用户名: 密码: 验证码:
海拉尔贝301区块调剖综合设计方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由油层的非均质造成的吸水剖面非均衡性使纵向注水波及系数降低,注入水沿高渗层的突进,形成水窜。另外,由于注入水与地层岩石颗粒和骨架的长期接触和冲刷作用,使原高渗透条带的渗透性变得愈来愈大,形成高渗透通道。从而极大地降低注入水的利用率,使油井的含水迅速上升,高含水油井快速增多,因此应该从区块整体上来考虑油水井的堵水和调剖。
     本文针对海拉尔贝301区块的实际情况设计了调剖决策技术,即利用模糊综合评判方法,进行选井选层;利用物理模拟方法,研制了新型的调剖体系并对其性能进行综合评价;采用数值模拟方法,深入研究了调剖效果的影响因素,并预测调剖效果。
     在模糊评判工作中,把注水井的视吸水指数、吸水指数、压降曲线、渗透率非均质性、吸水剖面非均衡性及对应油井的总产液量、平均含水率、连通油井剩余储量和采出程度等9种参数归纳为反映注水井吸水能力、油层非均质性、对应周围油井动态的3类主要因素,利用模糊数学理论,计算各项因素决策因子,进一步将上述因子进行多级评判,最终得到定量化处理的决策因子FZ,据其大小来对整个区块选择调剖井,同时优化了调剖选层的模糊综合评判决策技术。并以实例计算了调剖井的调剖半径、调剖剂用量、施工时的注入压力及注入速度等参数。确定贝301区块调剖半径为3m,调剖储层温度在45~60℃之间,储层小层有效厚度范围为0.3~24.3m。
     针对贝301区块的油藏特征及模糊综合评判的结果,研究了以PAM-单酚(苯酚)弱凝胶为基础、利用多酚(间苯二酚)活性较高的特点、以PAM和混合酚(苯酚和间苯二酚)为主要原料的高强度、快速交联的调剖体系,通过对该体系进行优化,凝胶强度最高可达105mPa·s,成胶时间在1~5天内可控;并进一步研究了矿场应用环境(地层水,PH值,温度)对成胶时间及凝胶强度的影响;同时通过抗剪切性能评价、突破压力测定及耐冲刷能力测定对调剖体系综合性能进行了评价,结果表明:调剖剂体系对水相的封堵率在99%以上,且具有很强的耐冲刷能力;地层水矿化度不影响调剖体系性能;调剖剂体系对提高采收率有很好的效果。
     利用数值模拟技术,针对贝301区块用petrel软件建立了三维精细地质模型,采用eclipse软件进行水驱历史拟合和剩余油分布状况研究,结果表明:日产油量拟合结果相对误差小于3.1%,累计产油量拟合结果相对误差小于1%。在此基础上利用数值模拟方法研究了封堵率、调剖半径、调剖时机、非均质性和层间窜流等因素对调剖效果的影响,并对该区块水驱及调剖后驱油效果进行了预测。结果表明:贝301区块调剖时机为采出井含水为40~90%;调剖半径3m;封堵率为80~90%时,采收率提高程度最大;调剖目的储层非均质性越高,垂向渗透率级差越大,调剖后的采收率提高程度越高;层间窜流程度高不利于增加调剖效果。
     论文依据贝301区块井层的厚度、渗透率、空间尺度分布较宽的特征,研制出成胶时间和凝胶强度可调的新型调剖体系。并从能量转换引发官能团构造、构型、构象结构的变化,导致缩合物的特殊功能,描述出调剖体系三个阶段的加成缩合反应过程的机理和本质内涵。
Reservoir heterogeneity is a widespread existence which makes the water intake profile not uniform to cause reduction of the vertical sweep efficiency of the water injection. Hence the water channeling is formed by this injected water. And due to the act of long contact and flush between the injected water and the rock particles and skeleton, the high permeable band becomes larger and larger to form the high permeable path which might reduce the efficiency of the injected water to a great extent. Then the water cut of oil wells would increase swiftly. While the water production of a oil well is the comprehensive results of several water injection wells, water plugging and profile adjustment should be considered according to all the block.
     Based on the perfection and the accuracy, the decision-making techniques were designed for two blocks such as the fuzzy comprehensive evaluation and the numerical simulation. Taking advantage of physical simulation,we developed a new profile control system and gave a comprehensive evaluation for its performance.By the mutual verification and their complementation, a mathematical model was built on the program optimization for block profile adjustment and water plugging.
     On the bases of the original studies, a large number of reservoir engineering parameters were used completely, such as in the injection wells the apparent water injectivity index, water injectivity index, pressure drop curve, permeability heterogeneity, water intake profile heterogeneity, and in the oil wells the total liquid production, average water cut, residual reserve of the linked oil wells and the degree of recovery. After selection of the three primary factors indicating the water intake capacity of water wells, the heterogeneity of oil layers and the related dynamic status of the around oil wells, Calculate all the the decision-making factors, according to the results of multi-level decision to calculate the final decision-making factor FZ, according to its size as a option profile control wells conditions to whole block, while further study is optimized for transferring profile control layer of fuzzy comprehensive evaluation decision-making techniques. And an example calculation of the profile control wells: profile control radius, profile-modifying agent dosage, profile-modifying agent injection pressure and injection rate during the construction .
     With the established numerical simulation simulations also considered the closure rate, profile control radius, profile control timing, heterogeneity and inter-layer crossflow swap profile control effect.The results from both the fussy comprehensive evaluation and the numerical simulation show that at the block 301 of Halar Basin the reasonable profile adjustment radius is about 3m, the aim formation temperature was among the range of 45~60℃, the effective thickness of the sublayers was among the range of 0.3~24.3m. At the same time, based on the weak gel of PAM-monophenol, a profile adjustment system with high strength and quick crosslink capacity was designed and optimized including the PAM and the mixed phenols (monophenol and multiphenol). This new system has the gel strength about 105 mPa·s and gelling time within the range of 1~5d. Other studies such as the field application environment effects (formation water, pH value and the temperature) on the gelling time and strength, the comprehensive performance, the resistance to shearing, the breakthrough pressure, the resistance to flushing were also make. Finally, the degree of recovery was evaluated for the new system on a man-made rock sample with the variation coefficient of 0.5.
     Taking use of numerical simulation techniques,we established a three-dimensional geological model with petrel software for Bei301 blocks,made waterflood history match and remaining oil distribution with eclipse software. The history matching resulted that:the relative error of fitting results on oil production was less than 3.1%,and the relative error of fitting results on cumulative oil production was less than 1%. On this basis,with the established numerical simulation simulations also considered profile control effect of the plugging rate, profile control radius, profile control timing, heterogeneity and inter-layer crossflow.The result showed that: for Bei301 blocks,when 40~90% of the moisture content of production wells was the profile control timing, profile control radius was 3m, the plugging rate was 80~90%, the increase degree of recovery was maximum;the heterogeneity of profile purpose reservoir was higher, the vertical permeability ratio was greater, the increase degree of recovery after the profile was higher;the high layer channeling is not conducive to increase the profile results.
     Based on the features of the fermation thickness, permeability, wide-scale distribution at Bei301 Block, a new profile control system with the both gelling time and gel strength djustable was developed. And the reaction mechanism and nature of the profile control system in their three stages of addition-condensation process was also described deeply according to the special functions of the condensation compound caused by the change of organic polymer functional groups attributed by energy conversion.
引文
[1]郑俊德,张洪亮.油气田开发与开采[M].北京:石油工业出版社,1997,85~92.
    [2]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003,61~70.
    [3]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997,55~63.
    [4]赵福麟.采油化学[M].东营:石油大学出版社,1989,64~85.
    [5]王鸿勋等.采油工艺原理[M].北京:石油工业出版社,1992,73~89.
    [6]李道品.低渗透油田开发概论[J].大庆石油地质与开发,16(3):33~37.
    [7]陈涛平,胡靖邦.石油工程[M].北京:石油工业出版社,2000,69~90.
    [8]王清平.化学调剖效果经济评价方法研究[C].浙江大学,2002,6:27.
    [9]白宝君.区块整体调剖优化设计技术研究[J].石油勘探与开发,2000,27(3):55~60.
    [10]秦涛,杜永慧,等.调剖堵水优化设计软件在濮城油田的应用[J],钻采工艺, 27(2):47~50.
    [11]李宜坤,赵福麟,刘一江.区块整体调剖的压力指数决策技术[J].石油大学学报(自然科版),1997,21(2):39~42.
    [12]唐孝芬,吴奇,刘戈辉等.区块整体弱凝胶调驱矿场试验及效果[J].石油学报,2003,24(4):58~61.
    [13]蒲春生,赖茂宏.实用数值计算方法[M].北京:石油工业出版社,1997,109~121.
    [14]杜纲.管理数学基础[M].天津:天津人民出版社,1999,130~165.
    [15]邓建中.计算方法[M].西安:西安交通大学出版社,1985,78~140.
    [16] Lang Z X,Horne R N.Optimum production scheduling using reservoir simulators[J]. SPE 12159,1983.
    [17]时富庚,钱玉怀.油田化学堵水调剖三维两相数值模拟研究[J].石油勘探与开发,1995,22(增刊).
    [18]童宪章.油井产状和油藏动态分析[M].北京:石油工业出版社,1982,76~90.
    [19]郭志东,权培丰等,PI决策及技术在复杂断块油田调剖中的应用[J],油气井测试,2000,9(3):50~53.
    [20]唐孝芬,刘玉章,刘戈辉.配套暂堵实现强凝胶堵剂的选择性堵水实验研究[J].石油勘探与开发, 2002,16(4):57~60.
    [21]熊显忠,杨永超,李乔林等.PI决策技术在断块油田调剖中的应用[J].河南石油,2001,15(4):23~27.
    [22]熊显忠,杨永超,李乔林等.PI决策技术在断块油田调剖中的应用[J].河南石油,2001,15(4):23~27.
    [23] Tiab D. Analysis of Pressure and Pressure Derivative With 2 out Type 2 curve Matching:Vertically Fractured Wells in Closed Systems[J]. Joural of PetroleumScience and Engineering, 1994:323~333.
    [24] Savioli GB, et al. The Influence of Heterogeneities on Well Test Pressure Response 2A Sensitivity Analysis[J]. SPE 26985.
    [25] W. John Leei著,王福松等译.试井[M].北京:石油工业出版社,1986,69~85.
    [26]童宪章.压力恢复曲线在油气田开发中的应用[M].北京:石油工业出版社,1977,103~119.
    [27]冯其红,陈月明,姜汉桥等.模糊数学在区块整体调剖选井中的应用[J].石油勘探发,1998,25(3):76~79.
    [28]王奎升等.抽油杆使用系数的模糊综合评判[J].石油矿场机械,1997,4.
    [29]王志勇,依据价值分析理论选择优质原煤部分替代洗精煤炼焦过程中的Fuzzy数学方法(硕士论文) [C].天津:天津大学,1999.
    [30]刘秀婷、杨等.用模糊层次评判法优选稠油开发规划方案的探讨[J].石油勘探与开发,1996,5.
    [31]梁昆淼.数学物理方法[M].北京:人民教育出版社,1978,156~178.
    [32]刘庆吉等.实用最优化方法[M].北京:石油工业出版社,1995,59~80.
    [33]秦涛,杜永慧,等,调剖堵水优化设计软件在濮城油田的应用[J].钻采工艺, 27(2):47~50.
    [34]白宝君,唐孝芬,李宇乡.区块整体调剖优化设计技术研究[J].石油勘探与开发,2000,27(3):60~63.
    [35]赵军,梅元贵.英法海底隧道空气动力学效应的数值模拟方法介绍[J].隧道建设,2007:S2.
    [36]刘翔鹗.油田区块整体堵水调剖技术论文集[D].北京:石油工业出版社, 1994,55~75.
    [37] Osman M E , et al. Pressure Analysis of Gas Wells Skin,Storage, and Non 2 Darcy Effects[J]. SPE 25378.
    [38] Kuckluk F J . Well Testing and Interpretation for Horizontal Wells[J]. JPT, 1995, 47(1) :36~41.
    [39] Alvarado D A. Pressure Transient Test Using Mathematical Properties of Type Curve Models[J]. SPE 26960.
    [40] Robert C,etal著,栾志安等译.试井分析方法[M].北京:石油工业出版社,1985,96~105.
    [41]赵福麟.注水井井口压降曲线在粘土调剖中的应用[J].石油钻采工艺,1994 (2):33~36 .
    [42]王元胜.PI决策技术在中原油田的应用[J].石油勘探与开发,1999,26(6): 81~83.
    [43]石彦,谢建勇等.PI决策技术在油田调剖堵水中应用[J].新疆石油学院学报, 2002,14(4):50~52.
    [44]张旭升,路秀广等.PI决策技术胜坨地区74~81单元的应用[J].胜利油田职工大学学报.1999,13(2):11~13.
    [45]刘翔鹦.发展改善的二次采油技术提高石油采收率[C].第十次全国油田堵水技术研讨会交流材料.石油科学技术研究院,2003.
    [46]刘翔鹦.油田堵水技术论文集[D].石油工业出版社,1998.
    [47]姜汉桥等.区块整体调剖堵水方案最优化设计及应用[J].石油大学学报, 1997,21(2):61~65.
    [48]刘一江,王香增.化学调剖堵水技术.第一版[M].北京:石油工业出版社,1999,109~115.
    [49]冯其红,尹文军.区块整体调剖筛选方法研究[J].石油大学学报(自然科学版),1999,23(5):36~41.
    [50]冯其红,陈月明,姜汉桥.区块整体调剖一体技术研究[J].石油钻采工艺,1999,21(2):74~79.
    [51]王修利,张慧殊等.杏6~7区整体调剖优化决策技术[J],油气地质与采收率, 2001,8(3)46~49.
    [52]姜汉桥,陈月明.区块整体堵水增模型的建立[J].石油钻采工艺,1992(2):33~36.
    [53]姜汉桥,陈月明.区块堵水方案最优化设计研究[J].石油大学学报(自然科学版),1991,15 (6).
    [54]康志江,刘志波,姜英泽等.油田堵水调剖决策技术及软件包[J].试采技术,1999,20(4):29~30.
    [55]陈元千.预测油气田可采储量方法的优选[J].油气采收率技术,1998(2):78~82.
    [56]陈元千.水循环治理考察组.无效水循环治理技术适应性分析及攻关设想[M].大庆.2003,79~83.
    [57]白宝君,刘翔鹗,李宇乡.我国油田化学堵水调剖新进展[J].石油钻采工艺,1998,20(3):64~68.
    [58]李宇乡,唐孝芬等.我国油田化学堵水调剖剂开发及应用现状[J].油田化学,1995,12(1)88~94.
    [59]刘翔鹗.我国油田调剖堵水技术的发展与思考[J].石油科技论坛,2004,(2): 41~47.
    [60]刘翔鹦.中国油田堵水技术综述[J].油田化学,1992(2):56~64.
    [61]李宇乡,唐孝芬,刘双成.我国油田化学堵水调剖剂的开发与应用现状[J].油田化学,1995,12(1):88.
    [62] Liang, J. and Seright, R.S. Further Investigations of Why Gels Reduced kW More Than ko[J].SPEPF(Nov.1997)225~230.
    [63] Zaitoun,A,Bertin,H,and Lasseux,D.Two~Phase Flow Property Modifications by Polymer Adsorption[J].paper SPE 39631 presented at the 1998 SPE/DOE Improved Oil Recovery Symposium, Tulsa,April 19~22.
    [64]白宝君,李宇乡,刘翔鹗.国内外化学堵水调剖技术综述[J].断块油气田, 1998,5(1):1~4.
    [65]伶曼丽.油田化学[M].东营:石油大学出版社,1996,96~113.
    [66]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000,105~119.
    [67]侯文顺,杨宗伟.高分子物理[M].北京:化学工业出版社,2004,204~220.
    [68]殷敬华,莫志深.现代高分子物理学(下册)[M].北京:科学出版社,2001,96~75.
    [69] Al~Sharji, H.H., etal. Pore~ Scale Study of the Flow of Oil and Water through Polymer Gels[J]. Paper SPE 56738 presented at the 1999 SPE Annual Technical Conference and Exhibition, Houston, Oct. 3 ~6.
    [70] Stavland, Arne, Ekrann, Steinar. Not a Panacea. SPE Reservoir Evaluation Hettervik,K.O etal. Disproportionate Permeability Reduction Is &Engineering Journal. Volume I, Number 4, 1998, 359~366.
    [71] White J.L, Goddard, J.E., and Phillips, H.M. Use of Polymers To Control Water Production in Oil Wells[J]. JPT(Feb.1973) 143~150.
    [72] Nilsson, S., Stavland, A., Jonsbraten etal.Reduction. paper SPE 39635 prese at the 1998 Mechanistic Study of Disproportionate PermeabilitySPE/DOE Improved Oil Recovery Symposium, Tulsa,April 19~22.
    [73] J Sparlin, D.D. and Hagen, R.W. Jr. Controlling Water in Producing Operations~Part 5. World Oil(June 1984)137.
    [74] Dawe, R.A, and Zhang, Y Mechanistic Study of the Selective Action of Oil and Water Penetrating into a Gel Emplaced in a porous Medium. J.Pet.Sci.Eng. 1994(12), 113~125.
    [75]殷艳玲,张贵才.化学堵水调剖剂综述[J].油气地质与采收率,2003,10 (6):64~66.
    [76]白宝君.我国油田化学堵水调剖技术新进展[J].石油钻采工艺,1998,20(3): 66~70.
    [77]赵福麟等.调剖堵水的潜力、限度和发展趋势[J].石油大学(华东),2000,45~54.
    [78]赵福麟等.2+3提高采收率及其进展[M].石油大学(华东),2000,69~79.
    [79] Mennella Aniello,Chiappa etal.Pore~ScaleMechanism for Selective Permeability Reduction by Polymer Injection. paper SPE 39634 presented at the 1998 SPE/DOE Improved Oil Recovery Symposium[C],Held in Tulsa, Oklahoma, U.S.A. April19~22.
    [80] Jenn~Tai Liang, Haiwang Sun, Seright, R.S. Why Do Gels Reduce Water Permeability More Than Oil Permeability[C]. paper SPE 27829 presented at the 1994 SPE/DOE Ninth Symposium On Improved Oil Recovery Held in Tulsa, Oklahoma, U.S.A. April 17~20.
    [81] Seright,R.S,LiangJ,Lindquist,W.B,etal.Use of X~Ray Computed Microtomography to Understand Why Gels Reduce Permeabilty to Water More Than That to Oil. J[J]. Petroleum Science and Engineering, Vol. 39 (Sept. 2003) 217~230.
    [82] Zaitoun, A. and Kohler N. Thin Polyacrylamide Gels for Water Control in High~Permeability Production Wells[J]. paper SPE 22785 presented at the 1991 SPE Annual Technical Conference and Exhibition, Dallas, Oct.6~9.
    [83]刘庆旺,范振中,林瑞森.阳离子型弱凝胶调驱剂的性能与应用[J].浙江大学学报(理学版).2005,295~299.
    [84]王桂杰,顾树人.应用暂堵剂和水泥—石灰进行油井堵水[J].石油钻采工艺,1997,19(6) :98~99.
    [85]曲建山.用木屑堵水工艺提高注水油田高含水期开发效果[J].国外油田工程,1999,15(1) :29~32.
    [86]丘真理.油井磁性材料堵水技术的应用研究[J].石油矿场机械,1999,28(4): 1~4.
    [87]范振忠.酚醛树脂交联聚丙烯酰胺弱凝胶调剖剂的研究与应用[博士论文] [C].浙江:浙江大学,2005.
    [88]王建,郑焰等.两性締合聚合物/有机铬冻胶调剖剂性能[J].油田化学,1999, 16(3):214~216.
    [89] Harris R E, Mackay I D. New Applications for Enzymes in Oil and Gas Production [J]. Petroleum Engineer nternational,1999,April: 65~69.
    [90]佘跃惠,张小平.油水井深部封堵的有机—无机复合堵剂[J].江汉石油学报,1996,18(2):48~52.
    [91]范振中,张玉生,张柏.油水井化学增产技术[J].黑龙江科学技术出版社,2005,105~116.
    [92]朱锡雄,朱国瑞.高分子材料强度学[M].杭州:浙江大学出版社,1992,95~102.
    [93]刘庆旺,范振中,王德金.弱凝胶调驱技术[J].石油工业出版社,2003,157~165.
    [94]弱凝胶调驱技术研究[C].中国石油天然气集团公司第十次全国油田堵水技术研讨会交流材料.石油勘探开发科学研究院,1999.
    [95] Mack, J. C, et al., In~Depth Collidal Dispersion Gels Improve Oil Recovery Efficiency[J]. Paper SPE/DOE 27780 presented at the SPE/DOE nineth Symp onFOR Tulsa. Okla. U.S.A Apr1994, 17~20.
    [96] Terry, Ronald E.,Correlation of Gelation Times for Polymer Solutions Used as Sweep Improvement Agents[J].SPE Journal 1981(April):229~235.
    [97]韩明,马杰,陈立滇.交联聚合物应用于油田开发的机理与性能评价[J].油气采收率技术,1995,256~268.
    [98]罗宪波,蒲万芬,武海燕.交联聚合物溶液的微观形态结构研究[J].大庆石油地质与开发,2003,22(5): 60~62.
    [99]戴彩丽,张贵才,赵福麟.影响醛冻胶成冻因素的研究[J].油田化学,2001,18(1):24~26.
    [100]韩明,施良和,叶美玲.黄原胶以三价铬交联的凝胶的脱水行为[J].高分子学报,1999(5):590~595.
    [101] Lockhart, T.I'., et al.A New Gelation Technology for In~Depth Placement of Cr3+/Polymer Gels for High~Temperature Reservoirs paper SPEIDOE 24194 presented at the SPE/DOE Eighth Symp on FORTulsa, Apr 1992,22~24.
    [102] Stavland,Arne,etal.Delayed Gelation in Core floods Using Cr(III)~Malonate as a Crosslinker[J].Journal of Petroleum Science and Engineering 13,1995,247~258.
    [103] Willhite, G.P,etal. Mechanisms Causing Disproportionate Permeability in Porous Media Treated With Chromium Acetate/HPAM Gels[J]. paper SPE 59345 presented at the 200 SPE/DOE Improved Oil Recovery Symposium, Tulsa, April 3~5.
    [104] Moradi~Araghi, A., Application of tow~Toxicity Crosslinking Systems in Production of Thermally Stable Gels.paper SPE/DOE 27826 presented at the SPE/DOE nineth Symp on IOR Tulsa. Okla. U.S.A,Apr 1994,17~20.
    [105]纪朝凤等.调剖堵水材料研究现状与发展趋势[J].石油钻采工艺,2002,24(1):54~57.
    [106]张立得.纳米材料[M].北京:化学工业出版社,2001,11:40~85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700