用户名: 密码: 验证码:
大流量高压离心压缩机低压级设计关键问题分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心压缩机广泛用于航天、冶金、石油、化工、能源等部门,在国民经济各领域发挥着举足轻重的作用。作为从动机,离心式压缩机在提高工质压力的同时,也消耗能源,特别是近年来百万吨乙烯工程、大型空分装置等都对国产大流量压缩机的设计、研发提出了挑战。研究表明,扩大工况范围、提高级组运行安全性、提高流动效率、优化流道结构、减少能量损失,必须对离心压缩机内部流动进行深入探究,从而提高大型离心压缩机整体设计水平,这将对我国重大装备制造业的发展及节约能源有重要现实意义和历史意义。
     本文针对大流量离心压缩机叶轮轮毂比大、叶轮进出口相对宽度大、进出口马赫高,而相对轴向跨距小、叶轮结构刚性差等气动、结构特点,首先利用叶轮机械专用数值分析软件NUMECA,对某事故离心压缩机低压缸大口圈直径的闭式叶轮内部流场进行定常流动数值模拟研究及事故原因分析。完成了该压缩机低压缸整机设计工况性能核算,并验证了数值模拟的物理模型及数学模型的可靠性。通过对运行工况特别是事故工况进行定常数值模拟,分析内部流场结构与叶轮结构的关联及影响,进而揭示事故发生的主要原因。为了更加深入研究叶轮入口气流畸变对叶轮破坏的影响程度,本文还对事故机组低压缸首级进行了非定常流数值模拟,从非定常流动的角度,进一步阐明对大流量高压离心压缩机低压级设计上的关键问题及引起本次事故的重要原因。
     最后,根据分析结果,针对该事故原因提出了几种改进方案,并对改进方案进行定常及非定常数值模拟,经与原设计比较,确定改进方案,为压缩机改进设计提供技术支持,目前,该压缩机运行正常。
The centrifugal compressors play an important role in every field of the national economy, such as aerospace, metallurgy industry, petroleum industry, chemical industry and power plants. As driven machines, the centrifugal compressors consume the power in order to produce the high pressure of working air. In recent years, a big new challenge to the design and research of the domestic compressors with large capacity is posed, especially in the megaton ethylene project and large air separation unit. The study shows that it is very important to enhance the whole design levels of centrifugal compressors with large quantities by expanding the scope of working condition, raising the operating security of sets, increasing the flow efficiency, improving the flow structure, reducing energy loss, and further studying on the internal flow of the centrifugal compressor. These achievements will lead to a realistic and historical significance on the development of our major equipment manufacturing and energy conservation.
     According to the pneumatic and structure characteristics of the large flow rate centrifugal compressor, such as high hub-tip ratio of the impeller, big relative width ratio between the inlet and outlet of the impeller, high Mach number, small relative axial span and worse structure rigid of the impeller, the correlated investigation is completed in this paper. To begin with, the analysis on the damage of the impeller inlet element in the centrifugal compressor low pressure casing is completed by numerically researching the inner steady flow field across the impeller passages with the commercial software, NUMECA. The investigation includes the performance account of the whole low pressure casing and the reliability certification of physical and mathematical model of the numerical simulation. The main reasons of the accident are revealed through analyzing the relationship between the inner flow field and the impeller structure under the real operating condition. Afterwards, the unsteady flow numerical simulation for the first stage in the low pressure casing is completed in order to find out the extent to which the flow distortion contributing to the impeller damage. As a result, the key point of designing the centrifugal compressor with a large flow rate and high pressure ratio and the accident reasons are further stated.
     Finally, several improved solutions are proposed based on the steady and unsteady flow numerical investigation. After comparison with the original design, an advanced scheme is achieved which has provided the technical support in the compressor design. Now the compressor is normally operating.
引文
[1]黄钟岳,王晓放.透平式压缩机.北京:化学工业出版社,2004.8.
    [2]杜占波,CFD技术在汽轮机设计研究中的应用实践及展望,热力透平,2005,35(2):63-68.
    [3]Moore J,Moore J G.Calculation of three-dimensional viscous flow and wake development in a centrifugal impeller.J of Eng for Power,1981,103(3):367-372.
    [4]Patankar S V.Numerical heat transfer and fluid flow.Hemisphere,Washington D.C.,1980.
    [5]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes.AIAA Paper 81-1259.
    [6]Hah C.A Navier-Stokes analysis of three-dimensional turbulent flows inside turbine blade rows at design and off-design conditions.ASME 83-GT-40.
    [7]Hah C,Krain H.Secondary flows and vortex motion in a high-efficiency backswept impeller at design and off-design conditions.J.of Turbomachinery,1990,112(1):7-13.
    [8]赵晓路.含分流叶片离心压气机叶轮内部流场全三元数值模拟.工程热物理学报,1996 17(1):31-35.
    [9]刘立军、徐忠.离心叶轮内部三维湍流流场的数值分析.工程热物理学报,1996 17(3):296-300.
    [10]席光、王尚锦.半开式离心压气机叶轮三维湍流数值分析.西安交通大学学报,1997 5(31):90-96.
    [11]张楚华、刘正先等.旋转离心叶轮内湍流的非结构化网格数值计算.航空学报,1998 19(5):556-559.
    [12]姚征,陈康民.CFD通用软件综述.上海理工大学学报,2002 24(2):137-144.
    [13]李丽丽.不同用途的叶轮机械内部流场数值模拟分析及结构优化研究:(硕士学位论文).大连:大连理工大学.
    [14]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes.AIAA Paper[C].81-1259.1981
    [15]Harten A.High resolution scheme for hyperbolic system of conservation law.J Comp Phys.1983.
    [16]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM J Num Anal,1984,21:995-1011.
    [17]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications.J Comp Phys,1987,(68):151-179
    [18]陈义良.湍流计算模型.合肥:中国科学技术大学出版社,1991,5.
    [19]陈矛章.粘性流体动力学基础.北京:高等教育出版社,1993,10.
    [20]Hirsh C,etc.An Integrated CFD System for 3D Turbo Machinery Applications.1992,ADARD-CP-510.
    [21]Chu W,Jiang T.Experimental investigation of rotating stall in a centrifugal compressor with vaneless diffuser.Journal of Aerospace Power/Hangkong Dongli Xuebao,1990,5(2):163-165.
    [22]陶文铨,杨世铭.数值传热学.西安:高等教育出版社,2001.
    [23]Dean,R.C.On the Necessity of Unsteady Flow in Fluid Machines.ASME J.Basic Eng.,1959:24-28.
    [24]Greitzer E.M.An Introduction to Unsteady Flow in Turbomachines.Thermodynamics and Fluid Mechanics of Turbomachinery—Volume Ⅱ,1997:967-1024.
    [25]Greitzer E.M.Thermodynamics and Fluid Mechanics of Turbomachinery.VolmueⅡ,NATO ASI Series,Series E:Applied Sciences,No.9713,1985.
    [26]陆亚钧.叶轮机械非定常流动.北京:北京航空航天大学出版社,1991.
    [27]李玲.轴流压气机机匣处理的数值模拟与实验研究:(博士学位论文).北京:北京航空航天大学.
    [28]王远宏,董长海,邵泽维.燃气轮机空气压缩机喘振原因及解决方法.能源技术,200526(1):39-40.
    [29]Hodson,H.P.An Inviscid Blade-to-Bldae Prediction of A Wake-Generated Unsteady Flow.ASME Paper 84-GT-43,1984.
    [30]Stieger,R.D.and Hodson,H.D.The Unsteady Development of A Turbulent Wake Through A Downstream Low-Pressure Turbine Blade Passage.ASME Paper GT2004-53061,2004.
    [31]D.Nürnberger,F.Eulitz,S.Schmitt,A.Zachcial.Recent progress in The Numerieal Simulation of Unsteady Viscous Multistage Turbomachinery Flow.ISABE-2001-1081,2001.
    [32]王仲奇,秦仁.透平机械原理.北京:机械工业出版社,1981.
    [33]童秉纲,张炳暄.非定常流与涡运动.北京:国防工业出版社,1993.
    [34]吴厚钰.透平零件结构利强度计算.西安:西安交通大学,1980.
    [35]肖军,谷传纲等.带可调进口导叶离心压缩机的性能分析.动力工程.Vol.26 No.6Dec.2006:804-807.
    [36]介红恩.汽轮机断叶片级再制造设计与级扩容研究:(硕士学位论文).大连:大连理工大学.
    [37]谭大治.离心式叶轮机械内部气动性能的全三维粘性数值模拟:(硕士学位论文).北京:清华大学.
    [38]王嘉炜.叶轮机械中若干非定常流动特征的初步研究:(博士学位论文).北京:中国科学院工程物理研究所.
    [39]周莉,席光,蔡元虎.离心压缩机进口导叶/叶轮动静相干的数研究.航空动力学报,200722(10):1715-1721.
    [40]肖军,谷传纲,舒信伟,高闯.带可调进口导叶离心压缩机的性能分析.动力工程,200626(6):804-807.
    [41]席光,周莉,王尚锦.离心压气机进口导叶尾涡非定常发展的数值研究.工程热物理学报,200324(6):958-960.
    [42]谢进祥.轴流压缩机首级叶片疲劳断裂的原因分析.风机技术,2007(2):64-70.
    [43]方立宏,蔡兆麟.离心压缩机级的设计与数值分析.风机技术,2006(5):1-3.
    [44]谭佳健,毛义军,祁大同,王锐,王学军.离心式压缩机可调进口导叶研究综述.风机技术,2005(3):44-48.
    [45]刘前智,周新海.多级压气机非定常流动的数值模拟.推进技术,2001 22(5):408-410.
    [46]康顺,陈党慧.用CFD研究高压比离心叶轮内的二次流动.航空动力学报,200520(6):1054-1060.
    [47]×××××研究项目汇报,用Fluent软件进行叶轮机械内部非定常力计算的说明,2006.12
    [48]王晓放,王巍,郭杏林等.山东华鲁恒升化工股份有限公司×××空压机修复运行后现场振动测试及运行分析报告,2005.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700