用户名: 密码: 验证码:
光激活血卟啉与声激活血卟啉的机理初探及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤,尤其是恶性肿瘤(通称癌症)已成为危害人类健康和生命的最主要的疾病。预计21世纪中叶,世界癌症患者的数量将有大幅增长。因此,如何诊治癌症是目前医药研究领域的重大课题。在众多诊治肿瘤的方法中,以血卟啉及其衍生物为媒介的光动力学疗法和声动力学疗法由于其高效、无创伤等优点逐渐引起人们的注意。由于血卟啉对机体的低毒性,可在肿瘤组织优先聚集且驻留时间长,加上超声波在生物组织内的穿透性强,能在组织深部聚焦,弥补了光动力学疗法只能对表层癌变起作用的缺点,使声动力学疗法比光动力学具有更大的应用前景而倍受人们的关注,在近年来得到了迅速的发展。
     声动力学疗法以其独特的优越性在肿瘤治疗方面起着重要的作用,因而进行深入研究并最终推动这一方法向临床迈进将具有重大意义。目前,国内外学者就声动力学疗法抗肿瘤效应作了大量基础性工作,尤其是日本学者梅村晋一郎在这方面进行了大量的研究,积累了许多宝贵的资料。但现今的研究领域多局限在离体和小型动物移植肿瘤等方面,在声动力学疗法生物学机制上虽然也作了一些探索,但都不深入不系统,离临床应用还有不小的差距,特别是对其基础方面的研究如超声激活血卟啉的机理和具体研究方法上,国内外鲜有报道。作者以此为切入点,在国内外学者研究成果的基础上,依托国家自然科学基金项目“复频聚焦超声声动力学声化学激活血卟啉抗肿瘤效应的研究”的资助,借助梅村晋一郎的思路,采用类似于荧光的白炽光源,研制了一种以重冕玻璃为材料的各向同性集光球,探讨了血卟啉在弱光照条件下的激活量与血卟啉浓度、照射光强、照射时间三者的关系,找到了在此条件下血卟啉的光照阈值,巧妙地消除了水的声致荧光的干扰,并结合拍摄的荧光照片研究了声致荧光对血卟啉激活程度的影响,通过大量的实验数据和一定的理论分析,得到了以下结论:
     1、从HMO图形理论出发,将血卟啉分子的π键共轭体系简化为一个含有杂原子的十九元环,根据久期行列式从理论上计算了血卟啉分子的各个轨道能级,推算出血卟啉激发波长与发射波长的理论值,且理论值与实际值相符。这一结果表明,血卟啉激发波长与发射波长均来源于分子基态能量与各个能级间的能量差,它们都是血卟啉分子固有特性的反映,HMO理论推导的正确性说明了血卟啉分子的荧
    
    光主要来源于叶琳骨架上的。电子。
    2、研制了一种以重冕玻璃(n=1.61263)为材料,半径为3mm的各向同性集光球,
    并对其传输特性进行了测定。结果发现,集光球系统的输出光强总略高于输入光
    强,在白炽光源的光强范围内输入光强与输出光强几乎成线性关系,并且它能够
    强烈地收集血叶琳光照阈值附近光,由此说明集光球系统对弱光具有良好的收集
    作用,能够满足实验的要求。
    3、通过大量的实验数据发现了在白炽光源作用时血叶咐的激活程度与照射光强、
    照射时间及血叶琳溶液浓度三者存在一定关系:光强是决定能否激活血叶琳的首
    要因素,光强过低,无论血叶咐的浓度多高,作用时间多长均不会产生激活。当
    光强略高于血叶咐的光照阈值,血叶晰的激活效率与照射光强、照射时间和血叶
    咐溶液浓度均呈近似线性关系。但三者的激活效率不同,时间因于激活效率最高,
    光强其次,血叶咐浓度的变化对血叶琳激活效率的影响最低。另外,我们发现,
    白炽灯光激活血叶琳同时产生单态氧,再次验证了Noriol’‘]得到的结论。
    4、实验中根据照射光强、照射时间和血叶咐溶液浓度三者对血叶琳激活效率的关
    系,寻找到了血叶琳在白炽光源作用时的光照阈值(光强范围在 1.27X10”
    Wom’与 15.2 xlo-” w/cm‘之间)。同时还发现,在光强高于血叶咐光照阈值时
    存在一个特殊区域,血叶晰的激活程度对这一区域的光强变化不敏感,而且在此
    光强范围内,血叶咐的激活量与其浓度、光照时间的关系不大,具体原因还需进
    一步的实验验证和理论证明。我们还发现,在某一光强下,照射时间和血叶啦浓
    度在对血叶咐的激活程度存在着一定的交互关系,这一结论与赵玉佩等人l‘’]得到
    的结论一致。
    5、实验中仅使用普通的胶片就拍摄到了在低频超声作用时水的声致发光照片,以
    及在相同条件下由集光球系统导出的荧光照片,说明集光球系统对弱光具有良好
    的收集作用,同时也为判定水的声致荧光激活血叶琳的可能性提供了证据。
    6、从理论上详细探讨了超声照射血叶琳溶液时空化热能、冲击波、声致荧光等
    能量形式激活血叶咐的可能性,并通过实验验证了水的声致发光对血叶琳激活的
    影响。实验结果表明:超声激活血叶琳时有单态氧产生,并用DPBF捕获到。光
    能够激活血叶琳,但盐水的声致荧光较弱,不足以激活血叶咐,即使水的声致发
    光能够使普通胶片感光,也不足以激活血叶琳。空化热能、冲击波与试管中血叶
    晰溶液空化产生的高温、高压、冲击波等多种能量协同作用使血叶琳激活,但到
    底是某种单独能量形式激活血叶咐还是多种能量的合作用激活血叶琳,尚需进一
    步的实验研究。
     当然,本文的实验结果只是对超声激活血叶咐机理的初步探索,其机理复杂,
A malignant tumor is one of the most dangerous diseases threatening human's health and life. It is estimated that in the 21st century the number of people round the world suffering from cancer will be a large increase .So how to treat tumors has become a significant problem in medical field. Among many antitumor therapies, more and more scholars focus their eyes on an effective and convenient approach, which is a combination of light and hematoporphyrin therapy or of ultrasound and hematoporphyrin therapy. Hematoporphyrin, as a special photo-sensitizer, shows preferential retention and a long time maintenance in tumor tissues compared with in the normal tissues. Ultrasound penetrates much deeper in biological tissues and is easier to focus without any harm to the normal tissues when compared to light. Because of this, this newly antitumor therapies by hematoporphyrin and ultrasound may be potentially useful for treating tumors located relatively deep in the body.
    Nowadays, scientists at home and abroad, especially Japanese scholar S.Umemura, have done many works on this, and have gained some results. But the use of sonochemical effects of ultrasound for cancer therapy has not been systematized, which is limited to the suspension of tumor cells and vivo tumors transplanted by certain animals. And few studies have been reported about the detailed mechanism of ultrasound reaction of hematoporphyrin. In order to find out the precise mechanism of it based on internal and external researches, combined with the National Science Fund item, according to S.Umemura' thinking, the author has done some further works on it.
    The author simplifies the molecule of hematoporphyrin by the Htlckel Molecular Orbital graph theory, which has been proved to be a more effective way than many advanced and sophisticated theoretical methods to solve electron systems ,and
    
    
    
    calculates theoretically excitation and emission wavelengths, the results are consist with the experimental data. And then, we have designed a kind of isotropic light trap made from dense crown (n=1.61263), the properties of which are investigated. Experimental results show that the plot of output intensity vs input intensity is approximately linear, moreover experimental output intensity is always greater than input intensity. All this results indicate the light trap has good performance to collect light. This new type of light-collection is used to determine the relations of efficiency of ultrasonically activating hematoporphyrin illuminated by light with the light intensity ., exposure duration and the concentration of hematoporphyrin. Based on it, the threshold intensity of hematoporphyrin is measured to be 1.27+10-10 W/cm2 and 15.2+10-10 W/cm 2 when exposed to light .In addition, the sonoluminescence photographs taking in the experiment, have been a strong support to manifest that sonoluminescence produced in water has inadequate energy to activating hematoporphyrin though its peak is close to the absorption peak of hematoporphyrin. Ultrasonically induced cavitation produces nonequilibrium high temperature, emits shock waves, together with the cavitation energy in hematoporphyrin solution activating hematoporphyrin.At the same time, our results have suggested that 1, 3-diphenylisobenzofuran is a good choice for quenching single oxygen when hematoporphyrin is irradiated by light or ultrasound.
    The results of our work suggest that only sonoluminescence energy has not enough energy to activate hematoporphyrin. Cavitation energy without sonoluminescence energy may play a key role in activating hematoporphyrin, but the precise mechanism remains for further studies. What we have done provides a theoretical reference for the development of the sonodynamic therapy.
引文
[1] S.Umemura, N.Yumita, R.Nishigaki,et al, Sonochemical activation of hematoporphyrin:A potential modality for cancer treatment, IEEE, Ultrasonics Symposium, 1989, 995-960.
    [2] 许松林,马宝章,《激光技术与医学应用》,人民卫生出版社,1989年2月.
    [3] 冯若,李化茂,《声化学及其应用》,安徽科学技术出版社,1992年6月.
    [4] S.Umemura, R.Nishigaki,et al, Mechanism of cell damage by ultrasound in combination with hematoporphyrin, Jpn. J.Cancer Res., 1990,81,962-966.
    [5] Lipson RL,et al, The use of a derivation of hematoporphyrin in tumor detection, J.Natl Cancer Inst, 1961,26, 1-4.
    [6] Diamond I,et al, Photodynamic therapy of malignant, Lancet, 1972,42(1), 175-178.
    [7] Lipson RL,et al, Hematoporphyrin derivative for detection and management of cancer, Cancer, 1967,20(2), 255-258.
    [8] Dougherty TJ,et al, Photoradiation therapy Ⅱ: Cure of animal tumor with hematoporphyrin and light, J.Natl Cancer Inst, 1974,51 (1), 333.
    [9] Tomson S H,et al, Photodestruction of mouse epithelial tumors after oral acridin orange and argon laser, Cancer Res., 1974,34, 312-315.
    [10] Dougherty TJ,et al, Photoradiation therapy for treament of malignant tumors, Cancer Res.,1978,38, 2628-2630.
    [11] S.David Wakulchik, Photolysis of protoporphyrin-treated human fibroblasts in vitro: Studies on the mechanism,J.Lab.Clin. Med., 1980,96(1), 158-167.
    [12] 潘琼婧,傅明,赵雪梅等,血卟啉衍生物(HPD)对体外人癌细胞系和正常二倍体细胞系的光动力学杀伤作用,中国医学杂志,1983,7(6),442-447.
    [13] 徐承熊,战洪生,林琳等,几种血卟啉衍生物对肿瘤细胞光动力学灭活作用的比较,药学学报,1985,20(2),94-99.
    [14] 傅乃武,叶树勇,张强等,血卟啉衍生物对肝癌细胞线粒体酶活性的光辐射效应,中国医学科学院学报,1985,7(6),330-335.
    [15] 赵玉沛,杨波,张太平等,血卟啉衍生物光动力学杀伤人胰腺癌细胞的实验研究,中华外科杂志2000,38(3),204-207.
    [16] 韩勇,郑志红,葛平江等,血卟啉衍生物光动力学疗法体外杀伤人喉癌细胞
    
    Hep-2的实验研究,农垦医学,2002,24(1),1-2.
    [17] N.Yumita, R.Nishigaki, S.Umemura,et al, Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound, Jpn. J. Cancer Res., 1989,80, 219-222.
    [18] N.Yumita, R.Nishigaki, S.Umemura,et al, Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180, Jpn. J.Cancer Res., 1990,81,304-308.
    [19] 马玉英,张伊立,张军平等,超声激活血卟啉的抗癌作用的实验研究,声学技术,1993,12(2),31-35.
    [20] S.Umemura, N.Yumita, R.Nishigaki,et al, Enhancement of ultrasonically induced cell damage by gallium-porphyrin complex ATX-70, Jpn. J.Cancer Res., 1993,84, 582-588.
    [21] Tachibana, Mechancement of cell killing of HL-60 cells by ultrasound in the present of the photosensitizing drug photofrin Ⅱ, Cancer Letters,1993,72, 195-199.
    [22] 刘全宏,王仲,任耀辉等,超声激活血卟啉杀伤S180肉瘤细胞研究初报,科学通报,1994,39(1),936-937.
    [23] Tachibana, Liver tissue damage by ultrasound in combination with photosensitizing drug photofrin Ⅱ, Cancer Letters, 1994,74, 177-181.
    [24] 马玉英,张伊立,张军平等,声化学激活血卟啉对S180肿瘤作用的研究,中国生物医学工程学报,1995,14(4),374-377.
    [25] Hiroyasu Nomura, Shinobu Koda, Quantification of ultrasound intensity based on the decomposition reaction of porphyrin, Ultrasonics Sonochemistry, 1996,(3), 153-156.
    [26] 宋存牛,马玉英,齐浩,超声激活血卟啉对K562肿瘤作用的研究,陕西师范大学学报(自然科学版),1998,26(2),33-35.
    [27] Norio Miyoshi, Teruo Takeshita, et al,Monomerization of photosensitizers by ultrasound irradiation in surfactant micellar solution, Ultrasonics Sonochemistry, 2001,(8), 367-371.
    [28] Norio Miyoshi, Takashi Igarashi, Perter Riesz, Evidence against singlet formation by sonolysis of aqueous oxygen-saturated solutions of Hematoporphyrin and Rose Bengal The mechanism of sonodynamic therapy, Ultrasonics Sonochemistry, 2000,(7), 121-124.
    [29] 郑蔚,谢树森,黄志伟等,人血中卟啉衍生物的激发和发射光谱,激光杂志,1994,15(2),36-39.
    
    
    [30] 唐敖庆,江元生等,分子轨道图形理论,科学出版社,1980年.
    [31] 朱永,韩世刚,朱平仇等,《量子有机化学》,上海科技出版社,1983年.
    [32] Lord Rayleigh,Philos.Mag.1917,34,94.
    [33] 李化茂,俞小青,贺红梅等,超声空化场的致热机制及其聚束喷射时的致热速率,井冈山师范学院(自然科学),2002,23(5),1-3.
    [34] B.E.Noltingk, E.A.Neppiras, Phys. Rev. Lett.,1994,72, 1439.
    [35] A.Prosperetti, Ultrasonics, 1984,22, 69.
    [36] R.L o fstedt, B.P. Barber, S.J.Putterman, Phys.Fluids, 1993,5A, 2911.
    [37] C.C.Wu,P.H.Roberts,Proc. P. LondonA, 1994,445,323.
    [38] 钱梦騄,程茜,葛曹燕等,单泡声致发光中气泡的动力学特征-镇子模型,声学学报,2002,27(4),289-294.
    [39] K.J.Taylor, P.D.Jarman, J.Phys., 1970,23, 319.
    [40] C. Schgal, et al.,J.Phys.Chem., 1980,84, 388-396.
    [41] 李化茂,俞小青,冯若等,关于声致发光的类型,赣南师范学院学报,1997,(3),44-46.
    [42] Gaitan D F, An experimental investigation of acoustic cavitation in gaseous liquids, Mississippi: University of Mississippi, 1990.
    [43] Gaitan D F, Crum, Sonoluminescence and bubble dynamics for a single stable cavitation bubble,J.Acoust. Soc.Am.,1992,91, 3166-3183.
    [44] 应崇福,声空化物理研究和核发射实验的近期进展,物理,2002,31(8),490-495.
    [45] W.C.Moss, D.B.Clarke, Hydrodynamic simulations of bubble collapse and prcosecond sonoluminescence, Phys.Fluids, 1996,(6), 2979-2985,
    [46] L.Kondic, J.I.Gersten, C.Yuan, Theoretical studies of sonoluminescence radiation .radiative transfer and parametric dependence. Phys.Rev. E,1995,52, 4976-4990.
    [47] M.P. Brenner, S.Hilgenfeldt, D.Lohseetal, Phys. Rev. Lett.,1996,77, 3467-3470.
    [48] K Weninger S J, Putterman, Angular correlations in sonoluminescence: diagnose for the sphericity of a collapsing bubble, Phys.Rev., 1996,54, 2205-2208.
    [49] B.P. Barber, S.J.Putterman, Observation of synchronous picosecond sonoluminescence, Nature, 1991,352, 318-320.
    [50] L.S.Bernstein, M.R.Zakin, J.Chem., 1996,100, 6612-6615.
    [51] 张镇西,西安交通大学学位论文,1990年.
    
    
    [52] K.R. Weishaupt, C,J.Gomer, T.J.Gougherty, Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor, Cancer Res., 1976,36, 2326-2329.
    [53] C.Decker,光聚合反应中氧阻聚作用的消除,《国际非银盐感光材料论文选》,印刷工业出版社,1984年.
    [54] Stefan Toma, Anton Gaplovsky, The effect of ultrasound on photochemical reactions, Ultrasonics Sonochemistry ,2001 ,(8), 201-207.
    [55] 何锡文,冯喜增,张贵珠等,生理液中血卟啉状态的光谱研究,高等学校化学学报,1994,15(4),503-506.
    [56] D.Kessel, R.Jeffers, J.B.Fowlkes,et al, Porphyrin-induced enhancement of ultrasound,J.Radiat. Biol, 1994,66(2), 221-228.
    [57] K.Suslik.S.Poktyce (刘岩译),崭露头角的新化学,世界科学,1991,(3),15-17.
    [58] 石焕文,陕西师范大学学位论文,2000年.
    [59] A.A.Gorman, I.Hamblett,C.Lambert,et al, Aromatic ketone-naphthalene systems as absolute standards for the triplet-sensitized formation of singlet oxygen in organic and aqueous media: A time-resolved luminescence study. J.Am. Chem. Soc., 1987,109,3091-3097.
    [60] Z.Wiwu,J.W. Lown,Photosensitization by anticancer agents 12.perylene quinonoid pigments, a novel type of single oxygen sensitizer, J.Photochem. Photobiol.A:Chem., 1992, 64, 273-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700