用户名: 密码: 验证码:
液压节流阀中的空化流动与噪声
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着液压技术朝着高速、高压和大功率的方向发展,其固有问题如噪声问题则愈发严重,社会发展对环境舒适度要求的提高促使液压噪声问题的研究成为十分重要的课题。液压节流阀作为液压系统控制元件,在液压技术中扮演着十分重要的角色,其噪声问题十分严重。液压阀元件噪声分为机械噪声和流动噪声,其中以流动噪声的影响更为显著。液压阀流动噪声又分为空化噪声、流体脉动噪声和一般湍流噪声,目前对空化噪声的研究较多,限于液压阀复杂的流道结构和较高的流动速度,目前的研究还缺乏对空化流动状态的清晰认识,研究成果还停留在一些理论性的假设和经验性的实验结论水平。由于节流阀中空化现象较为显著,导致流体脉动噪声往往被忽略或混淆,相关研究十分少见。
     本文结合理论分析、流场仿真及可视化、噪声振动及频谱分析等手段,对两种典型的节流阀口空化流动及其噪声进行了较为系统和深入的研究。通过对阀口空化流场的可视化高速拍摄,获得了阀口空泡流动的动态图像,验证了节流阀空化噪声简化模型的理论假设和推论。通过对空化噪声振动信号的频域分析,得到了空化噪声振动主频实验值,并与理论值进行了对比,解释了实验值普遍小于理论值的原因在于理论推测中未考虑介质粘度的影响,而液压油液的高粘度将大大延缓空泡溃灭时间,导致溃灭噪声主频的降低。在进行空泡流实验观测的同时,发现U型节流阀口中除空泡流外,还能够形成大尺度空化结构,文章对大尺度空化结构的形成、不稳定动力学行为及其对空化噪声的影响进行了研究,完善了空化噪声理论,加深了对液压节流阀空化现象的认识,具有一定的创新性。另外,研究发现,V型节流阀中阀口流向截面具有较好的流动一致性,阀口出流呈现高速射流状,与下游腔体中液体形成强烈剪切,导致流体自激振荡现象,诱发单频噪声,此种流动行为往往与空化流动并存,由此可以解释V型节流阀具有更高的流动噪声量级及噪声具有刺耳啸叫特征的原因。本文研究成果对液压节流阀流动噪声源的分析与判断,流动噪声控制研究具有较大理论价值和工程应用价值。
     论文的主要内容如下:
     第一章,阐述了本课题研究的重要意义与目的;综述了空化流动和自激振荡剪切流两种流动噪声目前的研究情况;阐述了两种流动噪声在液压节流阀领域的研究进展;概括了本文的主要内容、实验系统及研究方法。
     第二章,从声学、水下声辐射基本原理出发,提出单极子噪声辐射类型与声源体积随时间变化具有直接的关系;结合空泡动力学知识分析了单空泡的成长与溃灭过程,给出了空泡溃灭时间的和噪声主频的理论解析,进而利用高速拍摄得到的空泡图像数据计算得到空泡溃灭噪声主频的理论值,并与实验值进行了对比,解释了实验值普遍小于理论值的原因在于理论推断中未考虑介质粘性的影响;高速拍摄得到的阀口空泡流动现象及其随压力参数的变化规律验证了冀宏博士提出的节流阀空化噪声简化模型的理论假设和推论。
     第三章,在进行节流阀空泡流高速观测的同时,发现U型节流阀中除空泡流外,还具有固定的大尺度空化结构,随液体流动而呈现出周期性的不稳定行为。本章对大尺度空化结构的形成作了仿真研究,并进行了实验对比,发现空化结构因阀口壁面导向螺旋流动而形成;利用空化数和初生空化数,对空化结构长度的度量进行了无量纲化和归一化处理;对大尺度空化结构的不稳定行为进行了物理解释和数学解析,得到了其运动频率的一般表达式,同时研究了其不稳定行为对空泡流空化噪声频谱的影响。
     第四章,通过对V型节流阀中噪声振动频谱及其流动情况的分析与比较,解释了V型节流阀较高能级啸叫噪声来源于空化现象和同时存在流体自激振荡现象。结合V型节流阀结构特征,进行了大量的实验研究,实验结论基本符合目前对流体自激流动现象的共性认识,另外还研究了空化对自激流动现象的影响。
     第五章,对论文研究工作和成果进行了总结,并对未来工作进行了展望。
With the development of hydraulic technology toward high-speed, high-pressure and large power directions, the internal problems of which like noise and vibration problems etc. have been seriously exposed. As the requirements of environmental comfortableness and steady flow performance increases for the meantime, the noise and vibration problem has been addressed with much attention. The hydraulic valves, which play important roles on hydraulic control is considered as one of the major sources of hydraulic noise and vibration. The flow noise is considered much more serious and important compared with structure noise, which can be divided into three types with the noise mechanism, cavitation noise (monopole), flow fluctuation noise (dipole) and general turbulent noise (quadrupole). Cavitation occurs in a wide kind of flow machineries, brings not only noise problem but also erosion, bad flow performance problems etc., researches on which are much abundant and comprehensive within long history. Since the phenomena are much complicated, investigations are not fully satisfied. Researches on hydraulic valve cavitation are always restricted by its complex and narrow flow structure and high speed flow velocity, the detailed cavitating flow state cannot be easily observed, most of the investigations still relay on theoretical hypothesis and experimental summarization. As for the flow fluctuation phenomena, the occurrence of which always accompanies with the cavitating flow in hydraulic valves, often be ignored or confused with cavitation noise somehow. Though the flow fluctuation phenomena are widely cognized and investigated in many flow components, literatures in hydraulic valves are much few.
     In this thesis, the flow noise induced by cavitating flow and (self-sustained) fluctuation flow are investigated profoundly and comprehensively with theoretical analysis, flow simulation and visualization technology and noise & vibration spectra analysis. Using the high-speed camera technology, the travelling cavitation bubbles and their variation law with the pressure parameters are visually obtained, which provide validations to the simplified theoretical model for throttling valves cavitation noise. The theoretical and experimental data of the peak frequency of bubble implosion noise are obtained and compared, the reason why the theoretical result is always larger than the experimental result is explained by the hydraulic oil's high viscosity. Moreover, the fixed large cavitation structure can be also observed in U-notch besides the travelling cavitation bubbles. The formation and instable behavior, including its influence to the travelling bubble noise are investigated, the research of which presents more detailed and aboard view to the cavitating flow and noise in hydraulic valves. As for V-notch, intense shear flow plays the predominant role compared the swirling flow in U-notch, no distinct fixed cavitation structure exists. The cavitation noise shows familiar properties with that of U-notch bubble noise. However, the shear flow arouses intense flow fluctuations, with the flow dynamic feedback form the downstream impingement, serious self-sustained flow fluctuation occurs, correspondingly, the noise spectra shows remarkable frequency peak in relatively lower frequency range compared with cavitation noise, which explains the reason of more powerful and whistling noise in throttling valves with V-notch.
     The outline of this thesis is as follows,
     In chapter 1, the significance and purpose of this thesis are proposed. The reviews on cavitating flow noise and self-sustained flow fluctuation noise are introduced. The literatures of the researches on the two types of noise in hydraulic valves are summarized. At the end, main research contents, research methods and experimental apparatus and system of this thesis are presented.
     In chapter 2, with the acoustic and under-water sound radiation theory, the individual bubble noise model is introduced, which illustrated the relationship of the bubble volume change with the noise radiation. The theoretical value of the bubble implosion noise is figured out with the observed bubble size, which is always larger than the experimental results, the reason is explained by the considerable viscosity effects of the hydraulic oil. Besides, the travelling cavitation bubbles and their variation law with the pressure parameters are visually obtained, which provide good validations to the simplified theoretical model for throttling valves cavitation noise.
     In chapter 3, while observing of travelling bubbles, the fixed large cavitation structure was also discovered in U-notch. CFD simulation is employed to analyze the flow state in U-notch, which illustrates that the spiral shape of fixed cavitation structure is induced by the notch wall guided swirling flow. The cavitation length is normalized of different flow structural characteristics with the critical inception cavitation number since that the inception cavitation number is the only function of flow structure. At the end, the mathematical derivation is conducted to describe the cavitation structure instable behavior. The characteristic dynamic frequency is then analytical obtained. Moreover, the influence of the unstable behavior to the bubble flow noise spectra is also studied.
     In chapter 4, with the comparison of the noise power and its spectra distribution between U-notch and V-notch, the reason of more powerful whistling noise comes from V-notch is explained that, in V-notch, the flow noise not only comes from cavitation noise, but also from intense shear flow self-sustained fluctuation. The self-sustained flow fluctuation in V-notch is studied with abundant experiments, the results shows good common regularities of this phenomenon. Besides, the influence from the accompanied cavitation phenomenon is also studied.
     In chapter 5, the research work of this thesis is summarized with further prospect.
引文
1杨尔庄.二十一世纪液压技术现状及发展趋势.液压与气动,2001(3):1-2
    2杨尔庄.二十一世纪液压技术现状及发展趋势(续).液压与气动,2001(4):1-3
    3杨尔庄.二十一世纪液压技术现状及发展趋势(续).液压与气动,2001(6):1-3
    4 T. Hirohisa. Fluid power control and technology-present and near future. JSME International Journal, Series C,1994,37(4):629-637
    5林明,蔡增杰,朱武峰.关于液压系统环境保护几个问题的初探.液压气动与密封,2010(8):6-10
    6杨尔庄.液压技术的发展动向及展望.液压气动与密封,2003(4):1-7
    7张在新,张新.液压系统泄漏的危害及控制措施浅析.管理观察,2009(4):1
    8李翔.液压系统的泄漏原因及应对措施.科技资讯,2010(11):110,112
    9柳青.组合机床液压滑台系统能耗分析.湖南工业职业技术学院学报,2009(1):4-5
    10张忠狮.液压系统能耗分析及降耗措施研究.液压与气动,2008(1):38-40
    11张铁华,张金,钱祥生.液压系统的能耗控制.液压与气动,1992(4):28-29
    12曹义忠,张风玉.液压平衡回路溢流阀压力设定对系统能耗的影响.石家庄职业技术学院学报,2008,20(2):68-70
    13张德明.浅谈液压传动系统的节能设计.液压气动与密封,2006(5):54-56
    14强宝民,李洪光.节能技术在液压系统中的应用.液压气动与密封,2008(3):5-7
    15 S. Skaistis. Noise control of hydraulic machinery. New York:Marcel Dekker Inc,1988,324p
    16石建峰.噪声在液压系统中的现场判断与处理.液压与气动,2011(3):106-108
    17李丽云.液压系统常见振动与噪声的分析与解决措施.液压气动与密封,2011(1):5-6
    18胡黄卿.液压系统的振动和噪声.液压与气动,2000(4):18-21
    19朱志坚.液压系统振动和噪声与系统设计.机床与液压,2003(3):183-185
    20苏春.液压系统中噪声的控制.液压与气动,2001(2):39-40
    21 D. McCloy, H. R. Martin. Control of fluid power:analysis and design. New York:Halsted Press,1980,505 p
    22 N. M. Hobson. Low noise hydraulic power unit for an auto-hoist lift, United Kingdom. United States Patent,6029448, Feb.29,2000
    23 A. Hehn. Fluid power troubleshooting. New York:Marcel Dekker Inc, second edition,1995, 647 p
    24(美)G.R.凯勒(林其璈等译).液压分析.北京:国防工业出版社,2001
    25 P. F. Hayner, D. G. Eldridge, E. R. Bernier, R. B. Henderson. Low noise hydraulic servo valve, United States. United States Patent,4050476, Sept.27,1977
    26李宝顺.液压系统液体振动固有频率的计算.液压与气动,2004(6):16-19
    27陈奎生.液压系统的共振现象及其处理.噪声与振动控制,1995(5):22-25
    28张志成,张河新,周福章.溢流阀动态性能的实验分析.洛阳工学院学报.1995,16(1):33-41
    29成兆义.溢流阀动态特性、噪声分析及降噪的研究.流体传动与控制,2008(5):27-30
    30王庆丰.液压控制元件流体噪声控制的研究进展.流体传动与控制,2003(1):25-28
    31刘晓红,何坚.基于计算流体动力学解析的液压锥阀噪声评价.中国机械工程,2007,18(22):2687-2691
    32王宏光,徐小龙,杨爱玲,王凤华,谭永学.轴流泵流动噪声数值模拟.排灌机械工程学报,2011,29(3):199-203
    33谢建民,张俊安,瞿兴忠,赵振朝,袁兵燕.流体动力系统噪声控制研究.工业安全与环保,2004,30(6):32-33
    34王晶,冯涛,刘克,周启君.离心泵流动噪声与其水力学参数关系的实验研究.流体机械,2007,35(5):8-11
    35 De Lange, D.F. Observation and modeling of cloud formation behind a sheet cavity. PhD Thesis, Netherlands, Twente University,1996,
    36 De Lange, D.F.& De Bruin G. J. Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality.Appl.Sci. Res.1998(58):91-114
    37 R. A. Furness & S. P. Hutton. Experimental and theoretical studies of two-dimensional fixed-type cavities. J. Fluids Eng.1975(97):515-522
    38程晓俊,鲁传敬.二维水翼的局部空泡流研究.应用数学和力学,2000,21(12):1310-1318
    39(美)D.罗斯(水下噪声原理翻译组译).水下噪声原理.北京:海洋出版社,1983
    40 V. Strouhal. uber eine besondere Art der Tonerregung. Annalen der Physik u. Chemie, 1878(5):216-251
    41 E. G. Richardson. Edge tone. Proc. Phys. Soc.,1931(43B):394-404
    42 A. Powell. On edge tones and associated phenomena. Acustica,1953(3):233-243
    43 G. Hughes. On singing propellers. Trans. Inst. Naval Arch.,1945(87):185-208
    44 W. L. Hughes. Propeller blade vibrations, Trans. N. E. Coast Inst. Engin. and Shipbuilders., 1949(65):273-300
    45华汉金.螺旋桨鸣音产生机理及防治方法.船舶,2002(2):20-23
    46李天启.关于风琴管问题的讨论.信息技术与信息化研究与探讨,2007(4):90-93
    47 J. W. Coltman. Sounding mechanism of the flute and organ pipe. J. Acoust. Soc. Am.1968, 44(4):983-992
    48 M. Kob. Influence of wall vibrations on the transient sound of a flue organ pipe. Acta Acustica united with Acustica.2000,86(4):642-648
    49 C. E. Brennen. Cavitation and bubble dynamics. New York, Oxford University Press,1995, 291p
    50 F. E. Fox & K. F. Herzfeld. Gas bubble with organic skin as cavitation nuclei. J. Acoust. Soc. Am.1954(26):984-989
    51 R. T. Knapp, J. W. Daily and F. G. Hammitt. Cavitation. New York:McGraw-Hill, Lnc., 1970,565p
    52 E. N. Harvey, W. D. McElory and A. H. Whiteley. On cavity formation in water. J. Appl. Phys.1947,18(2):162-172
    53 M. Plesset. Tensile strength of liquids. Office of Naval Research, Rep. no.85-4, April,1969
    54 D. D. Joseph. Cavitation and state of stress in a flowing liquid. Journal of Fluid Mechanics, 1998(366):367-368
    55 F. G. Blake. The tensile strength of liquids; a review of the literature. Harvard Acou. Res. Lab., Rep. TM9,1949
    56 L. Rayleigh. On the pressure developed in a liquid during the collapse of spherical cavity. Philos. Mag. Ser.& 1917,34(200),94-98
    57 F. G. Blake. The onset of cavitation in liquids,I. Harvard Acoustics Res. Lab., Rep.no.12, 1949
    58 R. T. Knapp & A. Hollander. Laboratory investigations of mechanism of cavitation. Trans. ASME, July 1948, p.419
    59 L. Thrilling. The collapse and rebound of a gas bubble. J. Appl. Phys.,1952,23(1):14-17
    60 H. Poritsky. The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proc. First Nat. Cong. In Appl. Mech.,1952,813-821
    61 M. S. Plesset. The dynamics of cavitation bubble. Trans. ASME, Jr. Appl. Mech.1949(16): 277-282
    62 A. Philippy and W. Lauterborn. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech.1998(361):75-116
    63 J. H. Brunton. Cavitation damage. Proc. Third Inter. Congre. on Rain Erosion, Meersburg, Germany, August,1970
    64 H. M. Fitzpatrick & M. Strasberg. Hydrodynamic sources of sound. First symposium on naval hydrodynamics,1956
    65 H. J. Baiter. On different notions of cavitation noise and what they imply. Int. Symp. On Cavitation and Multiphase Flow, ASME FED,1986(45):107-118
    66 C. Herring. Theory of the pulsations of the gas bubble produced by an underwater explosion. OSRD Rep. no.236,1941
    67 F. R. Gilmore. The growth and collapse of the spherical bubble in a viscous compressible liquid. Calif. Inst. Of Tech. Hydrodyn, Lab. Rep. no.26-4,1952
    68 J. G. Kirkwood and H. A. Bethe. The pressure wave produced by an underwater explosion. OSRD Rep. no.588,1942
    69 R. D. Ivany, F. G. Hammitt and T. M. Mitchell. Cavitation bubble collapse observation in a venturi. J. Basic Eng.,1966(88):649-655
    70 V. P. Morozov. Cavitation noise as a train of sound pulses generated at random time. Soviet Physics-Acoustics,1971(14):283-290
    71 R. H. Mellen. Ultrasonic spectrum of cavitation noise in water. J. Acoust. Soc. Am.,1964(26): 356-360
    72 S. D. Rice. Mathematical analysis of random noise. Selected papers on noise and stochastic processes, Wax, N., ed., Dover, New York.1954
    73 R. E. Franklin & J. McMillan. Noise generation in cavitating flows, the submerged jet. ASME J. Fluids Eng.,1984(106):336-341
    74 W. K. Blake and M. M. Sevik. Recent developments in cavitation noise research. Proc. ASME Int. Symp. on Cavitation Noise,1982,1-10
    75 W. K. Blake. Mechanics of flow-induced sound and vibration. Orlando:Academic Press, 1986
    76 P. A. Lush & B. Angell. Correlation of cavitation erosion and sound pressure level. ASME. J. Fluids Eng.,1984(106):347-351
    77 R. C. Marboe. M. L. Billet and D. E. Thompson. Some aspects of travelling bubble cavitation and noise. Proceedings of international symposium on cavitation and multiphase flow noise, California, United States, December 1986,119-127
    78 S. D. Sharma, K. Mani and V. H. Arakeri. Cavitation noise studies on marine propellers. Journal of sound and vibration,1990 138(2):255-283
    79 H. Seol, J. C. Suh. and S. Lee. Development of hybrid method for the prediction of underwater propeller noise. Journal of sound and vibration,2005,288(1-2):345-360
    80 C. S. Martin, H. Medlarz, D. C. Wiggert and C. Brennen. Cavitation inception in spool valves. ASME J. Fluids Eng.1981(103):564-676
    81 F. G. Hammitt & M. K. De. Cavitation damage prediction. Wear,1979,52(2):243-262
    82 J. Kiesbauer. Control valves for critical applications. Hydrocarbon processing,2001 (6): 89-100
    83 F. G. Hammitt. Cavitation erosion state of art and predicting capability. Applied Mechanics Review, ASME, April,1979
    84 J. P. Franc & J. M. Michel. Fundamentals of cavitation. London:Kluwer Academic Publishers,2004,293p
    85 V. H. Arakeri. Viscous effects on the position of cavitation separation from smooth bodies. J. Fluid Meck,1975(68):779-799
    86 V. E. Johnson, Jr. and T. Hsieh. The influence of the trajectories of gas nuclei on cavitation inception. Proc.6th ONR Symp. on Naval Hydrodynamics,1966,163-182
    87 J. Katz and T. J. O'Hern. Cavitation in large scale shear flows. ASME J. Fluids Eng., 1986(108):373-376
    88 L. van Wijingaaeden. One-dimensional flow of liquids containing small gas bubbles. Ann. Rev. Fluid Mech. 1972(4):369-396
    89 L. d'Agostino & C. E. Brennen. On the acoustical dynamics of bubble clouds. ASME Cavitation and multiphase flow forum,1983,72-75
    90 L. d'Agostino & C. E. Brennen. Acoustical absorption and scattering cross-sections of spherical bubble coulds. J. Acoust. Soc. Am.1988(84):2126-2134
    91 L. d'Agostino & C. E. Brennen. Linearized dynamics of spherical bubble clouds. J. Fluid Mech.1989(199):155-176
    92 Y. Kawanami, H. Kato, H. Yamaguchi, Y. Tagaya and M. Tanimura. Mechanism and control of cloud cavitation. J. Fluids Eng.1997(119):788-795
    93 Y. Kawanami, H. Kato and H. Yamaguchi. Three-dimensional characteristics of the cavities formed on a two-dimensional hydrofoil. Proc.3rd Int. Symp. on Cavitation,1998(1):191-196
    94 S. Kubota, H. Kato, H. Yamaguchi and M. Maeda. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. Proc. Int. Symp. on Cavitation Research Facilities and Techniques, Boston, USA,1987,161-168
    95 S. Kubota, H. Kato and H. Yamaguchi. A new modeling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech.1992(240):59-96
    96 K. R. Laberteaux & S. L. Ceccio. Parital cavity flows. Part 1-Cavities forming on models without spanwise variation. Part2-Cavities forming on test objects with spanwise variation. J. Fluid Mech.2001(431):1-41 and 43-63
    97 Q. Le. J. P. Franc and J. M. Michel. Partial cavities:global behavior and mean pressure distribution. J. Fluids Eng.1993(115):243-248
    98 M. Callenaere, J. P. France and J. M. Michel. The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech.2001(444):223-256
    99 J. P. Franc. Partial cavity instabilities and re-entrant jet. In:CAV 2001:fourth international symposium on cavitation, USA, June,2001
    100R. B. Wade & A. J. Acosta. Experimental observation on the flow past a plano-convex hydrofoil. Trans. ASME, Ser. D. Jr. Basic Engineering,1966(88):273-283
    101S. C. Li. Cavitation of hydraulic machinery. London, United Kingdom:Imperial College Press,2000
    102K. Robert, H. Charles, C. John. Experimental study of ventilated cavities on dynamic test model. Fourth international symposium on cavitation, California,2001, Session B3.004
    103Y. D. Vlasenko. Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds. Fifth international symposium on cavitation, Osaka, Japan,2003. Cav03-GS-6-006
    104蒋洁明,鲁传敬.轴对称体通气空泡的水动力学试验研究.力学季刊.2004, 25(4):450-456
    105H. Reichardt. The laws of cavitation bubbles at axially symmetric bodies in a flow. Ministry of aircraft production volkenrode, MAP-VG, Rep. and Transl.766,1946
    106C. Sondhaus. Uber die beim ausstromen der luft entstehenden tone. Ann. Phys. (Germany) 1854, (128),91
    107J. P. Woolley & K. Karamcheti. The role of jet stability in edgetone generation. AIAA 6th fluid and plasma dynamics Conf. Palm Springs, CA.1973, Paper 73-628
    108 G. F. McCanless, J. R. Boone. Noise reduction in transonic wind tunnels. The journal of the acoustical society of America,1974,56(5):1501-1510
    109H. H. Heller, D. B. Bliss. The physical mechanism of flow induced pressure fluctuations in cavities and concepts for suppression.2nd AI AA Aeroacoust. Canf, NASA Langley Res. Cent., Hampton. Va., March,1975, Pap.75-491
    110P. L. Bettes. Self-induced oscillations in an open water-channel with slotted walls. Journal of fluid mechanics,1972,55(3):401-417
    111W. W. Martin, M. Padmanabhan and E. Naudascher. Fluid-dynamic excitation involving flow instability. Journal of the hydraulics division,1975,101(6):681-698
    112D. Rockwell & E. Naudascher. Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech.,1979(11):67-94
    113D. A. Anderson, J. C. Tannehill and R. H. Pletcher. Computational fluid mechanics and heat transfer. United States:McGraw-Hill,1984,599p
    114C. K. Tam. Excitation of instability waves in a two dimensional shear layer by sound. Journal of fluid mechanics,1978(89):357-371
    115J. Geffroy. Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects. Journal of fluid mechanics.2007(577):105-126
    116D. Rockwell & E. Naudascher. Review-self-sustaining oscillations of flow past cavities. Transactions of ASME,1978(100):152-165
    117A. Powell. On edge tones and associated phenomena. Acustica,1953(3):233-243
    118J. L. King, P. Boyle. And J. B. Ogle. Instability in slotted wall tunnels. Journal of fluid mechanics.1958(4):283-305
    119W. W. Martin, Die anwendung der hydrodynamischen insta bilitatstheorie auf dies schwingung von schutzen. Dr.-Ing. Dissertation, University of Karlsruhe,1974
    120W. W. Martin, E. Naudascher and M. Padmanabhan. Flow induced excitation involving shear layer instability. Journal of the hydraulics division, Proceedings of American society of civil engineers,1975,10(HY6):681-698
    121J. E. Rossiter. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. RAE Tech. Rep.64037,1964 and Reports and Memoranda No.3438, Oct. 1964
    122H. Heller, S. Jones and D. Bliss. Water table visualization of flow-induced pressure oscillations in shallow cavities for simulated supersonic flow conditions.86th meeting of acoustical society of America,1973, Paper Z13
    123M. M. Freestone and R. N. Cox. Sound fields generated by transonic flows over surfaces having circular perforations. Ref. No.24 in AGARD CP on "Facilities... Transonic Speeds and High Reynolds No."AD731-150, Aug.1971.
    124D. Rockwell. Prediction of oscillation frequencies for unstable flow past cavities. ASME journal of fluids engineering,1977(99):294-300
    125G. Raman. Advances in understanding supersonic jet screech:Review and perspective. Progress in aerospace sciences,1998,34(1-2):45-106
    126D. E. Berndt. Dynamic pressure fluctuations in the internozzle region of a twin-jet nacelle. SAE paper 84-1540, SAE Aerospace Cong. And Expo., Long Beach, CA.
    127孔建益,李公法,侯宇,杨金堂,蒋国璋,熊禾根.潜艇振动噪声的控制研究.噪声与振动控制,2006(5):1-5
    128H. B. Powell. The sound-producing oscillations of round underexpanded jets impinging on normal plates.J. Acoust. Soc. Am.1988,83(2):515-533
    129A. Powell. Nature of sound sources in low-speed jet impingement. J. Acoust. Soc. Am.1991, 90(6):3326
    130A. Powell. Nature of sound sources in low-speed jet impingement-further considerations. J. Acoust. Soc. Am.1994,96(1):590-593
    131高传昌,陈豪,雷霆.自激振荡脉冲射流的研究与进展.华北水利水电学院学报,2009, 30(3):41-44
    132唐川林,胡东,裴江红.自激振荡脉冲射流喷嘴频率特性实验研究.石油学报,2007,28(4):122-125
    133T. Morel. Experimental study of a jet-driven Helmholtz oscillator. ASME J. Fluid Eng. 1979(101):383-390
    134S. Samis & C. Anderson. Helmholtz oscillation for the self-modulation of a jet. Proceedings of the 7th international symposium on jet cutting technology,1984,91-98
    135T. Kimura & K. Ogawa. Cavitation vibration and noise around a butterfly valve. ISA Transactions,1986,25(1)
    136J. W. Ball and J. P. Tullis. Cavitation in butterfly valves. Proc. of A. S. C. E., No. HY9,1993, 1303-1318
    137V. A. Akulichev & V. I. li'ichev. Spectral indicaion of the origin of ultrasonic cavitation noise in water. Sov. Phys.-Acoustics,1963(9):128-130
    138L. van Wijngaaeden. Linear and nonlinear dispersion of pressure pulses in liquid-bubble mixtures. Proc. sixth symposium on Naval. Hydrodynamics, O. N. R., ACR-136, Washington, Sept.1966,115-135
    139IEC 60534-8-2, Industrial-process control valves, Part 8:Noise considerations Section 2: Laboratory measurement of noise generated by hydrodynamic flow through control valves, 1991
    140H. D. Baumann & W. George. Page Jr. A method to predict sound levels from hydrodynamic sources associated with flow through throttling valves. Noise control engineering journal,1995,43(5):145-158
    141J. Kiesbauer. An improved prediction method for hydrodynamic noise in control valves. Valve world,1998,3(3):33-49
    142H. D. Baumann & H. Hoffmann. A method for the estimation of frequency-dependent sound pressures at the pipe exterior of throttling valves. Noise control engineering journal,1999, 47(2):49-55
    143Outa, Eisuke, F. Inue, K. Tajima and T. Machiyama. Inception of vortex-generated cavitation in an industrial contoured-plug valve. ASME FED, Vo.177, Cavitation inception, Bool H00880,1993
    144S. Oshima & T. Ichikawa. Cavitation phenomena and performance of oil hydraulic poppet valve (lrd report, Mechanism of generation of cavitation and flow performance). Bulletin of JSME,1985,28(224):2264-2271
    145H. Gao, W. Lin and T. Tsukiji. Investigation of cavitation near the orifice of hydraulic valves. Proc. IMechE, Part G:J. Aerospace engineering,2006(220):253-365
    146K. Sato & Y. Saito. Unstable cavitation behavior in a circular-cylindrical orifice flow. JSME international journal, Series B,2002,45(3):638-645
    147G. E. Reisman, Y.-C. Wang and C. E. Brennen. Observations of shock waves in cloud cavitation. J. Fluid Mech,1998(335):255-283
    148G. L. Chahine. Cloud cavitation:theory. Proc.14th ONR Symp. on Naval Hydrodynamics, 1982,165-194.
    149G. L. Chahine & R. Duraiswaml. Dynamical interactions in a multibubble could. Trans. ASME:J. Fluids Engng,1992(114):680-686
    150S. Watanabe, Y. Tsujimoto, J. P. Franc & J. M. Michel. Linear analyses of cavitation instabilities. Proc.3rd Int. Symp. on Cavitation,1998(1):347-352
    151G. Burkhoff & E. H. Zarantonello. Jets, wakes and cavities. New York:Academic Press.1957
    152D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman and C. Tang. Viscous flows in two dimensions. Rev. Mod. Phys.1986,58(4):9777-999
    153H. Chanson. Air bubble entrainment in free-surface turbulent shear flows. London, UK: Academic Press,1997
    154H. Higuchi, M. F. Rogers and R. E. A. Arndt. Characteristics of tip cavitation noise. Proc. ASEM Int. Symp. on Cavitation and Multiphase Flow Noise,1986, FED 45,101-106
    155G. H. L Hagen. Ueber die bewegung des wassers in engen cylindrischen Rohren. Annalen der Physik,1839,122(3):423-442
    1560. Reynolds. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond.1883(174):935-982
    157黄继汤.空化与空蚀的原理及应用.北京:清华大学出版社,1991
    158C. E. Brennen. Fission of collapsing cavitation bubbles. J. Fluid Mech.2002(472):153-166
    159周光垌,严宗毅,徐世雄,章克本.流体力学.北京:高等教育出版社,2004
    160冀宏.液压阀芯节流槽气穴噪声特性的研究.博士论文,浙江大学,2004
    161E. C. Titchmarsh. The theory of functions. Oxford University Press,1947
    162杜学文.液压阀口空化机理及对系统的影响.博士论文,浙江大学,2006
    163林建忠.湍动力学.浙江大学出版社,1999
    164V. Yakhot & S. A. Orszag. Renormalization group analysis of turbulence. I. Basic theory. Journal of scientific computing,1986(1):39-51
    165L. M. Smith and W. C. Reynolds. On the Yakhot-orszag renormalization group method for deriving turbulences statics and models. Physics of Fluid A,1992,4(4):364-390
    166X. J. Wang & C. Liang. Numerical analysis of side discharges into a channel flow using an RNG k-s model. Journal of hydrodynamics, Ser. B,1999(3):45-54
    167X. J. Wang & C. Liang. Three-dimensional simulation of a side discharge into a cross channel flow. Computers & Fluids,2000(29):415-433
    168S. J. Lee & H. C. Lim. A numerical study on flow around a triangular prism located behind a porous fence. Fluid dynamics research,2001(28):209-221
    169王少平,曾杨兵,沈孟育等.用RNG k-e数值模拟180°弯管内的湍流分离流动.力学学报,1996,28(3):257-263
    170高红,傅新,杨华勇,築地徹浩.锥阀阀口气穴流场的数值模拟与试验研究.机械工程学报,2002,38(8):27-30
    171冀宏,傅新,杨华勇,王庆丰.非全周开口滑阀压力分布测量研究.机械工程学报,2004,40(4):99-102
    172K. Akihiro, H. Kato, H. Yamaguchi. A new modeling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech.,1992(240):59-96
    173P. S. Kumar & A. B Pandit. Modeling hydrodynamic cavitation. Chem. Eng. Technol,1999, 22(12):1017-1027
    174J. Zou, X. Fu, X. W. Du, X. D. Ruan, H. Ji., S. Ryu and M. Ochiai. Cavitation in a non-circular opening spool valve with U-grooves. Proc. IMechE, Part A:J. Power and Energy,2008(222):413-420
    175D. Rockwell & E. Naudascher. Review—Self-sustained oscillations of flow past cavities. Transactions of the ASME,1978(100):152-165
    176杨林,李晓红,王建生,卢义玉.碰撞剪切流动中波速对自激振荡射流频率的影响.中 国安全科学学报,2000,10(6):46-50
    177L. D. Pearce & A. Lichtarowicz. Discharge performance of long orifice with cavitating flow. Proceedings of the 2nd fluid power symposium,1971(2):13-35
    178V. Sarohia. Experimental investigation of oscillations in flows over shallow cavities. AIAA J., 1977 (15):984-991
    179 V. Sarohia. Experimental and analytical investigation of oscillations in flows over cavities. PhD thesis, California Institute of Technology,1975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700