用户名: 密码: 验证码:
大功率低频超声清洗声场的声场特性及测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声清洗是超声处理技术应用中最为广泛的一种,它具有清洗速度快、清洗质量好、成本低及其易于实现自动化等优点。大功率低频超声场最鲜明的特点就是空化,而空化也被认为是超声清洗的主要物理机制,但由于其理论研究尚不完善,加之空化声场的复杂性,使得至今大功率低频超声场的测量未得到很好的解决,尚未找到一种与清洗效果有确定关系的普遍适用的标准方法,使得在客观地评判清洗机优劣时很困难。然而,大功率低频空化声场的测量无论从研究角度还是在工业实际应用中衡量超声系统的性能和超声处理效果都很重要,所以对超声清洗进行更深入地基础和应用研究,进入复杂的非线性清洗过程,以便提供可重复的试验方法成为当务之急。鉴于此,本文以实验研究为主,对大功率低频超声清洗声场的特性及其测量进行了初步探索,以期提出更定量、更实用化的声场测量方法。
     本文比较了大功率声场的各种测量方法,选择水听器作为测量器件,对超声清洗声场的时域声压波形进行研究。在初步了解声场特性的基础上,测量了单换能器清洗系统的声功率,并研究了输入到该系统的声功率与声场声压之间的关系,从能量传递的角度,提出了测量探头的声能量标定方法。为了更深入的了解空化声场,采用谱分析技术对其进行研究,提出空化噪声谱的分离法,并和常用的谱级分析方法进行了比较。通过大量的实验研究,主要得出以下结果:
     (1) 超声清洗声场时域声压波形具有随机性和周期性两大特点,所以对采集到的数据需要用随机信号处理理论进行分析,为了确保结果的可重复性,数据应尽可能采的长一些,并要保证采集的时间长度为周期的整数倍,以减少测量误差。
     (2) 基于瓦特计法测量原理,对由单个夹心换能器构成的清洗系统的声功率进行测量,研究了该系统微观量(压力)和宏观量(声功率)之间的关系,结果发现输入到声场中的能量大到一定程度,空化强度也会减弱。该结果对于功率超声的液体处理具有重要的意义,说明并不是声能量越大处理效果越好,而是存在一个最优的输入声能量。
     (3) 提出了一种定量、可信和实用的大功率超声场的评价方法,本方法基于声功率来进行声场强度评价,以单位面积的功率来标定探头。该方法适于同条件下清洗设备性能的评价,以及一定条件下工程应用中超声强度的选定和控制,具有很好的应用价值。
    
     (4)对空化声场声压信号进行功率谱分析,提出了能用于对空化声场的复杂
    非线性过程进行深入研究的空化噪声谱分离法,通过实验将其和常用的谱级分析
    法进行了比较,认为该分离法更能直观的反映出空化的强弱,并且能更细致的对
    于瞬态空化和稳态空化进行比较分析,便于对空化声场的非线性过程进行更深入
    的了解,这对于研究声能量对于物质的作用机理具有一定的指导意义。
As for the application of ultrasonic process technology, ultrasonic cleaning is one of the most extensive application, and it has many advantages, such as fast cleaning rate, good cleaning quality, low cost and apt to realize automatization, etc. Cavitation is the most distinct characteristic of the high-power low-frequency ultrasonic fields, and it is also regarded as the primary mechanism of ultrasonic cleaning. Nevertheless, the measurement question of the high-power low-frequency ultrasonic fields hasn't been resolved well, because of the incomplete cavitation theory and the complexity of cavitation fields. The universal acceptant standard measurement hasn't been found up to the present so that it is difficult to judge of the performance of ultrasonic cleaning machines scientifically. However, it is important to measure the cavitation fields so far as the scientific research and judging of the performance of ultrasonic vibration systems and ultrasonic process effect, so to present the repeatable
     method is urgent affairs through basic and applied research on ultrasonic cleaning. In this paper, the characteristics and measurement methods of the high-power low-frequency ultrasonic fields for cleaning is studied by means of experiment research mainly, in order to present the more quantitative and more practicable measurement method of cavitation fields.
    This paper compares various measurement methods, then chooses the hydrophone as measuring instrument to study the pressure waveforms of the ultrasonic fields for cleaning in time domain. Based on the primary know about the characteristics of ultrasonic fields, the ultrasonic power of single transducer cleaning system is measured and the relation between ultrasonic power and pressures is studied. Moreover, the energy scale method of the probe is proposed from the point of view of energy transfer. In the last part, in order to know the cavitation fields thoroughly, spectrum analysis methods are adopted to study the cavitation fields, and the separate method of cavitation noise spectrum is presented and compared with spectrum level analysis method.
    (1) Randomicity and periodicity are the characteristics of pressure waveforms of ultrasonic cleaning fields, so to analysis the metrical data needs to apply random signal
    
    
    process theory. Moreover, it is necessary to acquire a long time data in order to enhance the results repetition and ensure that the time interval is equal to integral times of the period in order to reduce error.
    (2) Based on the measurement theory of Watt meter method, the ultrasonic power of single transducer cleaning system is measured and the relation between ultrasonic power and pressures is studied. The experimental results show the cavitation intensity will become lower when the energy input reaches to a certain extent. The result is important for the liquid process of power ultrasonic and indicates that there is the optimal input energy corresponding to the best process effect.
    (3) A method that can evaluate the high power ultrasonic fields quantitatively and practicably is proposed. This method evaluate ultrasonic fields based on ultrasonic power and scaled the probe by way of the ultrasonic power percent unit area. The method can evaluate the performance of ultrasonic cleaning machines under the same conditions, in addition choose and control the ultrasonic intensity in application to engineering.
    (4) Power spectrum analysis methods are adopted to study pressure signals of the cavitation fields, and the separate method of cavitation noise spectrum is presented, after compared it with spectrum level analysis method, the results show that the separate method can more directly reflect the cavitation intensity, give the delicate analysis on the transient cavitation and the stable cavitation, and help to know the non-linear process of cavitation fields thoroughly. The method contributes to study the mechanisms of ultrasonic energy action on the substances.
引文
[1] 应崇福,《超声学》,科学出版社,1990年12月.
    [2] E.A.Neppiras, Measurements in liquids at medium and high ultrasonic intensities, Ultrasonics, 1965, 3(1), 9-17.
    [3] T.K.Saksena, Methods of reliable measurement of ultrasonic power and cavitation in liquids: a review, Journal of the Acoustical Society of India, 1980, 8(1), 12-19.
    [4] Mark Hodnett, Bajram Zeqiri, A strategy for the development and standardization of measurement methods for high power/cavitating ultrasonic fields: review of high power field measurement techniques, Ultrasonics Sonochemistry, 1997, 4(4), 273-288.
    [5] P.A.Lewin, R.C.Chivers, Two miniature ceramic ultrasonic probes, J.Phys.E: Sci.Instrum, 1981, 14 (12), 1420-1424.
    [6] P.A.Lewin, Miniature piezoelectric polymer ultrasonic hydrophone probes, Ultrasonics, 1981, 19(5), 213-216.
    [7] A.S.DeReggi, S.C.Roth, J.M.Kenney et.al, Piezoelectric polymer probe for ultrasonic applications, J.Acoust.Soc.Am, 1981, 69 (3), 853-859.
    [8] M.Platte, A polyvinylidene fluoride needle hydrophone for ultrasonic applications, Ultrasonics, 1985, 23(3), 113-118.
    [9] L. Gaete-Garretón, Y. Vargas-Hernández, S. Pino-Dubreuil et al, Ultrasonic detectors for high-intensity acoustic fields, Sensors and Actuators A, 1993, 37-38, 410-414.
    [10] S.R. Soudagar, S.D. Samant, Semiquantitative characterization of ultrasonic cleaner using a novel piezoelectric pressure intensity measurement probe, Ultrasonics Sonochemistry, 1995, 2(1), S49-S53.
    [11] 贾志富,测量超声场声强用组合式水听器的设计方案,声学技术,2001,20(2), 92-94.
    [12] C.J.Martin, A.N.R.Law, The use of thermistor probes to measure energy distribution in ultrasound fields, Ultrasonics, 1980, 18(3), 127-133.
    [13] C.J.Martin, A.N.R.Law, Design of thermistor probes for measurement of ultrasound intensity distributions, Ultrasonics, 1983, 21 (2),85-90.
    
    
    [14] M.Romdhane, C.Gourdon, G.Casamatta, Development of a thermoelectric sensor for ultrasonic intensity measurement, Ultrasonics, 1995, 33(2), 139-146.
    [15] M.Romdhane, C.Gourdon, G.Casamatta, Local investigation of some ultrasonic devices by means of a thermal sensor, Ultrasonics, 1995, 33(3), 221-227.
    [16] Ch.Koch, Coated fiber-optic hydrophone for ultrasonic measurement, Ultrasonics, 1996, 34(6), 687-689.
    [17] Christian Koch, Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor, Applied Optics, 1999, 38(13), 2812-2819.
    [18] A.D.Phelps, T.G.Leighton. The subharmonic oscillations and combinationfrequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms, Acust.Acta.Acust, 1997,83(1),59-66.
    [19] 董彦武,赵恒元,功率换能器电声效率测量的初步研究,应用声学,1982,1(1),24-26.
    [20] A.E.Crawford, The measurement of cavitation, Ultrasonics, 1964, 2(3), 120-123.
    [21] G.S.Bennett, A new method for the visualization and measurement of ultrasonic fields, Journal of the Acoustical Society of America, 1952, 24(5), 470-474.
    [22] A.P. Sarvazyan, T.N. Pashovkin, G.V.Shilinikov, An extremely simple and rapid method of registration of ultrasonic field patterns, Proe. Ultrasonics International, 1985,324-328.
    [23] M.B.Shiran, K.M.Quan, D.J.Watmough, et al, Some of the factors involved in the Sarvazyan method for recording ultrasound field distributions with special reference to the application of ultrasound in physiotherapy, Ultrasonics, 1990, 28(6), 411-414.
    [24] 方启平,颜忠余,黄金兰,等,用染色法记录液体中大功率超声场的分布,声学技术,1996,15(4).177-179.
    [25] B.D.Cook, R.E.Werchan, Mapping ultrasonic fields with cholesteric liquid crystals. Ultrasonics, 1971, 9(2), 101-102.
    [26] 李化茂,谢安东,钟凡,等,超声空化场的影像研究,声学技术,1997,16(3),117-118.
    [27] E.A.Neppiras, Acoustic cavitation series: part one: Acoustic cavitation: an introduction, Ultrasonics, 1984, 22(1), 25-28.
    [28] 郑进鸿,邱永德,液体中空化声场的统计测量及其在评价空化设备性能中的应用,应用声学,1989,10(1),18-23.
    
    
    [29] Vijayanand S.Moholkar, Shishir P. Sable, Aniruddha B.Pandit, Mapping the cavitation intensity in an ultrasonic bath using the acoustic emission, AICHE Journal, 2000, 46(4), 684-693.
    [30] 冯若,《超声手册》,南京大学出版社,1999年10月.
    [31] F.Faid, F.Contamine, A.M.Wilhelm, et al, Comparison of ultrasound effects in different reactors at 20kHz, Ultrasonics Sonochemistry, 1998, 5, 119-124.
    [32] B.Pugin, Qualitative characterization of ultrasound reactors for heterogeneous sonochemistry, Ultrasonics, 1987, 25(1), 49-55.
    [33] I.E Marangopoulos, C.J.Martin, J.M.S.Hutchison, Measurement of field distributions in ultrasonic cleaning baths: Implications for cleaning efficiency. Physics in Medicine and Biology, 1995, 40(11), 1897-1908.
    [34] J.-L. Laborde, A. Hita, J.-E Caltagirone, et al, Visualization and modeling of acoustic cavitation fields, PVP (Am. Soc. Mech. Eng.), 1998, 377(Computational Technologies for Fluid/ Thermal/ Structural/Chemical Systems with Industrial Applications, Vol. 2), 227-234.
    [35] 沈壮志,尚志远,用声波扩散改善清洗场中(小功率)声场的均匀性,应用声学,1999,18(5),41-43.
    [36] G. Servant, J.-L. Laborde, A. Hita, et al, Spatio-temporal dynamics of cavitation bubble clouds in a low frequency reactor: comparison between theoretical and experimental results, Ultrasonics Sonochemistry, 2001, 8(3), 163-174.
    [37] 任金莲,张明铎,牛勇,复合频率超声波清洗声场均匀性研究,声学学报,2003,28(2),127-129.
    [38] J.Frohly, S.Labouret, C.Bruneel, et al, Ultrasonic cavitation monitoring by acoustic noise power measurement, J.Acoust.Soc.Am, 2000,108(5), 2012-2020.
    [39] V.N.Alekseev, V.G.Andreev, G.A.Romanenko, et al, Study of the cavitation region and the evolution of the acoustic spectrum, Acoustical Physics, 2001, 47(4), 376-383.
    [40] 刘勋,相敬林,周越,声强度的测量及其应用,声学技术,2000,19(2),95-97.
    [41] 陈元平,混响场中强声场的测定及应用,声学技术,1996,15(4),179-181.
    [42] E.A. Pedziwiatr, Ultrasonic wave energy detection and identification, US Patent: 54433102, 1995.
    
    
    [43] J. M. Kolyer, A.A. Passchier, L. Lau, New Wrinkles in Evaluating Ultrasonic Tanks, Precision Cleaning magazine, May/June, 2000.
    [44] Barbara Kanegsberg, Ed Kanegsberg, Measuring Sonics, Part 2. A~2C~2 Magazine, January, 2003.
    [45] H. Flynn, Physis of Acoustic Cavitation in Liquids, Physical Acousties, W. P. Mason, ed., Academic Press, New York, 1964, 1B, 167.
    [46] 冯若,黄金兰,超声清洗及其物理机制,应用声学,,1994,,13(1),42-47.
    [47] 秦炜,原永辉,戴猷元,超声场对化工分离过程的强化,化工进展,1995,,15(1),1-5.
    [48] 丁东,超声清洗,声学技术,1983,2(1),60-63.
    [49] 钱祖文,《非线性声学》,科学出版社,1992年7月.
    [50] 钱盛友,王鸿樟,孙福成,声流现象的研究及其应用,应用声学,1996,16(6),38-42.
    [51] 王世一,《数字信号处理》,北京理工大学出版社,1997年11月.
    [52] 王兆安,黄俊,《电力电子技术》,机械工业出版社,2000年5月.
    [53] 林仲茂,方启平,超声波清洗(Ⅱ),化学清洗,1998,14(5),41-44.
    [54] 周铁英,藏金明,测试大功率超声清洗机功率和效率的简易方法,应用声学,1988,7(4),42-44.
    [55] 张德俊,程建政,功率超声振动系统的电声效率测量,声学技术,1996,15(4),173-174.
    [56] E. Mori, S. Ueha, Y. Tsuda, Large amplitude characteristics of bolt-clamped langevin type vibrator, Proc. Ultrasonic Intern, 83, Halifax, 1983, 154-159.
    [57] 林书玉,张福成,功率超声换能器电声效率及辐射声功率的测量,声学技术,1999,18(4),152-157.
    [58] 颜忠余,方启平,黄金兰,等,瓦特计测量声功率方法的分析和简化,声学技术,1996,15(4),170-172.
    [59] 陈桂生,《超声换能器设计》,海洋出版社,1984年1月.
    [60] 栾桂冬,张金铎,王仁乾,《压电换能器和换能器阵》,北京大学出版社,1990年9月.
    [61] 袁易全,《超声换能器》,南京大学出版社,1992年9月.
    [62] Zhu Changping, Feng Ruo, et al, Study on the cavitation effect of low frequency ultrasound by electrical method, Journal of Nanjing University, Acoustic Issue, 1995, 31,180.
    
    
    [63] Mo Xiping, Feng Ruo, et al, The electrochemical determination of the effect of ultrasound cavitation, Acoustics Letters, 1992, 15(12), 257.
    [64] W. Lauterforn, G. Haussmann, Digital spectral analysis of acoustic cavitation noise, 7th International Symposium on Nonlinear Acoustics, 1976.
    [65] 何祚镛,赵玉芳,《声学理论基础》,国防工业出版社,1981年8月.
    [66] R. Esche, Untersuchung der schwingungskavitation in flüssigukeiten. Akust. Beihefte, 4, 1952, 208-218.
    [67] Sumio Takahashi, Nobuaki Takahashi, Measurement of cavitation noise and bubble oscillation using acoustooptic detection scheme, Jpn. J. Appl. Phys., 1996, 35(5B), 2958-2962.
    [68] V.N. Alekseev, V.G. Andreev, G.A. Romanenko, et al, Study of the cavitation region and the evolution of the acoustic spectrum. Acoustical Physics, 2001, 47(4), 376-383.
    [69] Katsuo Kitsu, Yasunori Ikeno, Takenobu Tsuchiya, et al, Optical measurement system of sound pressure with refracted laser light propagated through an acoustic field, Jpn. J. Appl. Phys., 1997, 36(5B), 3167-3170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700