relevant multi-energy control strategy for the FC+B hybrid vehicle and the FC+B+UC hybrid vehicle. According to different standard cycle conditions, the proposed control strategy is contrasted with the power tracking control strategy which is wide adopted in ADVISOR in terms of the indexes of fuel economy and dynamic property. The rationality and the validity of the proposed control strategy on condition that satisfies the power requirement of working condition are verified for the power distribution among various power sources.
引文
[1]衣宝廉.燃料电池—原理技术应用.北京:化学出工业出版社,2003
    [2]L. James, D. Andrew. Fuel Cell Systems Explained. Chichster:John Wiley & Sons Ltd,2003
    [3]陈维荣,钱清泉,李奇.燃料电池混合动力列车的研究现状与发展趋势.西南交通大学学报,2009,44(1):1-6
    [4]陈启梅,翁一武,翁史烈,等.燃料电池-燃气轮机混合发电系统性能研究.中国电机工程学报,2006,26(4):31-35
    [5]J.T. Pukrushpan, A.G. Stefanopoulou, H. Peng. Control of fuel cell breathing. IEEE Trans. Control Systems,2004,24(2):30-46
    [6]J.T. Pukrushpan, H. Peng, A.G. Stefanopoulou. Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems. Journal of Dynamic Systems, Measurement and Control,2004, 126(1):14-25
    [7]杨顺风PEMFC昆合动力系统开发及燃料气体压强非线性控制研究,西南交通大学硕十学位论文,2010
    [8]戴朝华.搜寻者优化算法及其应用研究.西南交通大学博十学位论文,2009
    [9]李奇,陈维荣,刘述奎,程站立,刘小强.多变帚H∞次优控制在质子交换膜燃料电池压力控制系统中的应用.中国电机工程学报,2010,30(20):123-128
    [10]李奇,陈维荣,刘述奎,程站立,刘小强.基于改进粒子群算法的H∞次优控制在PEMFC混合发电系统中的应用.电力系统保护与控制,2010,38(21):126-131
    [11]李奇,陈维荣,刘述奎,林川,贾俊波.基于H∞鲁棒控制的质子交换膜燃料电池空气供应系统设计.中国电机工程学报,2009,29(5):109-116
    [12]李奇,陈维荣,刘述奎,林川,贾俊波.基于自适应聚焦粒子群算法的质子交换膜燃料电池机理建模.中国电机工程学报,2009,29(20):119-124
    [13]李奇,陈维荣,刘述奎,贾俊波,韩明.质子交换膜燃料电池动态建模及其双模控制.控制理论与应用,2009,26(7):809-811
    [14]李奇,陈维荣,贾俊波,湛耀添,韩明.质子交换膜燃料电池动态特性建模及其控制.西南交通大学学报,2009,44(4):604-608
    [15]李奇,陈维荣,贾俊波,湛耀添,韩明.质子交换膜燃料电池动态响应建模与仿真研究.系统仿真学报,2009,21(11):3441-3447
    [16]李奇,陈维荣,贾俊波,刘述奎,刘小强.一种改进的质子交换膜燃料电池动态建模及其仿真研究.系统仿真学报,2009,21(12):3588-3591
    [17]李奇,陈维荣,戴朝华,贾俊波,韩明.基于搜寻者优化算法的质子交换膜燃料电池模型优化.中国电机工程学报,2008,28(17):119-124
    [18]李奇,陈维荣,贾俊波,Y. T. Cham,韩明.质子交换膜燃料电池动态建模及其PID控制.电源技术,2008,32(9):592-595
    [19]李奇,戴朝华,陈维荣,贾俊波,韩明.基于搜寻者优化算法的燃料电池建模.电源技术,2008,32(8):525-527
    [20]陈维荣.PEMFC系统综合动态模型及其控制方法研究.学术动态,2009,(2):12-16
    [21]张东波.PEM燃料电池空气供给系统氧匮乏的模型预测控制,吉林大学硕十学位论文,2007
    [22]于树友,陈虹,张东波,郭洪艳.PEM燃料电池空气供给系统氧匮乏的模型预测控制,Proceedings of the 27th Chinese Control Conference, Kunming,Yunnan, China, July 16-18, 2008:682-686
    [23]Woon Ki Na, Bei Gou, Bill Diong. Nonlinear control of PEM fuel cells by exact linearization. Industry Applications Conference,2005. Fortieth IAS Annual Meeting, vol.4,2005: 2937-2943
    [24]Woon Ki Na, Bei Gou. Feedback-Linearization-Based Nonlinear Control for PEM Fuel Cells. IEEE Trans. Energy Conversion,2008,23(1):179-190
    [25]谢长君.基于多模型控制的燃料电池汽车混合动力系统优化研究.武汉理工大学博士学位论文,2009
    [26]王金龙.车用质子交换膜燃料电池及其混合动力系统性能研究.吉林大学博士学位论文,2007
    [27]刘彬娜.燃料电池混合动力汽车多能源系统仿真分析与控制.吉林大学硕士学位论文,2007
    [28]S. Srinivasan, A. Ticianellte, R. Derouinc, et al. Ad-vance in solid polymer electrolyte fuel cell technology with low platinum loading electrodes. Journal of Power Sources,1988,22: 359-375
    [29]J. H. Lee, R. Lalkt, J. Applebya. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. Journal of Power Sources,1988,70:258-268
    [30]J. Kim, M. Lees, S. Srinivasan. Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation. Electrochem Soc,1995,142:670-2674
    [31]C. Deryn, Z. Jiangr. Performance of polymer electrolyte membrane fuel cell(PEMFC)stacks. Journal of Power Sources,1999,83:128-133
    [32]J. J. Baschuk, Xianguo Li. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. Journal of Power Sources,2000,86:181-196
    [33]T. Berning, D. M. Lu, N. Djilali. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. Journal of Power Sources,2002,106:284-294
    [34]J. C. Amphlett, M. Baumertr, F. Mannr. Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell:Empirical model development. Electrochem Soc,1995,142: 9-15
    [35]J. C. Amphlett, R. F. Mann. A model predicting transient responses of proton exchange membrane fuel cells. Journal of Power Sources,1996,61:183-191
    [36]F. Mannr, J. C. Amphlett, I. Hooperma, et al. Development and application of a generalized steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources,2000,80: 173-180
    [37]孙涛,闫思佳,曹广益,朱新坚.基于改进型RBF神经网络的PEMFC电特性建模.计算机仿真,2007,23(2):200-203
    [38]徐腊梅,肖金生.质了交换膜燃料电池动态特性的建模与仿真.武汉理工大学学报,2007,29(3):10-13
    [39]贾俊波,韩明,肖建.基于支持向量机的PEMFC电特性仿真研究.计算机仿真,2007,24(2):227-231
    [40]P.R. Pathapati, X. Xue, J. Tang. A new dynamic model for predicting transient phenomena in PEM Fuel Cell system. Renewable Energy,2005,30:1-22
    [41]史君海,朱新坚,曹广益.质子交换膜燃料电池发电系统建模与分析.电源技术,2006,30(11):887-889
    [42]Song-Yul Choe, Jung-Gi Lee, Jong-Woo Ahn, Soo-Hyun Baek. Integrated modeling and control of a PEM fuel cell power system with a PWM DC/DC converter. Journal of Power Sources,2007,164:614-623
    [43]Samir Jemei, Daniel Hissel, Marie-Cecile Pera, et al. A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans. Industrial Electronics,2008,55(1):437-447
    [44]莫志军,朱新坚,曹广益.质子交换膜燃料电池建模与稳态分析.系统仿真学报,2005,17(9):2255-2259
    [45]莫志军,朱新坚.质子交换膜燃料电池建模与动态仿真.计算机仿真,2006,23(2):192-196
    [46]莫志军,朱新坚,韦凌云,曹广益.基于改进遗传算法的PEMFC电堆稳态运行优化.电源技术,2006,30(8):625-629
    [47]Zhi-Jun Mo, Xin-Jian Zhu, and Ling-Yun Wei, et al. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. International Journal of Energy Research,2006,30(8): 585-597
    [48]I. Mohamed, N. Jenkins. Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms. Journal of Power Sources,2004,131(1-2):142-146
    [49]仲志丹,朱新坚,曹广益.基于模拟退火算法的燃料电池建模.电池,2006,36(5):398-400
    [50]简弃非,赵永利,刘海燕.质子交换膜燃料电池运行参数的仿真优化.华南理工大学学报,2006,34(10):6-10
    [51]Ren Y, Cao G Y, Zhu X J. Particle swarm optimization based predictive control of proton exchange membrane fuel cell. Journal of Zhejiang University,2006,7(3):458-462
    [52]Cheng Bao, Minggao Ouyang, Baolian Yi. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems. Journal of Power Sources,2006,156(2): 232-243
    [53]Zhi-Dan Zhong, Xin-Jian Zhu, Guang-Yi Cao, et al. A hybrid multi-variable experimental model for a PEMFC. Journal of Power Sources,2007,164(2):746-751
    [54]D.M.Guinea, B.Moreno,E. Chinarro, et al. Rotary-gradient fitting algorithm for polarization curves of proton exchange membrane fuel cells (PEMFCs). International Journal of Hydrogen Energy,2008,33(11):2774-2782
    [55]Meiying Ye, Xiaodong Wang, Yousheng Xu. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. International Journal of Hydrogen Energy,2009,34(2):981-989
    [56]张立炎,潘牧,全书海.质子交换膜燃料电池系统建模和控制的综述.武汉理工大学学报,2007,29(4):1-6
    [57]Azmy A, Erlich I. Online optimal management of PEM fuel cells using neural networks. IEEE Trans. Power Delivery,2005,20(21):1051-1058
    [58]李炜,朱新坚,曹广益.PEMFC发电系统的自适应模糊控制与动态分析.计算机仿真,2004,24(1):233-237
    [59]孙涛,闫思佳,曹广益,卫东.基于自适应神经模糊法的PEMFC温度建模.计算机测量与控制,2005,13(7):662-664
    [60]许思传,程钦,马天才.燃料电池发动机空气参数的最优控制.车用发动机,2006,(2):25-28
    [61]Vahidi A, Stefanpoulou A, Peng H. Model predictive control for starvation prevention in hybrid fuel cell system. Proceedings of the American Control Conference.2004:834-839
    [62]Jing Sun, Kolmanovsky, I.V. Load governor for fuel cell oxygen starvation protection:a robust nonlinear reference governor approach. IEEE Trans. Control Systems Technology, 2005,13(6):911-920
    [63]Yingfei Xiong, Xianrui Deng. Research on the Control of the Cathode Gas Flow and Pressure of A Small PEM Fuel Cell. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian,2006:7711-7715
    [64]Kyung-Won Suh, Stefanopoulou, A.G.. Performance Limitations of Air Flow Control in Power-Autonomous Fuel Cell Systems. IEEE Trans. Control Systems Technology,2007, 15(3):464-473
    [65]魏金强,全书海,陈启宏.燃料电池发动机风量模糊PID控制器的设计.武汉理工大学学报,2007,29(1):22-26
    [66]L. Y. Chiu, B. Diong, R. S. Gemmen. An improve small-signal modeof the dynamic behavior of PEM fuel cells. IEEE Trans. Ind. Appl.,2004,40(4):970-977
    [67]J. Jia, S. Yang, Y. Wang, Y. T. Cham. Matlab/Simulink Based-Study on PEM Fuel Cell and Nonlinear control. The Seventh IEEE International Conference on Control and Automation, Christchurch, New Zealand,2009:1657-1662
    [68]张天贺,全书海,张立炎,潘牧.车用PEMFC空气供给系统建模与PID模糊控制研究.系统仿真技术,2007,3(4):211-216
    [69]张天贺.燃料电池发动机空气供给系统建模与控制研究.武汉理工大学硕士学位论文,2008
    [70]YS. Hung, Pokrud. An H∞ approach to feedback design with two objective functions. IEEE Trans. Automatic Control,1992,37(6):820-824
    [71]代冀阳,毛剑琴.基于遗传算法的鲁棒H∞控制系统设计.系统工程与电子技术,2001,23(10):31-34
    [72]Ichiro Maruta, Tae-Hyoung Kim, Toshiharu Sugie. Fixed-structure H∞ controller synthesis:A meta-heuristic approach using simple constrained particle swarm optimization. Automatica, 2009,45(2):553-559
    [73]Doyle J C, Glover K, Khargonekar P P, et al. State-space solutions to standard H2 and H∞ control problem. IEEE Trans.on Automatic Control,1989,34(8):831-847
    [74]A. Isidori. Nonlinear Control Systems,3rd ed. London, U.K.:Springer-Verlag,1995.
    [75]Kennedy J, Berthart R. Particle Swarm Optimization. Proceedings of the 4th IEEE International Conference on Neural Networks, Piscataway,1995:1942-1948
    [76]Omran M, Engelbrecht P A, Salman. A particle swarm optimization for image clustering. International Journal of Pattern Recognition and Artificial Intelligence,2005,19(3):297-321
    [77]Alec Banks, Jonathan Vincent, Chukwudi Anyakoha. A review of particle swarm optimization. Part Ⅰ:background and development. Natural Computing,2007,6(4):467-484
    [78]Alec Banks, Jonathan Vincent, Chukwudi Anyakoha. A review of particle swarm optimization. Part Ⅱ:hybridization, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing,2007,7(1):1-16
    [79]王万良,唐宇.微粒群算法的研究现状与展望.浙江工业大学学报,2007,35(2):136-141
    [80]Riccardo Poli, James Kennedy, Tim Blackwell. Particle swarm optimization:An overview. Swarm Intelligence,2007,1(1):33-57
    [81]Y. del Valle, G. Venayagamoorthy, S. Mohagheghi, et al. Particle Swarm Optimization:Basic Concepts, Variants and Applications in Power Systems. IEEE Trans. Evolutionary Computation,2008,12(2):171-195
    [82]林川,冯全源.一种新的自适应粒子群优化算法.计算机工程,2008,34(7):181-183
    [83]林川,冯全源.粒子群优化算法的信息共享策略.西南交通大学学报,2009,44(3):437-441
    [84]林川,冯全源.利用有效信息的粒子群优化算法.哈尔滨工程大学学报,2008,29(11):1227-1231
    [85]林川,冯全源.标准粒子群优化算法收敛性能分析与参数选择.2007控制科学与工程全国博十生学术论坛,2007:771-777
    [86]林川.粒子群优化与差分进化算法研究及其应用.西南交通大学博十学位论文,2009
    [87]李奇,陈维荣,贾俊波,湛耀添.基于改进粒子群算法的燃料电池模型优化.电池,2007,37(6):418-421
    [88]Shi Y, Eberhart R. Empirical study of particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation, Washington,1999:1945-1950
    [89]R.C. Eberhart, Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization. In Proc. IEEE International Congress on Evolutionary Computation, San Diego, CA,2000:84-88
    [90]Y. Shi, R. Eberhart. Fuzzy adaptive particle swarm optimization. In:Proceedings of IEEE Congr. Evol. Comput., vol.1,2001:101-106
    [91]Ratnaweera A., Halgamuge S. K., Watson H. C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. on Evolutionary Computation,2004,8(3):240-255
    [92]Suganthan, P.N. Particle swarm optimiser with neighbourhood operator. Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ,1999,1958-1962
    [93]J. Kennedy. Small worlds and mega-minds:Effects of neighborhood topology on particle swarm performance. In:Proceedings of IEEE Congr. Evol. Comput., vol.3,1999:1931-1938
    [94]J. Kennedy, R. Mendes. Population structure and particle swarm performance. Proceedings of the IEEE International Conference on Evolutionary Computation,2002:1671-1676
    [95]T.Peram, K.Veeramachaneni, C.K. Mohan. Fitness-distance-ratio based particle swarm optimization. In Proc. IEEE Swarm Intelligence System, Indianapolis, Indiana, USA,2003: 174-181
    [96]R. Mendes, J. Kennedy, J. Neves. The fully informed particle swarm:simpler, maybe better. IEEE Trans. Evolutionary Computation,2004,8(3):204-210
    [97]F. Bergh, A. Engelbrecht. A cooperative approach to particle swarm optimization. IEEE Trans. Evolutionary Computation,2004,8(3):225-239
    [98]J. J. Liang, P. N. Suganthan. Dynamic multi-swarm particle swarm optimizer with local search. In:Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol.2, 2005:522-528
    [99]J. J. Liang, A.K. Qin, Ponnuthurai Nagaratnam Suganthan, S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evolutionary Computation,2006,10(3):67-82
    [100]郭晋晟.燃料电池汽车多能源系统优化设计和控制.上海交通大学硕十学位论文,2008
    [101]于远彬.车载复合电源设计理论与控制策略研究.吉林大学博十学位论文,2008
    [102]D Buntin, J W Howze. A switching logic controller for a hybrid electric/ICE vehicle. In: Proceeding of the American Control Conference,1995,2:1169-1175
    [103]M Carpaneto, G Ferrando, M Marchesoni. A New Conversion System for the Interface of Generating and Storage Devices in Hybrid Fuel Cell Vehicles. In:Proceedings of the IEEE International Symposium,2000,4:1477-1482
    [104]Wipke K, Markel T, Nelson D. Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV. In:Proceedings of 18th Electric Vehicle Symposium. Berlin, Germany,2001
    [105]Markel T, Brooker A, Hendricks T. A systems analysis tool for advanced vehicle modeling. Journal of Power Sources,2002,110:255-266
    [106]Olivier Tremblay, Louis-A. Dessaint, A.-I. Dekkiche. A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles. Vehicle Power and Propulsion conference, 2007:284-289
    [107]Ali Emadi, Young Joo Lee, Kaushik Rajashekara. Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles. IEEE Trans, on Industrial Electronics,2008,55(6):2237-2245
    [108]Hengbing Zhao, Andrew F. Burke. Optimization of fuel cell system operating conditions for fuel cell vehicles. Journal of Power Sources,2009,186:408-416
    [109]卢兰光,包成,欧阳明高.燃料电池客车混合动力系统能量分配的遗传优化组合算法.汽车技术,2004,12(2):47-51
    [110]朱元,孙鸿航,,田光宇,等.燃料电池客车整车控制系统的研究.汽车工程,2005,27(2):136-140
    [111]王登峰,王金龙,贾迎春.燃料电池混合动力轿车控制策略与参数优化.江苏大学学报(白然科学版),2005,26(4):298-301
    [112]钱立军,袭著永,赵韩.基于模糊神经网络的混合动力汽车控制策略仿真.系统仿真学报,2006,8(5):34-39
    [113]陈超,曹桂军,卢兰光,等.功率混合型燃料电池汽车动力系统的恒压式能量分配算法.汽车工程,2007,29(2):101-106
    [114]金振华,欧阳明高,卢青春,高大威.燃料电池混合动力系统优化控制策略.清华大学学报(自然科学版),2009,49(2):273-276
    [115]郑永康,陈维荣,戴朝华,王维博.随机聚焦搜索优化算法.控制理论与应用,2009,26(8):915-917
    [116]Zheng Yongkang, Chen Weirong, Dai Chaohua, Wang Weibo. Stochastic Focusing Search:A Novel Optimization Algorithm for Real-Parameter Optimization. Journal of System Engineering and Eletronics,2009,20(4):869-876
    [117]全书海,张天贺,张立炎PEMFC空气供应系统的建模、仿真与控制.武汉理工大学学报,2007,29(10):61-64
    [118]张立炎,潘牧,全书海.燃料电池空气供应系统建模与动态仿真的研究.系统仿真学报,2008,20(4):850-854
    [119]程站立,陈维荣,刘小强.基于机理模型的质子交换膜燃料电池动态特性分析.工程设计学报,2009,16(5):374-378
    [120]田浩PEMFC分布式发电的适用性仿真分析.电源技术,2006,10(130):806-809
    [121]孙涛,曹广益,朱新坚PEMFC电化学建模及其PID控制.计算机仿真,2006,23(6):236-238
    [122]赵巍.系统建模与仿真在PEMFC中的应用研究.山东大学硕十学位论文,2005
    [123]张志明.PEMFC系统的建模及其仿真研究.上海海事大学硕十学位论文,2006
    [124]王振.质子交换膜燃料电池系统特性仿真研究.山东大学硕十学位论文,2007
    [125].王振,康兴娜,韩吉田,于泽庭,查利权.质子交换膜燃料电池动态特性仿真.山东大学学报,2008,38(5):50-56
    [126]王振,韩吉田.质子交换膜燃料电池动态特性仿真研究.武汉理工大学学报,2006,28(专辑Ⅱ):515-521
    [127]J. Jia, Q. Li, Y. Wang, Y.T. Cham, M. Han. Modeling and Dynamic Characteristic Simulation of a Proton Exchange Membrane Fuel Cell. IEEE Trans. Energy Conversion,2009,24(1): 283-291
    [128]T. V. Nguyen, R. E. White. A water and heat management model for proton-exchange-membrane fuel cells[J]. Electrochemical Society,1993,140(8):2178-2186
    [129]K.B. Wipke, M. R.Cuddy, S. D. Burch. ADVISOR 2.1:a User-Friendly Advanced Powertain Simulation Using a Combined Backward/Forward Approach. IEEE Trans. on Vehicular Technology,1999,48(6):1751-1761
    [130]张翔,钱立军,张炳力,赵韩.电动汽车仿真软件进展.系统仿真学报,2004,16(8):1621-1623
    [131]张翔,赵韩,钱立军,张炳力.电动汽车仿真软件ADVISOR的应用.交通科技与经济,2004,(3):40-43
    [132]张翔,赵韩,钱立军,张炳力.电动汽车仿真软件ADVISOR轻型汽车技术,2003,(8):15-17
    [133]张翔,赵韩,钱立军,张炳力.ADVISOR软件的混合仿真方法.计算机仿真,2005,22(2):203-206
    [134]Y. Shi, R. Eberhart. A modified particle swarm optimizer. In:Proceedings of IEEE World Congr. Comput. Intell.,1998:69-73
    [135]M. Han, S. H. Chan, S. P. Jiang. Development of carbon-filled gas diffusion layer for polymer electrolyte fuel cells. Journal of Power Sources,2006,159(2):1005-1014
    [136]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.清华大学出版社,2008
    [137]周克敏,毛剑琴,钟宜生,林岩.鲁棒与最优控制.国防工业出版社,2006
    [138]吴敏,桂卫华,何勇.现代鲁棒控制.中南大学出版社,2006
    [139]Iwasaki T, Skelton E. All controllers for the general H∞ control problem:LMI existence condition and state space formulas. Automatica,1994,30(8):1307-1317
    [140]Kang-Zhi Liu, Rong He. A simple derivation of ARE solutions to the standard H∞ control problem based on LMI solution. Systems & Control Letters,2006,55(6):487-493
    [141]孙鹏远.基于LMI优化的主动悬架多目标控制研究,吉林大学博十学位论文,2004
    [142]赵友刚.不确定性系统的鲁棒稳定性及控制研究,中国海洋大学博十学位论文,2008
    [143]王进华.混合H2/H∞鲁棒控制理论及应用研究,西北工业大学博士学位论文,2000
    [144]盖超会.基于H∞控制的Z型隔振系统控制特性研究,华中科技大学硕十学位论文,2007
    [145]M.K.H. Fan, A.L. Tits, J.C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans. Automatic Control,1991,36(1):25-38
    [146]M. Karkoub, G. Balas, K. Tamma, et al. Robust control of flexible manipulators via μ-synthesis. Control Engineering Practice,2000,8(7):725-734
    [147]Mansour Karkoub, Kumar Tamma. Modelling and μ-synthesis control of flexible manipulators. Computers & Structures,2001,79(5):543-551
    [148]Richard C. Dorf, Robert H. Bishop. Modern control systems. Englewood Cliffs:Prentice Hall, 2005
    [149]Fonseca, C. M. Fleming, P. J. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation,1995,3(1):1-16
    [150]X. Hu, R. C. Eberhart. Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proc. IEEE Congress on Evolutionary Computation (CEC 2002), Hawaii,2002:1677-1681
    [151]恒庆海,王广雄.SISO系统混合灵敏度的鲁棒性能设计.控制与决策,1999,14(3):269-271
    [152]M.G. Safonov, R.Y. Chiang, D.J.N. Limebeer. Optimal Hankel model reduction for nonminimal systems. IEEE Trans. Automatic Control,1990,35(4):496-502
    [153]K. Glover. All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their L∞-error Bounds. International Journal of Control,1984,39(6):1115-1193
    [154]王刚.燃料电池电动汽车动力系统匹配及仿真研究.武汉理工大学硕士学位论文,2008
    [155]钱立军,吴伟岸,赵韩.基于ADVISOR软件的电池模型仿真分析.计算机仿真,2004,21(8):166-168
    [156]李品品.燃料电池与超级电容器混合驱动系统的研究与仿真.武汉理工大学硕士学位论文,2006
    [157]于霞.燃料电池电动客车参数匹配与性能仿真研究.合肥工业大学硕士学位论文,2008
    [158]刘金琨.先进PID控制MATLAB仿真.电子工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700